
HAL Id: hal-02953739
https://imt-mines-albi.hal.science/hal-02953739v1

Submitted on 6 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An AI framework and a metamodel for collaborative
situations: Application to crisis management contexts
Frederick Benaben, Audrey Fertier, Aurelie Montarnal, Wenxin Mu, Zheng
Jiang, Sébastien Truptil, Anne-Marie Barthe-Delanoë, Matthieu Lauras,

Guillaume Mace-ramete, Tiexin Wang, et al.

To cite this version:
Frederick Benaben, Audrey Fertier, Aurelie Montarnal, Wenxin Mu, Zheng Jiang, et al.. An AI
framework and a metamodel for collaborative situations: Application to crisis management contexts.
Journal of Contingencies and Crisis Management, 2020, 28 (3), pp.291-306. �10.1111/1468-5973.12310�.
�hal-02953739�

https://imt-mines-albi.hal.science/hal-02953739v1
https://hal.archives-ouvertes.fr


1  | INTRODUC TION

Being able to take part into collaborative networks is one of the key 
features of today's organizations (Li, 2012). In this article, collabo-
rative networks are considered from the definition of (Camarinha-
Matos & Afsarmanesh, 2005) that can be summarized as follows: A 
collaborative network is constituted by a variety of organizations (largely 
autonomous, geographically distributed and heterogeneous in terms of 

their: operating environment, culture, social capital and goals) which 
collaborate to better achieve common or compatible goals, and whose 
interactions are supported by computer network. Unlike other networks, 
in collaborative network, collaboration is an intentional property that 
derives from the shared belief that together the network members can 
achieve goals that would not be possible or would have a higher cost 
if attempted by them individually. The set of organizations involved 
to respond in a crisis management context is one of the various 
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the partners (the involved organizations, their capabilities resources and relations), 
the objectives (the aims of the network, the goals to be the achieved and the risks to 
avoid, etc.) and the behaviour (the collaborative processes to be implemented by the 
partners to achieve the objectives in the considered context). Besides, this metamodel 
can be extended for some precise application domains. This article focuses on this 
mechanism in the specific context of crisis management.

K E Y W O R D S

artificial intelligence, collaboration, crisis management, data science, knowledge management, 
metamodel, model-driven engineering, network

www.wileyonlinelibrary.com/journal/jccm
mailto:
mailto:
mailto:
mailto:wxmu@bjtu.edu.cn
mailto:tiexin.wang@nuaa.edu.cn
mailto:frederick.benaben@mines-albi.fr
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1468-5973.12310&domain=pdf&date_stamp=2020-09-29


kinds of collaborative network that has to deal with a given situa-
tion, potentially highly unstable. The collaborative network must be 
defined, designed, deployed and maintained (including dismantling). 
Although Collaborative Networks exist in a large variety of forms, 
their life cycle is composed of five main stages (Camarinha-Matos, 
Afsarmanesh, Galeano, & Molina, 2009):

• Creation: structured according to the two following steps (a) initi-
ation and recruiting, (description) and (b) foundation (startup).

• Operation: the nominal living period of the collaborative situation.
• Evolution: management of small changes (in partners, roles or

actions).
• Metamorphosis: management of major changes (in objectives,

principles and membership), generally requiring a new form of
organization.

• Dissolution: when the collaboration must be dismantled.

In the context of collaborative network engineering and manage-
ment, the first question following this description of the life cycle 
of a collaborative network is: how can we manage the collabora-
tion life cycle efficiently? The first statement to take into account 
with regards to that question is the following: the management of 
a collaborative networks requires being able to deal with these five 
steps, that is, to have access to the appropriate knowledge in order 
to take decisions and conduct the collaboration on the right track. 
This statement provides the first requirement to manage efficiently 
a collaborative situation: have at one's disposal the appropriate knowl-
edge about the collaborative network to manage the life cycle of the 
collaboration.

The next question is then: how to get that knowledge? The sec-
ond statement to consider with regards to that second question is 
the following: the constantly increasing volume of data makes to-
day's world numeric. There are a lot of data sources (sensors, social 
medias, opendata, etc.) dedicated or non-dedicated to the context 
of the collaboration. The second requirement (actually refining the 
first one) to manage efficiently a collaborative situation is then the 
following: use efficiently available data from all accessible data sources 
to create on-the-fly the appropriate knowledge about the collaborative 
network to manage the life cycle of the collaboration.

This refined requirement is clearly aiming at crossing the domain 
of collaborative networks (Camarinha-Matos et al., 2009) and the 
domain of Big Data (Power, 2014). To reach that expectation, this 
article aims at presenting an Artificial Intelligence framework for (a) 
data gathering, then (b) information modelling and (c) finally deci-
sion support, using (d) knowledge bases. The principle is to use a 
collaborative situation metamodel that could be instantiated using 
the collected data in order to obtain representative collaborative 
situation models. In the case of crisis management contexts, the re-
sult is the automatic definition of a situation common operational 
picture (COP). The obtained models can then be used to specify 
and maintain the appropriate collaborative response model (i.e., the 
behavioural schema able to deal with the specificities of the situ-
ation), or for any other purpose that could benefit of the obtained 

and maintained situation model (e.g., simulation, visualization, etc.). 
In this article, the focus is centred on the collaborative situations meta-
model itself, and moreover on the extension of this metamodel for crisis 
management collaborative situations. The data gathering level (for-
ward) and the information exploitation level (backward) are men-
tioned but they have not been described nor discussed. The data 
gathering level has been described for instance in and Bénaben 
et al. (2017) and Fertier, Montarnal, Barthe-Delanoë, Truptil, and 
Benaben (2016) with the automated interpretation of data coming 
from sensors and opendata like weather or traffic data. This is still 
a topic of interest, especially regarding the question of social media 
data (Coche, Montarnal, Tapia, & Benaben, 2019). The information 
exploitation level throughout a mediation information system has 
been deeply described in (Bénaben et al., 2015).

