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Abstract. The aim of this work is to optimize the relative and the absolute Critical
Resolved Shear Stress (CRSS) of slip mechanism in α-phase of Ti-6Al-4V titanium alloy.
The influence of grain size is then modeled through a local Hall-Petch relationship. A
slip trace analysis technique coupled with statistical reasoning were used to identify the
CRSS ratios of basal 〈a〉, prismatic 〈a〉 and pyramidal 〈c+ a〉 slip systems. The multi-
scale transition rule of Berveiller-Zaoui was then used to determine the absolute CRSS in
three different microstructures; Ti-6Al-4V with ultra fine grains (UFG), fine grains (FG)
and standard grains (SD). Finally, the local Hall-Petch relationship was optimized. As
expected, plastic deformation is mainly accommodated by prismatic and then basal slip
systems. Due to their high CRSS, sliding in pyramidal systems is more difficult. Grain
size shows a significant role on the activation of slip systems. By increasing the grain size,
the CRSS of each slip system type decreases and thus sliding becomes easier in coarse
grains.

1 INTRODUCTION

The multi-scale modeling of mechanical behavior of materials essentially requires to
identify the local parameters. An accurate prediction of the material properties at differ-
ent scales strongly depends on the local model formulation as well as the identification
procedure of its parameters .
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In Hexagonal Closed Packed (HCP) materials such as pure titanium, the plastic be-
havior is mainly accommodated by twinning and crystallographic sliding mechanisms.
However, addition of some alloying elements such as aluminum limits the role of twin-
ning mechanism [1–4] which is the case of Ti-6Al-4V alloy. In this alloy, three several
types of slip systems namely basal 〈a〉, prismatic 〈a〉 and pyramidal 〈c+ a〉 can accom-
modate the plastic strain. The Critical Resolved Shear Stress (CRSS) varies from a type
to another [5]. Therefore, the identification of this parameter for titanium and its alloys
remains difficult and only the relative values have been estimated in most of previous
works [5–9]. Moreover, the CRSS not only depends on the HCP material (Ti, Zr, Mg ...)
or the type of slip systems but also on the morphology features such as the grain size.

The present contribution aims to identify the CRSS of basal 〈a〉, prismatic 〈a〉 and
pyramidal 〈c+ a〉 slip systems types in three microstructures of Ti-6Al-4V titanium alloy.
Hence, the Hall-Petch relationship can be optimized. In order to achieve this goal, a slip
trace analysis technique was proposed to identify the slip systems by comparing their
observed traces with those given by the theoretical rules. Then, a statistical methodology
adapted from the work of Li et al. [6] was used to estimate the CRSS ratios. Finally,
a multi-scale numerical optimization was proposed to determine the absolute CRSS and
therefore the local Hall-Petch relationship.

2 OPTIMIZATION PROCEDURE

Four microstructures of an equiaxed Ti-6Al-4V reported in Tab.1 were used in the
optimization procedure. T2-SD is characterized by a weak crystallographic texture and
coarse grains, that allows identifying the slip traces of sliding systems after tensile tests
and thus estimate their CRSS ratios with lesser effects of crystallographic texture. T1-
UFG, T1-FG and T1-SD are characterized by ultra fine grains, fine grains and standard
grains microstructures respectively and the same crystallographic texture (all are strongly
textured). Consequently, the effects of the grain size on the activation of sliding systems
and therefore optimization of their absolute CRSS in relationship with the grain size can
be addressed. The morphology as well the crystallographic texture of these Ti-6Al-4V
microstructures are illustrated in Fig. 1 and 2.

Table 1: grain size and crystallographic texture of the investigated microstructures of
Ti-6Al-4V.

Microstructure grain size Crystallographic
(µm ) texture

T1-UFG 0.6 Strong
T1-FG 3 Strong
T1-SD 7.5 Strong
T2-SD 7.5 Weak

Tensile test until 5% of strain was performed for T2-SD. Then, experimental slip traces
were then observed by Scanning Electron Microscopy (SEM) and identified using the ori-
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Figure 1: Ti-6A-4V microstructures of (a)T1-UFG, (b) T1-FG, (c) T1-SD and (d) T2-SD
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Figure 2: (0001) and {101̄0} pole figures of different Ti-6Al-4V microstructures (a) T1-
UFG, (b) T1-FG, (c) T1-SD, (d) T2-SD.

entation data (i.e. Euler angles) provided by Electron Backscatter Diffraction (EBSD)
analysis and ImageJ software. The prediction of the most likely slip systems to be ac-
tivated was carried out by comparing the results from theoretical slip trace with the
experimental results. An algorithm was developed to calculate the Schmid factor and slip
trace angle of each theoretical slip system relative to the orientation of a single grain.
The activation of the actual and theoretical slip system was then recorded as a function
of slip system type and the Schmid factor as shown in Tab. 2. 3.