As a consequence, this article is structured as follows: The first 
section of this article provides an overview of existing related re-
search works through a literature review. The second section fo-
cuses specifically on the collaborative situation metamodel and its 
extension to crisis management contexts (including an illustration). 
The final section concerns the conclusions and the perspectives.

2  | LITER ATURE RE VIE W

Considering the global objective of this article (i.e., describing the 
collaboration metamodel used in an innovative AI framework to for-
malize gathered raw data, in order to support the management of 
collaborative situation, especially coordinated crisis response), this 
section is structured according to the following main subsections: (a) 
big data as a preliminary point, and (b) information modelling about 
collaborative networks (including the study of existing metamodels) 
as the heart of the literature review.

2.1 | Preliminary point: an overview about big data

Big data is performed through a fast analysis of 
large amounts of data, of different types, from var-
ious sources, to provide a flow of emerging usable 
knowledge 

(Power D. J., 2014)

This knowledge is useful if the distance between the context and 
the result of the big data analysis is small (Demchenko, Grosso, De 
Laat, & Membrey, 2013): obviously, data may be considered as crucial 
by someone and perfectly useless by someone else (depending on the 
context). The classical vision of big data usually introduces the follow-
ing four main characteristics:

• The volume: it refers directly to the amount of data (continu-
ously generated (Demchenko et al., 2013; Hashem et al., 2015;
Krishnan, 2013; Power, 2014);



• The variety: it refers to the variety of data types (images, texts,
videos, numbers, etc.) and data format (structure, unstructured,
etc.). Besides, this characteristic is accentuated by the fact that
there are known and unknown sources (Demchenko et al., 2013;
Hashem et al., 2015; Krishnan, 2013; Ohlhorst, 2012; Power,
2014; Raghupathi & Raghupathi, 2014);

• The velocity: it refers to both the frequency of data production
and the frequency of data processing (Demchenko et al., 2013;
Hashem et al., 2015; Krishnan, 2013; Power, 2014);

• The veracity: it refers to the trustfulness, the objectivity, the au-
thenticity, and the security of gathered data (Demchenko et al.,
2013; Hashem et al., 2015; Lukoianova & Rubin, 2013).

The worldwide research activities on the domain of big data sys-
tematically focus on at least one of these characteristics (Lukoianova 
& Rubin, 2013). For instance, Map Reduce is dedicated to deal with 
volume of data (Grolinger et al., 2014). Similarly, the use of metadata 
(dedicated to describing the content of data) can manage the vari-
ety of data (Krishnan, 2013). However, the main conclusion from the 
study of existing research results in the domain of Big Data is that 
most (almost all) current research or innovation works in this domain 
are focusing on trying to process (in real time) the huge amount of 
incoming data to directly provide hints, clues or advice about the ob-
served situation. This is definitely interesting and required. However, 
as discussed in (Benaben, Montarnal, Fertier, & Truptil, 2016), this 
may be considered as “reflex” mode and the maturity curve of Big 
Data should start requiring bringing more “consciousness” in the ex-
ploitation process of data.

The distinction between data, information and knowledge has 
been hardly discussed in the last decades. One of the first defini-
tions relevant for this article can be found in (Ackoff, 1989): “Data 
are symbols that represent properties of objects, events and their 
environments. They are products of observation”, “information is 
referred from data, it is contained in descriptions, answers to ques-
tions that begin with such words as who, what, where, when and 
how many” and, “Knowledge is conveyed by instructions, answers 
to how-to questions”.

More recently, Rus and Lindvall (2002) provides the following 
definitions: “Data consists of discrete, objective facts about events 
but nothing about its own importance or relevance; it is raw material 
for creating information” while “Information is data that is organized 
to make it useful for end users who perform tasks and make deci-
sions” and “Knowledge is broader than data and information and re-
quires understanding of information (information about information, 
such as who has created the information).”

In addition, the notion of common operational picture, defined in 
Dickinson (2013) and inherited from the domain of command and 
control requires the contextualization of data to obtain information. 
The obtained information, stored as models, is analysed, updated and 
monitored to support decision.

For (Bellinger, Castro, & Mills, 2004) “data is raw, it simply exists 
and has no significance beyond its existence. […] It does not have 
meaning of itself”, while “information is data that has been given 

meaning by way of relational connection” and “knowledge is the 
appropriate collection of information, such that it's intent is to be 
useful.”

For (Rowley, 2007), “data has no meaning or value because it 
is without context and interpretation. Data are discrete, objective 
facts or observations, which are unorganized and unprocessed, and 
do not convey any specific meaning.”, while “information is format-
ted data and can be defined as a representation of reality” (it is in line 
with a lot of vision where “information is data that have been shaped, 
organized, given meaning, etc.”), and “knowledge is the combination 
of data and information, to which is added expert opinion, skills and 
experience, to result in a valuable asset, which can be used to aid 
decision-making.”

From the previous elements and definition, the following discus-
sion can be introduced: The concept of data seems quite stable (ob-
jective facts or observations). The notion of information is generally 
seen as an extension of data with meaning, contextualization, etc. 
From the perspective of this article, this vision implies two conse-
quences: obtaining information on the one hand requires connecting 
data with the context (or elements of the context) and on the other 
hand instantiating concepts based on the available data (or sets of 
data) to create formal information as instances of these concepts. 
Finally, the definitions of knowledge are quite fuzzy and unprecise. 
Most of the time, they refer to part of the information and to its 
usefulness. This aspect of knowledge seen as useful (and sometimes 
processed) information is interesting, but missed the generalized and 
formalized dimension of knowledge, that is, the learning of abstract 
concepts. Consequently, in the context of this article, the proposal is 
the following: knowledge can be seen as twofold. On the one hand, 
knowledge includes capitalized information, inherited for instance 
from previous experience or from case studies. That knowledge de-
scribes the experience of the subject, the remaining elements after 
its past life. On the other hand, knowledge embeds abstract con-
cepts that can be used to instantiate new information (and that have 
been used to instantiate capitalized information). That knowledge 
describes the formalized notions extracted from the past life of the 
subject. So, roughly speaking, this article claims that knowledge is 
twofold: concrete knowledge (capitalized past instances) and ab-
stract knowledge (structured descriptive concepts). Based on this 
discussion, this article uses the following simple visions of data, in-
formation and knowledge:

• Data: formalized observation of the world.
• Information: result of the interpretation of data through the in-

stantiation of conceptual references.
• Knowledge: capitalized static information about previous experi-

ence and extracted abstract concepts.

One strong hypothesis concerns data and the fact that all the 
questions of data source discovery, understanding, trust and clean-
ing are out of the scope of the current article. The hypothesis is the 
following “let's assume that there is available data that is meaningful, 
trustable and usable”.



The concept of decision is generally defined as the choice, con-
clusion or judgement made after consideration of available possi-
bilities and the best to do (extracted from Oxford and Cambridge 
dictionaries). In the context of this article, it is important to connect 
what should be considered in the decision process to information and 
knowledge. Consequently, this article uses the following definition:

• Decision: choice, conclusion or judgement made after processing
actionable information and knowledge about the situation.

The following figure (Figure 1) presents the K-DID (Knowledge/
Data/Information/Decision) Framework, which is somehow based 
on the DIKW (Data/Information/Knowledge/Wisdom) pyramid pre-
sented in Rowley (2007):

The challenge of decision-making and AI, according to the frame-
work introduced in Figure 1 is somehow to climb the levels of the 
framework by performing gathering (or perception) to reach the data 
level, then interpretation to reach the information level, and finally 
exploitation to reach the decision level. This climb uses all along the 
reference knowledge to perform the aforementioned tasks (espe-
cially interpretation and exploitation).

Regarding the objective of this article (i.e., describing the collab-
oration metamodel used in an innovative AI framework to formalize 
gathered raw data, in order to support the management of collabo-
rative situation, especially coordinated crisis response), this frame-
work is instantiated according to the following proposal: the focus is 
on the interpretation stage to climb from raw data to situation informa-
tion (model), using the abstract knowledge embedded in a collaborative 
situation metamodel.

So, in the following, two different approaches to deal with mas-
sive amount of data to climb the K-DID abstraction layers will be 
presented and studied with regards to the objective of this article: 
data science and model-driven engineering.

2.1.1 | Data science

According to Jagadish et al. (2014), Data Science, is composed 
of two main parts: Data Management and Data Analytics. Data 

Management includes Acquisition, Content Extraction and Data 
Integration and Representation. Data Analytics includes Analysis 
and Human-Interpretation. It is easy to draw the line between this 
vision of Data Science and the K-DID framework on Figure 1. As 
shown on Figure 2, Data Management fills in the data layer while 
Data Analytics is dedicated to performing detection of frequent 
patterns and correlations to obtain general statistics (including 
providing the user with visualization that may be interpreted by 
him), which is basically what is expected at the decision layer of 
Figure 1.

Basically, the most important finding from that analysis is that 
Data Science and more broadly general approaches of AI actually do 
short-cut the Information level. These approaches focus on provid-
ing the decision level with material that would actually support the 
making of a decision by establishing statistical reports on the data. 
This definitely allows such systems to deal with Volume and Velocity 
of data.

2.1.2 | Model-driven engineering

Model-Driven Engineering (MDE), as described in Rodrigez Da 
Silva (2015) mainly relays on two basic activities: Modelling and Model 
transformation. It is important to notice at this point that MDE is ab-
solutely not dedicated to software engineering (though it is used a 
lot in that domain), and as stated in Dietz, Proper, and Tribolet (2014) 
can be used in Industrial Engineering contexts.

Modelling is classically based on the following steps (Benaben, 
Fertier, Lauras, & Salatge, 2019):

1. Definition of the boundaries of the subject: definition of the
exact perimeter of the system to be modelled.

2. Choice of the modelling point of view: definition of the why, for
whom and for what purpose of the modelling activity.

3. Choice of the projection plan: selection of the modelling language 
that fits the point of view (basically that is relevant to the goal of
the model and understandable by the future users).

4. Projection of the subject on the projection plan: this is the model
design step.

F I G U R E  1   The K-DID framework and 
the abstraction levels data, information, 
decision and knowledge [Colour figure can 
be viewed at wileyonlinelibrary.com]
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5. Choice of the granularity level: definition of the appropriate preci-
sion level of the model.