230 grains were analyzed, 134 of them present a slip traces (58%). The Schmid factor
of 3 basal 〈a〉, 3 prismatic 〈a〉 and 6 pyramidal 〈c+ a〉 systems was computed for each
yield grain. 1608 values are therefore determined (Tab. 3). The statistical procedure
proposed by Li et al. [6] was adapted in this paper for identifying the CRSS ratios. The
experimental observed slip systems were compared with those given by the theory by
dividing each pair in Tab. 2 designed by Oij with the corresponding theoretical pair Tij

in Tab. 3 as:
Rij = Oij/Tij (1)

Where i is the slip systems type, it can be: basal 〈a〉 (i = 1), prismatic 〈a〉 (i = 2) and
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Table 2: Distribution of experimental observed slip systems Oij as function of their schmid
factor

Schmid factor Basal 〈a〉 Prismatic 〈a〉 Pyramidal 〈c+ a〉
(34%) (44%) (22%)

0-0.05 1 3 0
0.05-0.10 0 5 0
0.10-0.15 1 5 0
0.15-0.20 0 8 0
0.20-0.25 3 7 1
0.25-0.30 3 9 2
0.30-0.35 4 8 4
0.35-0.40 7 10 6
0.40-0.45 13 10 9
0.45-0.50 28 12 16

pyramidal 〈c+ a〉 (i = 3) and j is the Schmid factor range (1 ≤ j ≤ 10). The obtained
results are presented in Tab. 4. If all the slip systems represented in Tab. 2 are actually

Table 3: Distribution of theoretical slip systems Tij as function of their Schmid factor for
134 yield grains

Schmid factor Basal 〈a〉 Prismatic 〈a〉 Pyramidal 〈c+ a〉
0-0.05 43 75 114

0.05-0.10 39 65 108
0.10-0.15 55 57 102
0.15-0.20 39 42 88
0.20-0.25 29 31 72
0.25-0.30 45 35 73
0.30-0.35 33 33 66
0.35-0.40 45 24 68
0.40-0.45 30 24 67
0.45-0.50 44 16 46

activated in the experiment, the value of each pair Rij in Tab. 4 would be 1. However,
the activation of slip systems depends on their Schmid factor. Thus, slip systems with
small Schmid factor is less likely to be activated than those with large Schmid factor (Tab.
4). By comparing the ratios Rij of the same row in Tab. 4, it can be clearly observed
that the critical resolved shear stress (CRSS) is different from a family to another. The
representation of these ratios follows a cubic distribution (See Fig. 3), thus, using this
table as a reference, the theoretical values presented in Tab. 3 can be formulated with
cubic weighting function [6] as:

wij = Tij × ((j − 1)/9)3 (2)

This function allowed to reduce the values of theoretical sliding having a small Schmid
factor. In this step, the effects of crystallographic texture were eliminated. However,
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Table 4: Distribution of the ratios Rij between observed and theoretical slip systems

Schmid factor Basal 〈a〉 Prismatic〈a〉 Pyramidal〈c+ a〉
0-0.05 0.023 0.04 0

0.05-0.10 0 0.077 0
0.10-0.15 0.0181 0.087 0
0.15-0.20 0 0.1904 0
0.20-0.25 0.10 0.22 0.014
0.25-0.30 0.067 0.027 0.028
0.30-0.35 0.121 0.29 0.061
0.35-0.40 0.56 0.417 0.089
0.40-0.45 0.43 0.42 0.13
0.45-0.50 0.64 0.75 0.34
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Figure 3: Evolution of the ratios R for each slip system type as function of Schmid factor
range.

the CRSS of the different sliding types is not yet taken into consideration. The results
obtained using Eq. 2 are presented in Tab. 5.