It is important to notice that step 4 requires a metamodel. There 
are lot of definition of what is a metamodel. First of all, from (MDA, 
2020), “a model represents some concrete or abstract thing of in-
terest, with a specific purpose in mind. The model is related to the 
thing by an explicit or implicit isomorphism. Models in the context of 
the MDA Foundation Model are instances of MOF metamodels and 
therefore consist of model elements and links between them”. For the 
purpose of this article, and to draw the link with the concept of meta-
model, a model is seen as a partial description of a subject, according 
to a certain point of view and expressed in a formalized language. This 
first definition is necessary to understand the role of a metamodel. 
(OMG, 2017) describe it as “a model that defines the language used to 
define a model”. A metamodel is so the model of a modelling language 
or domain. More pragmatically, a metamodel can be seen as “the de-
scription of all concepts of a language, their semantics and the syn-
tactic related to the use of these concepts” (Chapron, 2009). Based 
on this and on (Bezivin, 2005), we will keep the following definition: 

A metamodel is the description of concepts and relationships between 
these concepts that allows to define models where: the models conform 
to the metamodel and the metamodel is represented by the models. With 
regards to the domain of knowledge management, a metamodel is 
also usually used as the high-level structure of an ontology. This is the 
way to describe abstract concepts (and their relationships), that can 
be instantiated while populating the ontology.

The concept of metamodel is particularly used and significant 
in the domain of model transformation. Transformation rules are 
actually defined between metamodels. On a very schematic point 
of view model transformation is the tool used to travel the mod-
el-driven engineering cycle.

Finally, regarding MDE, the question about the location of MDE 
on the intelligence framework presented in Figure 1 should be con-
sidered to echo the proposal of Figure 2. With regards to that intelli-
gence framework, it can be stated that the Modelling step (based on 
metamodel) is dedicated to perform the interpretation feature. The 
Model Transformation step is dedicated to use the obtained model 
to generate new content that would be more useful for the user to 
take decision. This is the exploitation feature.

F I G U R E  2   Location of Data Science in 
the K-DID framework [Colour figure can 
be viewed at wileyonlinelibrary.com]

F I G U R E  3   Location of Model-Driven 
Engineering in the K-DID framework 
[Colour figure can be viewed at 
wileyonlinelibrary.com]
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The following picture illustrates the location of MDE on the in-
troduced Intelligence framework:

Basically, the most important finding from that analysis is that 
Model-Driven Engineering is dedicated to exploit formalized model 
but unable to build that model (Figure 3). These approaches focus 
on providing the decision level with material that can be exploited 
in decision-making process through model-driven engineering tools 
(e.g. model transformation, formal analysis, optimization, etc.). This 
formal processing of models allows such systems to deal with the 
Variety and Value of information because the model-driven activ-
ities can be triggered by various type of information and content.

2.1.3 | Limits and complementarities of both visions

In the context of this article, the question of Veracity of data is out 
of scope due to the fact that we only consider data that is already 
clean and trustable (the topic is not about data source discovery or 
data filtering and cleaning). Besides, on the one hand, the conclu-
sion of Subsection 1.1.1 shows that data science seems to be able 
to deal with Volume and Velocity. On the other hand, the conclu-
sion of Subsection 1.1.2 claims that model-driven engineering seems 
more appropriate to deal with Variety and Value. But both these ap-
proaches struggle with specific conditions as soon as we extend the 
range and the amount of data to manage:

• Data science can not deal with unknown type or content: just like 
a shark, able to detect a drop of blood in millions of litters of sea
water, but which would be lost with a Rubik's Cube®. This is due to 
the fact that the data associated to the Rubik's Cube® is out of the 
scope of its perception and it can only apply a default behaviour
(like attack, ignore or escape).

• Model-Driven Engineering can not manage a large amount of

data: just like a baby, able to start to play with a Rubik's Cube® 
because of its shape, colour, touch, etc. but would be unable to 
detect a full glass of lemonade in his bath among all other tastes 
and odours of the water.

These considerations have been largely discussed in (Benaben 
et al., 2016) and are generally represented on the framework of 
Figure 1 in the following figure:

The line of attack is, first, to use Data Science to perform the 
modelling step by interpreting the flow of incoming data thanks to 
Data Analysis tools (Figure 4). Then it is expected to instantiate con-
cepts of a metamodel to create situation model(s). Second, the goal is 
to use Model-Driven Engineering to exploit the generated situation 
model(s) by taking advantage of the content of the models through 
Model Transformation tools. Then it is expected to obtain more rele-
vant and more actionable models to support decision-making.

The following picture illustrates how, considering the previous 
element, Data Science and Model-Driven Engineering can be located 
altogether on the Intelligence framework of Figure 1. The upper 
left part of Figure 5 concerns Data Science (Data Analytics and Data 
Management), the upper right part concerns Model-Driven Engineering 
(Modeling and Model Transformation) and the bottom part represents 
the way both could be combined to provide an Artificial Intelligence 
framework:

Basically, the question of the use of data science for data in-
terpretation and the design of situation model has been described 
(Fertier, Montarnal, & Benaben, 2019), as well as the question of in-
formation exploitation and model transformation to get a response 
model (Bidoux, Pignon, & Benaben, 2019; Montarnal et al., 2018; 
Mu, Benaben, & Pingaud, 2018). As a consequence, the following of 
this article will strongly focus on the “missing piece” of that puzzle: 
the metamodel. The next subsection describes and compares some 
existing collaboration and crisis management metamodels.

F I G U R E  4   Limits of both Data Science 
and Model Driven Engineering in the 
K-DID Framework [Colour figure can be 
viewed at wileyonlinelibrary.com]
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2.2 | Existing knowledge management structures 
related to crisis management

Two types of Knowledge management structures predominate with 
regards to the domain of crisis management:

metamodels presenting concepts and vocabulary necessary for 
coherent modelling of a set of situations for a given point of view.
ontologies built for the purpose of facilitating the reuse and shar-
ing of information, as described in Uschold and Gruninger (1996) 
and Gómez-Pérez (2001), thanks to a set of concepts, for a part 
of the world and a given point of view. In this category, we often 
find the taxonomies built to name similar concepts and the rela-
tions between them.
These definitions both come from recommendations written by 

Gruber (1995) under the term ontology, to frame a process of con-
ceptualization. They are similar in design, but pursue different goals: 
(a) instantiation or (b) the reconciliation of pre-defined concepts.

To identify existing metamodels dedicated to describe natural 
disasters, we used a systematic literature review on the Web of 
Science documentaries with the following request: “(ontology OR 
ontologies OR metamodel OR metamodel) AND (“natural disaster” 
OR “natural disasters”))”.

Only the articles categorized under the name “Computer 
Science” have been retained. In all, 20 publications were obtained 
and studied. Besides, some knowledge management contributions 
that were not in this subset but are in our scope have been added like 
Polarisco (Mhadhbi, Karray, & Archimede, 2019). The most relevant 
results are summarized in the following Table:

In Table 1, there are 12 articles, 7 of them are using ontology as 
modelling tool, 5 of them are using metamodel as modelling tool. 
Both modelling methods are used in the research field. Han and Xu 
(2015), Iribarne et al. (2010) and Jung and Chung (2015) cover ge-
neric or hybrid situation, they are focusing on three different model-
ling subjects: context, partner or objective.

For the crisis situation, from the timeline, the first publications 
are Benaben, Hanachi, Lauras, Couget, and Chapurlat (2008) and 
Kruchten, Woo, Monu, and Sotoodeh (2008). They all cover the three 
modelling keys: context, partner and objective. However, Benaben 
et al. (2008) is trying to address the link from partner to risk, then 
to sequence. They provide the clear logic between those concepts 
Kruchten et al. (2008)'s modelling vision is more about the “disaster 
event” (Othman, Beydoun, & Sugumaran, 2014) adds response and 
rescue concepts to the model. In 2015, the technology of big data 
and cloud computing are well developed. Researchers link data to 
the knowledge modelling, for example (Calcaterra, Cavallo, Modica, 

F I G U R E  5   A proposal of A.I. Framework based on Data Science and Model-Driven Engineering [Colour figure can be viewed at 
wileyonlinelibrary.com]
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& Tomarchio, 2015), adds sensor, spatial and region data. In 2019, AI 
and data combined tools are presented. In that situation, multi-ma-
jor involved research appeared. Madhbi et al. (2019) considers crisis 
situation and also ethical issues. They use “victim” and “stakeholder” 
concepts to define their crisis model. Zschocke et al. (2010) also adds 
“Vulnerability” to their key modelling concepts. To summarize, the 
modelling of crisis situation is affected by the development of big 
data and AI technology, the researchers in crisis field agree that data 
is one key part to solve classical issues and current issues in crisis 
research.

To meet the information needs of crisis management decision 
makers, the reference structure should enable decision makers to:

reason. To do this, the concepts, and by extension the instances 
of the model, must be linked together through pre-defined 
relationships;
improve their awareness of the situation effectively. To do this, 
concepts must cover all the information that can be used to sup-
port decision-making. This information may relate to the partners 
of the crisis collaboration, their objectives or the characteristics 
of the crisis theatre;
monitor and react to the cascading effects of the ongoing crisis. 
To do this, the proposed concepts must be able to be specified 
according to the changing and unpredictable nature of the crisis.
All the results presented in Table 1, derived from the state of the 

art, have been evaluated according to these three criteria. In view of 

these results, we propose two distinct categories to evaluate exist-
ing structures according to their complexity:

the metamodels that make it possible to define complex relation-
ships between concepts, for example, “a risk, generated by a haz-
ard, impacts one or more issues”. This category includes the work 
of Benaben et al. (2008), Iribarne, Padilla, Criado, and Vicente-
Chicote (2010), Kruchten et al. (2008), Othman et al. (2014), and 
Zschocke, de León, and Beniest (2010).
the ontologies, which are dedicated to define and set terms in a 
given business domain.
Then three different categories according to their coverage of 

information on a crisis situation:
generalists who are concerned with the objectives of the collabo-

ration, the crisis context and the partners involved in the response to 
the crisis. Here, we find the work of Benaben et al. (2008), Kruchten 
et al. (2008), Othman et al. (2014), and Yu, Li, and Wang (2015).

intermediaries, which concern at least two of these categories;
the specialists who conceptualize the information of only one of 
these categories, such as the work of Iribarne et al. (2010).
Finally, three different categories depending on the level of ab-

straction worked:

general, when all types of crises can be represented by the pro-
posed structure;

TA B L E  1   Reference research works on knowledge management framework (metamodels and Ontology) in crisis management

Reference Type Coverage Abstraction Main concepts

Benani et al. (2017) Ontology Objectives, Partners Sub-domain specific (terrorist 
attack)

Context, Cause, Solution, 
Attack

Benaben et al. (2008) Metamodel Context, Objectives, 
Partners

Domain specific (crisis situation) Partner, Capacity, Resource, 
Task, Danger, Risk, 
Consequence,

Han and Xu (2015) Ontology Objectives, Partners Generic Planning, Event, Tasks

Othman et al. (2014) Metamodel Context, Objectives, 
Partners

Domain specific (crisis situation) Response organization, 
Rescue, Exposure

Kruchten et al. (2008) Metamodel Context, Objectives, 
Partners,

Domain specific (crisis situation) Disaster Event, Cell, 
Infrastructure

Mhadhbi et al. (2019) Ontology Partners, Objectives Domain specific (crisis situation) Victim, Action, Means, 
Stakeholder

Jung and Chung (2015) Ontology Context, Partners Hybrid Environment, Location, 
Equipment

Calcaterra et al. (2015) Ontology Context, Objectives Domain specific (crisis situation) Hazard, sensor, Spatial object, 
Region

Yu et al. (2015) Ontology Context, Objectives, 
Partners

Sub-domain specific (electric 
network)

Environment, Responders, 
Physical system, Hazard, 
Risk

De Nicola, Tofani, Vicoli, 
and Villani (2011)

Ontology Context, Objectives Sub-domain (critical 
infrastructures)

Structure, risk, impact, 
measures.