The probability density function of each pair of Tab. 5 is given as:

pij =
wij∑3

i=1

∑10
j=1 wij

(3)

Hence, the prediction of the number of slip systems which can be observed experimentally
was possible. It can be performed by multiplying the obtained probability density function
by the total number N of observed sliding Oij presented in Tab. 2 as:

Eij = pij ×N (4)

The results were then reported for each pair (slip system-Schmid factor) in Tab. 6.
It was observed that the results of the expected slip systems (Tab. 6) were significantly

different from those experimentally observed (Tab. 2). Noted that until this step, the
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CRSSs are always assumed the same for all the slip systems types. The next step of
this methodology consists to minimize the difference between the observed and expected
values by identifying the CRSSs ratios. The expected number of slip systems Eij can be

Table 5: Distribution of weighted theoretical slip systems wij for the 134 yielding grains

Schmid factor Basal 〈a〉 Prismatic 〈a〉 Pyramidal 〈c+ a〉
0-0.05 0 0 0

0.05-0.10 0.053 0.089 0.1481
0.10-0.15 0.603 0.625 1.119
0.15-0.20 1.445 1.556 3.259
0.20-0.25 2.546 2.721 6.320
0.25-0.30 7.716 6.001 12.517
0.30-0.35 9.778 9.778 19.555
0.35-0.40 21.173 11.292 31.994
0.40-0.45 21.069 16.855 47.059
0.45-0.50 44 16 46

thus modified by introducing the CRSS of each type i designated by τ ci as:

Mij =
a

τ ci
Eij (5)

Where a is a unknown parameter, it can be found if at least one of the CRSSi is de-
termined. However, in the most of previous investigations, only the relative CRSSs were
identified (see [6]). The optimal values of CRSS can be estimated by minimizing the

Table 6: Distribution of the expected slip systems Eij as function of their Schmid factor

Schmid factor Basal〈a〉 Prismatic〈a〉 Pyramidal〈c+ a〉
0-0.05 0 0 0

0.05-0.10 0.0274 0.0457 0.0759
0.10-0.15 0.309 0.320 0.573
0.15-0.20 0.740 0.797 1.671
0.20-0.25 1.305 1.395 3.241
0.25-0.30 3.956 3.077 6.418
0.30-0.35 5.013 5.013 10.027
0.35-0.40 10.857 5.790 16.406
0.40-0.45 10.804 8.643 24.129
0.45-0.50 22.562 8.204 23.588

cumulative error Er between the number of observed Oij slip systems and the expected
ones Mij. This can be performed using the square difference equation as:

Er =
√

d2(Oij,Mij) =

√√√√
3∑

i=1

10∑
j=1

(Oij −Mij)2 (6)
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By replacing Mij with
a
τci
Eij, Er can be rewritten:

Er =

√√√√
3∑

i=1

10∑
j=1

(Oij −
a

τ ci
Eij)2 (7)

The optimal τ ∗ci was therefore obtained by solving the first-order derivative equation as:

∂Er

∂τ ci
= 0 → τ ∗ci = a

∑10
j=1(Eij)

2

∑10
j=1 OijEij

(8)

The unknown parameter a vanishes by calculating the ratio between τ ∗c. The relative
CRSS are therefore given by:

τ ∗c1
τ ∗c2

:
τ ∗c2
τ ∗c2

:
τ ∗c3
τ ∗c2

= 1.36 : 1 : 2.84 (9)

for basal 〈a〉:prismatic 〈a〉:pyramidal 〈c+ a〉 respectively. The obtained results were com-
pared with some results found in the literature (Tab. 7).

Table 7: Estimated relative CRSS in comparison with those found in the literature for
Ti-6Al-4V titanium alloy.

Basal 〈a〉 Prismatic 〈a〉 Pyramidal 〈a〉 Reference
1.36 1 2.84 the present study
1.05 1 1.68 [10]
1-1.5 1 3-5 [8]

0.93-1.3 1 1.1-1.6 [5]
1.43 1 4.23 [9]

In order to investigate the effects of grain size on the CRSS, tensile tests were performed
until the beginning of plastic behavior (about 1 to 1.3% of total strain) for all T1-UFG, T1-
FG and T1-SD microstructures presented in Tab. 1. A multi-scale numerical optimization
of absolute CRSS was then carried out using the obtained CRSS ratios, the tensile curves,
the crystallographic orientations of 500 grains, a local behavior model and scale transition
rules available in Z optim library as summarized in Fig. 4. Noted that the same procedure
was repeated for each microstructure. The local behavior model of Méric-Cailletaud
[11]was used. It gives a phenomenological description of each slip system behavior. In
this model, the slip strain rate γ̇s of system s is given as a form of power function of the
resolved shear stress τ s as:

γ̇s = v̇ssign(τ s − χs) (10)

With:

v̇s =

〈
|τ s − χs| − rs

K

〉n

(11)

7
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Figure 4: Methodology for optimizing the absolute CRSS: (a) the followed procedure
uses a local behavior model of Méric-Cailletaud [11], Berveiller-Zaoui model [12] (BZ) for
transition Scale and model parameters of Dick et al [10]. (b) The experimental tensile
curves.