Iribarne et al. (2010) Metamodel Partners Generic Actor, Choreography, Task

Zschocke et al. (2010) Metamodel Partners, Objective Domain specific (crisis situation) Hazard, Risk, Vulnerability, 
Actor



by domain, when the proposed concepts are specific to a type 
crisis, as in Benani, Maalel, Ghézala, and Abed (2017) or Yu 
et al. (2015).
mixed, when the structure allows to describe a crisis according to 
several levels of abstraction as in Benaben et al. (2008) and Jung 
and Chung (2015).
The following picture illustrates the relationships between 

these metamodels and models (where arrows with white trian-
gle express inheritance relationship and classical arrows express 
instantiation):

In the context of the current article, the ambition for the meta-
model is to be used in an AI framework that should deal with variety 
and value of data to create models of situations through instances 
of concepts (Figure 6). This seems quite in line with Benaben 
et al. (2008), Kruchten et al. (2008) and Othman et al. (2014).

3  | COLL ABOR ATIVE SITUATION 
METAMODEL

This section is dedicated to describing the overall theoretical meta-
model of collaborative situations. This description aims at justifying 
the role, the objective and finally the structure of the components 
of the collaborative situation metamodel. It is also dedicated to in-
troduce the refinement mechanisms to get the crisis management 
metamodel. Consequently, this second section is structured ac-
cording to three subparts: (a) pre-requisite about the specificities of 
the observed collaborative situations (and the associated require-
ments in terms of data management), (b) the presentation of the 
metamodel of collaborative situations and (c) the presentation of 
the extension of the metamodel dedicated to the crisis manage-
ment domain.

3.1 | Framework for a metamodel of 
collaborative situations

The characterization of a collaborative situation requires describing 
several points of view. To describe clearly these points of view, this 
article directly refers to two modelling domains: (a) system model-
ling, where a system is an arrangement of parts or elements that to-
gether exhibit behaviour or meaning that the individual constituents 
do not (INCOSE, 2020), because a network of organizations can be 
considered as a system, (or a system of systems) and (b) enterprise 
modelling, because organizations may be considered as enterprises 
from a modelling perspective. On the one hand, system modelling 
is traditionally based on three main dimensions (Hause, Thom, & 
Moore, 2005):

• Requirement/Functional view1: This dimension describes mainly
the expectations of the system. It is dedicated to clarify its
purposes.

• Structural view: This dimension presents on the one hand the
components of the system and the relations they have with each
other, and on the other hand the environment of the system and
the relationships between the system (its components) and that
environment.

• Behavioural view: This dimension describes the dynamic aspect of
the system and the way it performs. It is dedicated to model the
processes and the performances of the system.

Enterprise modelling, on the other hand, is often considered ac-
cording to four points of view (Vernadat, 1996):

• Informational view: This point of view describes the embedded
data and associated knowledge of the organization.

F I G U R E  6   Relationship between the studied metamodels and associated models [Colour figure can be viewed at wileyonlinelibrary.com]
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• Functional view: This point of view presents the whole capability
of the organization through its behaviour and its processes.

• Organizational view: This point of view describes the responsibil-
ities, allocations and hierarchical schemes of the structure of the
organization.

• Resources view: This point of view presents the means and the
individual capabilities of people, software, machines composing
the organization.

Considering that the main objective of setting up a collaborative 
network can be seen as “the design of an organization, which is a 
system of organizations” the previously described points of views 
(about system modelling and enterprise/organization modelling) 
should be considered to define the modelling framework of collab-
orative situations.

Based on the overall idea presented in Figure 7, the main 
challenge is to exploit the modelling dimensions inherited from 
Enterprise/System modelling framework to create the appropriate 
modelling framework (and its relevant points of view) for collabo-
rative situations managed by a collaborative network. Actually, the 
principle is to consider the collaborative situation (to be modelled) as 
a system including a collaborative network of organizations.

The basic principles to reach that objective are the following:

1. The collaborative situation modelling framework should be based
on the system modelling dimensions (because the collaborative
network, involved in the collaborative situation is a system).

2. Considering the way the collaborative situation should be inte-
grated in its environment, the structural view of the framework
could be split in two parts: components (i.e., partners of the col-
laborative network) and environment.

3. A collaborative situation model (and especially the part de-
scribing the collaborative network) should embed knowledge
about information, functions, resources and organization of the

collaborative network as a whole (because the collaborative net-
work is an organization).

4. The dimension (of the collaborative situation modelling frame-
work) specifically describing components (i.e., partners of the col-
laborative network) should be based on the enterprise modelling
dimensions (because partners are enterprises).

Figure 8 presents the consequences of these principles on the 
basis of the big picture presented on Figure 7. That Figure 8 presents 
the mapping of enterprise modelling dimensions onto system model-
ling dimensions, considering that in the collaborative network, each 
component is an organization (enterprise) itself. So the mapping not 
only tries to connect the dimensions of system modelling and enter-
prise modelling altogether, but it also with the modelling dimension 
of subcomponents seen as enterprises.

3.2 | Description of the metamodel (COSIMMA for 
collaborative situations metamodel)

From Figure 8 and the previously listed principles, it is possible to le-
gitimate that the collaborative situation metamodel presented in this 
article is structure according to four main dimensions: (a) context (i.e., 
“structure environment” from Figure 8), (b) partners (i.e., “structure 
components” from Figure 8), (c) objectives (i.e., “requirements” from 
Figure 8) and (d) behaviour (i.e., “behaviour” from Figure 8). Besides, 
the partner dimension should include concepts describing informa-
tion, functions, resources and organization of the involved or avail-
able partners. Furthermore, the four mentioned dimensions for the 
whole framework (context, objectives, partners and behaviour) should 
as well include concepts describing information, functions, resources 
and organization of the collaborative network.

Consequently, the metamodel (Figure 9) proposed in this article 
is structured as follows:

F I G U R E  7   The use of enterprise and 
system modelling dimensions with regards 
to the objective of defining the modelling 
dimensions of a collaborative situation 
framework



• Context dimension (light grey) including components and charac-
teristics of the considered environment, and also opportunities or 
threats specific to these environment characteristics.

• Partner dimension (strong grey) expresses the different resources
and know-how of the partners. This includes notably capabilities,
patterns, instructions, resources (information, material, people,

F I G U R E  8   The mapping principle 
of enterprise and system modelling 
dimensions on the modelling dimensions 
of a collaborative situation framework 
[Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  9   Concepts and relations between concepts embedded in the four-dimension framework of collaborative situation modelling 
[Colour figure can be viewed at wileyonlinelibrary.com]
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etc.), flows (linking capabilities) and connector/mediator able to 
orchestrate the different business processes.

• Objective dimension (medium grey) containing characteristics of
collaborative network (common objective and facts that the col-
laboration has to manage).

• Behaviour dimension (dark grey) that characterized the concrete op-
erations, which are deployed to concretize the collaboration. This
includes business processes/activities and their associated events
and messages. Besides, this dimension includes as well a Performance
point of view (white) that assesses the overall performance of the
collaboration by comparing, through dedicated Key Performance
Indicators (KPIs), the performance objective to the measures on the
field.

Figure 9 presents the modelling framework for collaborative sit-
uations with the four aforementioned dimensions embedding con-
cepts (boxes) and relations (arrows) between concepts to describe 

a collaborative situation (whatever the concerned business domain). 
The used formalism is UML-based.

Based on the previous considerations, this article claims that a 
collaborative situation may be modelled by instantiating concepts 
and relations of the previous diagram presented in Figure 9, which 
is actually a collaborative situation metamodel. The next question at 
this point is “how can such a collaborative situation model be used 
to infer the way a collaborative situation could be established, could 
evolve and even catch opportunities or re-organize to remain suc-
cessful?” and more precisely: “is it possible to model part of the col-
laborative situation (e.g. partners and context) and infer the other 
part?”. This is a direct echo to the question asked in the introduction 
of this article: considering the characteristics of a set of organiza-
tions (partners) and the characteristics of the environment they are 
involved in (context), is it possible to define what could be done by 
such a group of organizations in that environment (objectives) and 
how should this network of partners perform (behaviour).

F I G U R E  1 0   COSIMMA structured according to the core metamodel dedicated to collaborative situations and the layer composed with 
four packages describing crisis management domain [Colour figure can be viewed at wileyonlinelibrary.com]
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3.3 | Description of the crisis management 
extension of COSIMMA

As described in Lauras, Truptil, and Bénaben (2015), the Collaborative 
Situation Metamodel defined for crisis management is structured ac-
cording to two layers: (a) the core layer which actually describes con-
cepts and relations of any collaborative situation, and (b) the specific 
layer containing concepts that inherit from the core concepts and 
that describe more precisely concepts of the domain. The core is 
agnostic while the layer is dedicated to crisis management domain 
(in some other research works, other layers have been defined about 
supply chain and health care).

The core layer of the metamodel has been defined in the previ-
ous subsection. The crisis management metamodel is structured as 
presented in Figure 10.

The core metamodel at the centre and four packages (Context, 
Partners, Objectives and Behaviour) contain concepts dedicated to 
crisis situation inheriting from the core concepts. Each of the con-
cepts of the crisis management layer presented in Figure 10 is de-
scribed in the following.

3.3.1 | Context package

• Good: inherited from environment component of the core layer,
this concept represents any human-made elements that could be
threatened by the crisis situation (e.g., building, road, etc.).

• People: inherited from environment component of the core layer,
this concept represents any group of persons that could be threat-
ened by the crisis situation (e.g., students of a school, employees
of a plant, etc.).

• Natural site: inherited from environment component of the core layer,
this concept represents any natural element of the environment that 
could be threatened by the crisis situation (e.g., lake, forest, etc.).

• Civilian society: inherited from environment component of the core
layer, this concept represents any social actors (e.g., media, intel-
lectual society, etc.).

• Territory: inherited from environment component of the core layer, this
concept represents any administrative area (e.g., county, island, etc.).

• Danger: inherited from characteristics (implicitly embedding dan-
gerous and favourable characteristic of the environment), this
concept represents any specific dangerous characteristic of the
environment.

• Intrinsic risk: inherited from opportunity/threat (implicitly embed-
ding positive and negative potentialities) of the core layer, this
concept represents any permanent risk due to some identified
danger (e.g., earthquake, riot, etc.).

3.3.2 | Partners package

• Actor: inherited from partner of the core layer, this concept rep-
resents any stakeholder involved in crisis management (e.g.,

firemen, EMS, policemen, etc.).
• Resource on site: inherited from resource of the core layer, this con-

cept represents any physical component used by actors on the
crisis field to perform any of its service (e.g., truck, decontamina-
tion tent).

• Service: inherited from capacity of the core layer, this concept rep-
resents any ability of actors to perform some actions that could
be useful for the crisis management (e.g., evacuate victims, treat
injured people, etc.).

• Actor service: inherited from service of the crisis layer, this concept 
represents any service specifically provided by actors.