Where χs and rs are the kinematic and the isotropic hardening variables of slip system
s respectively, τ s is the resolved shear stress of systems s , K and n characterize the
material viscosity. The isotropic hardening rs was considered constant and equal to the
absolute Critical Resolved Shear Stress CRSS (τ sc ).

rs = τ sc (12)

Moreover, the hardening nonlinearity can be expressed by the nonlinear kinematic hard-
ening of slip systems according to the Armstrong-Frederick equation: [13]:

χs = Cαs (13)

With:
α̇s = γ̇s − dαsχ̇s (14)

Where αs is a state variable describing the evolution of kinematic hardening in slip system
s. C and d are the material parameters. The kinematic hardening and the viscosity
parameters determined by Dick et al. [10] were used. Berveiller-Zaoui model [12] (BZ)
was chosen as a scale transition rule for the identification procedure. For this model, the
localization of the stress tensor is given by Eq. (15):

σg = Σ+ 2µα(1− β) : (Ep − εg,p) (15)

8

584



F. Benmessaoud, M. Cheikh, V. Velay, V. Vidal, H. Matsumoto

with:
1

α
= 1 +

3

2
µ
Ep

eq

Σeq

(16)

and

β =
2(4− 5ν)

15(1− ν)
(17)

where σg and Σ are respectively the stresses at mesoscopic (grain) and macroscopic
(global) scales, εg,p and Ep are respectively the local and global plastic strain, ν is the
Poisson ratio, µ the shear modulus and ρ stands for a non linear accommodation param-
eter whose formulation is a function of the Von-Mises equivalent inelastic strain Ep

eq and
stress Σeq at the macroscopic scale.

The comparison between the identification results of CRSS provided by the Meric-
Cailletaud model using the Berveiller-Zaoui transition rule and the experimental tensile
results is illustrated in Fig. 5.
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Figure 5: Comparison between experimental strain-stress curves and those provided using
the identified CRSS and BZ transition scale rule for each Ti-6Al-4V microstructure

For each Ti-6Al-4V microstructure, the absolute CRSSs of slip systems types were
reported in Tab. 8. they can be then formulated as a function of the inverse square root
of the average grain size (Fig. 6) according to the Hall-Petch relationship [14,15]:

τ ci = Khp
i

1√
D

+ τ 0i (18)

Where Khp
i and τ 0i are the Hall Petch slope and the friction lattice stress of slip systems

type i respectively and D is the average grain size.
The local Hall-Petch slope was found to be 146, 114 and 225 MPa.m−1/2 for basal 〈a〉,

prismatic 〈a〉 and pyramidal 〈c+ a〉 systems respectively. The increase of grain size leads
to decrease the CRSS and therefore facilitates the accommodation of the plastic strain in
coarse grains. The Hall-Petch slope of pyramidal 〈c+ a〉 systems is very high compared

9
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Table 8: Absolute Critical Resolved Shear Stress (CRSS).

Material Absolute
CRSS

(MPa)

Basal Prismatic Pyramidal
T1-UFG 390 290 790
T1-FG 320 240 570
T1-SD 240 170 580
T1-SD 240 170 580
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Figure 6: Effect of grain size on CRSS of slip systems types

with those of prismatic and basal systems which can lead to a significant decrease of
pyramidal 〈c+ a〉 CRSS in large grains.

3 CONCLUSIONS

A slip trace analysis followed by a statistical reasoning and a multi-scale numerical
optimization were utilized in order to identify the critical resolved shear stress CRSS
of basal 〈a〉, prismatic 〈a〉 and pyramidal 〈c+ a〉 systems in three microstructures of
Ti-6Al-4V alloy. A significant role of grain size was shown; by increasing the average
grain size, the CRSS decreases . This effect was correctly modeled by the Hall-Petch
relationship. Moreover, the dependence of CRSS on grain size varies from a type of
sliding to another. Pyramidal 〈c+ a〉 systems type shows the highest Hall-Petch slope,
this leads to a significant decreasing of pyramidal CRSS in large grains which justifies its
activation although its relative CRSS is more than 2.5 times of prismatic CRSS.
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