• Mediation service: inherited from service of the crisis layer, this
concept represents any service provided by Mediation IS. This
mediation services can be communication services (for instance
transmission of a message from one stakeholder to another)
or added-value services (for instance a calculation of resource
allocation).

3.3.3 | Objectives package

• Emerging risk: inherited from opportunity/threat (implicitly embed-
ding positive and negative potentialities) of the core layer, this
concept represents any risk specifically emerging due to the crisis 
itself.

• Effect: inherited from fact of the core layer, this concept rep-
resents any direct consequence of the crisis itself (e.g., 10 injured
people, fire, etc.). With the various types of risks, this is the con-
cept whose instance should be considered primarily for opera-
tional interventions.

• Mission: inherited from objective of the core layer, this concept
represents any assigned duty directly responding to identified risk 
or effect of the crisis.

• Triggering Event: inherited from event of the core layer, this con-
cept represents any event occurring during crisis management
that must be considered as (potentially) triggering complementary 
consequences.

• Gravity factor: inherited from characteristic of the core layer, this
concept represents any factor of the current situation that may
change the gravity of the crisis.

• Complexity factor: inherited from characteristic of the core layer,
this concept represents any factor of the situation that may
change the type of the crisis.

3.3.4 | Behaviour package

This package is a specific case as the extension is not dedicated to 
crisis management as a business domain but to a specific way of 
managing the behaviour. Actually, the added classes are covering 
the domain of collaborative business process with a vision very close 
to the BPMN formalism. This part of the metamodel has been pre-
sented in Touzi, Bénaben, Pingaud, and Lorré (2009).



3.4 | Implementation of the COSIMMA metamodel 
in R-IOSuite

The COSIMMA metamodel is implemented in the R-IOSuite suite of 
tools (which can be accessed and tested on line: https://r-iosui te.com/). 
The technical options for the implementation of that metamodel were 
numerous: OWL, RDF, XML or Turtle, for instance. However, one key 
requirement is the fast and easy access of any model, whatever the 
number of instances and the complexity of its structure (including the 
constraints of inheritance through domain and sub-domain layers). 
The choice has been made to use Neo4J and de Cypher language, ap-
propriate for efficient request to the models. A specific XSD has been 
defined to describe the concepts and their relations.

As presented on Figure 11, the modelling editor based on 
COSIMMA allows to describe the objectives (upper part: risks to 
prevent and effects to treat), the context (middle part: buildings, 
sensors, people to consider) and the partners (lower part: actors and 
resources) of the face crisis situation.

This model is very simple and only presents a few instances. 
Actually, the real model contains hundreds of instances (for exam-
ple the ones from the context point of view, automatically generated 
from the amenities identified on the considered area thanks to Open 
Street Map content). The main purpose of Figure 11 is to show an 
example of such model and to illustrate the use of the implementa-
tion of COSIMMA. Besides, it is important to notice that the model 
of Figure 11 has been obtained fully automatically for the objective 
and context parts, as detailed in Fertier et al. (2019).

3.5 | Discussion about COSIMMA

Using such metamodel in between the data gathering and the in-
formation exploitation layers brings several advantages. It offers a 
generic framework which clearly sets apart the understanding of a 
situation (priority is given back to the business side of the problem) 
and the way it can be solved which ensures that none of them influ-
ences the way the other is handled. Hence, the informational models 
based upon COSIMMA have all chances to be the most exhaustive 
possible but also completely impartial of the collaborative situation, 
while the exploitation of the instances of the models to support the 
decision-making is as well unspecific and built to comprehend any 
instances of the metamodel.

With such claims, the evaluation of the proposed metamodel re-
lies mainly on its genericity and adaptability to adapt to any problem 
linked to how networks collaborate. In practice, this is showed by 
the variety of applications is has already went through: automated 
virtual breeding environment (Montarnal et al., 2018), crisis manage-
ment situational awareness (Fertier et al., 2019), crisis management 
resource planning (Bidoux et al., 2019), risk management (Clement, 
Kamissoko, Marmier, & Gourc, 2018). In most of the latter research, 
the metamodel was assessed by potential end users in the context of 
tabletop exercises or research projects.

The further steps, which take advantage of the current matu-
rity level of the works, will include establishing a proper evaluation 
framework to assess the efficiency of such a metamodel, and its 
evaluation by broader groups of end users from several fields.

F I G U R E  11   An example of a crisis situation model (flooding of the river Loire) obtained using R-IOSuite and the COSIMMA metamodel 
[Colour figure can be viewed at wileyonlinelibrary.com]
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4  | CONCLUSION

The current orientation of AI is mainly based on learning principles 
that exploit massive data to infer various types of outputs: classifi-
cation of data, visualization of data, detection of patterns and sig-
nals, etc. This way is definitely promising and of great potential. On 
the other hand, this way is also dedicated to provides results that, 
even though powerful, can not be explained for the most. These ap-
proaches can be considered closer to learned reflex than to explain-
able intelligence. The current article claims that there is another way, 
complementary to the current one, which should be based on using 
data to build models, then using these models to provide outputs 
that can be explainable. This alternative way though requires a for-
mal abstract knowledge that has been described in this article as a 
metamodel (and only in the specific domain of collaborative situation 
in crisis management). Providing computer systems with that kind of 
metamodel is one way to bring them in the direction of understand-
ing given situations in a conscious and sentient way, so maybe able to 
deal with unknown situations and able to justify their output. After 
this article, the next step is to deal with the life cycle of the meta-
model and the way to exploit data to correct, adjust and enrich the 
knowledge embedded in the metamodel.

ENDNOTE
 1 The name can be different (e.g. in SysML formalism or in System 

Engineering domain). 
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