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Introduction

In order to increase their business volume and to remain competitive, systems contractors (or bidders) must successfully bid to a range of different customers [START_REF] Wang | Will Bid/No-Bid Decision Factors for Construction Projects Be Di Ff Erent in Economic Downturns? A Chinese Study[END_REF]. A successful bid implies that the bid proposal is attractive, profitable and feasible [START_REF] Chapman | Incorporating Uncertainty in Competitive Bidding[END_REF][START_REF] Arslan | E-bidding Proposal Preparation System for Construction Projects[END_REF]. Therefore, a bidder needs to propose a solution that combines both attractiveness (good values for the evaluation criteria) and feasibility (low uncertainty or high confidence about the company's ability to develop and deliver the technical system according to these values).

In this article, we consider bid proposals related to the development and delivery of physical products (e.g. cranes, robots, machine tools). In this context, in order to submit a bid to a customer, generally, a bidder designs and evaluates several technical bid solutions that comply with the customer's requirements. Then, from this panel of potential solutions, the bidder must select the most interesting one in order to elaborate and transmit a commercial offer to the customer [START_REF] Chalal | An Approach for a Bidding Process Knowledge Capitalization[END_REF]. As in [START_REF] Yan | A Strategy for Integrating Product Conceptualization and Bid Preparation[END_REF][START_REF] Guillon | Product-service System Configuration: a Generic Knowle dge-based Model for Commercial Offers[END_REF]), we consider that a technical bid solution is composed of a technical system (a set of sub-systems and components) and its delivery process (a set of required activities and resources to implement the technical system). In the literature, many works offer solutions to the strategic bidding problem [START_REF] Kumar | Strategic Bidding Using Fuzzy Adaptive Gravitational Search Algorithm in a Pool Based Electricity Market[END_REF][START_REF] Liu | An Order Allocation Model in Logistics Service Supply Chain Based on the Pre-estimate Behaviour and Competitive-bidding Strategy[END_REF][START_REF] Egemen | SCB MD: A Knowledge-based System Software for Strategically Correct Bid/no Bid and Mark-up Size Decisions[END_REF][START_REF] Takano | Determining Bid Markup and Resources Allocated to Cost Estimation in Competitive Bidding[END_REF][START_REF] Rayati | Optimal Bidding Strategy of Coordinated Wind Power and Gas Turbine Units in Real-time Market Using Conditional Value At Risk[END_REF][START_REF] Yadav | Efficient Solving of Strategic Bidding Issues Under No Karush-Kuhn-Tucker Optimality Constraints[END_REF]. Based on internal costs and market behaviour, various approaches are proposed to determine the optimal bid price that maximise the probability of winning and the expected profit once the bid proposal is accepted. Generally, it is assumed that the technical bid solution relevant to the customer's requirements has been identified and its cost estimated. Therefore, the problem related to the selection of the most interesting technical bid solution among several potential ones has not been widely considered in the literature. In [START_REF] Ling | Multi-options Bidding Strategy in Distributed Environment[END_REF], the authors propose an extended Analytical Target Cascading-based method to generate a solution for customer demands which are time and cost sensitive. Their paper focuses on Make-To-Order products, which means that the technical bid solutions relevant to the customer's demand have been designed and evaluated before the bidding process. Uncertainty and confidence issues regarding the future ability of the bidder to deliver the technical system are not taken into account within the selection process. It is, however, a very important dimension in order to propose competitive and feasible solutions.

In an Engineer-To-Order (ETO) bidding process, taking into account uncertainty and confidence is extremely important as it allows the bidder to anticipate risk related to the development and the delivery of the technical system once the offer is accepted by the customer (e.g. cost growth and schedule slippage). In fact, in an ETO bidding process, some engineering or design activities are necessary in order to define relevant solutions that meet the customer's requirements [START_REF] Johnsen | Understanding the Impact of Non-standard Customisations in An Engineer-to-order Context: A Case Study[END_REF][START_REF] Cannas | Determinants for Order-fulfilment Strategies in Engineer-to-order Companies: Insights From the Machinery Industry[END_REF]). However, as there is no guarantee that the bid proposal will be accepted, the bidders, very often, avoid a detailed design in order to minimise potential losses of resources and time, especially in cases where their bid proposals are not accepted by the customers [START_REF] Krömker | A Reference Model and Software Support for Bid Preparation in Supply Chains in the Construction Industry[END_REF][START_REF] Sylla | Readiness, Feasibility and Confidence : How to Help Bidders to Better Develop and Assess Their Offers[END_REF]. Thus, some parts of the technical systems and the delivery processes are only partially designed. Consequently, appropriate knowledge necessary to evaluate the technical bid solutions is not fully available. The values of the evaluation criteria are imprecise and uncertain [START_REF] Chapman | Incorporating Uncertainty in Competitive Bidding[END_REF][START_REF] Erkoyuncu | Uncertainty Driven Service Cost Estimation for Decision Support At the Bidding Stage[END_REF]. The confidence of the bidder about her/his ability to deliver the technical system according to these values can be low [START_REF] Sylla | Readiness, Feasibility and Confidence : How to Help Bidders to Better Develop and Assess Their Offers[END_REF]). This confidence depends not only on the developmental maturity or readiness of the technical system and its delivery process, but also on the expert feeling of the designer [START_REF] Sylla | Readiness, Feasibility and Confidence : How to Help Bidders to Better Develop and Assess Their Offers[END_REF][START_REF] Mankins | Advanced Concepts Office Office of Space Access and Technology[END_REF]. The more a technical system and its delivery process are mature and the feeling of the designer is high, the more the confidence of the bidder to deliver the technical system according to the values of the evaluation criteria is high. Therefore, in such ETO situations, in order to choose the most attractive and feasible solutions among several potential ones, it is necessary to consider uncertainty, imprecision and, more importantly, the bidder's confidence in the values of the evaluation criteria (or decision criteria).

In this article, the design and evaluation of relevant technical bid solutions are supposed done. Their performances have been evaluated in order to provide decision criteria (e.g. the cost of the technical bid solutions and the duration of the delivery processes). In addition, each solution has been evaluated in terms of the bidder's confidence. Therefore, the focus is placed on the selection of the most interesting technical bid solution. A Multi-Criteria Decision Making (MCDM) support approach is proposed. It is based on possibility theory and the Pareto dominance principle. The aim is to help a bidder (the decision maker) to choose the best solution to propose to a customer during an ETO bidding process.

The key contributions of the proposed approach are: (i) a new method which takes into account the bidder's confidence in the technical bid solutions to automatically model the uncertain and imprecise values of the decision criteria by possibility distributions, (ii) four new generic possibilistic dominance relations which are able to compare two solutions with respect to a single decision criterion in any situations where the values of the decision criteria are modelled by possibility distributions, and (iii) a new interactive method which allows the construction of a the restricted set of the most interesting solutions (Pareto front) by taking into account the level of certainty of dominance between solutions.

The remainder of this article is organised as follows. In Section 2, relevant background on Multi-Criteria Decision Making under imprecision and uncertainty is presented in order to describe the detailed contributions of this article. In Section 3, the proposed MCDM support approach, along with the supporting algorithms, are described. In Section 4, the application of the proposed approach on an example related to the design of a technical bid solution for a crane is presented and discussed in order to validate the contributions. Conclusion and future research are provided in Section 5.

Multi-criteria decision making (MCDM) under imprecision and uncertainty

As mentioned in Section 1, in the literature, several research works have been reported on the strategic bidding problem [START_REF] Kumar | Strategic Bidding Using Fuzzy Adaptive Gravitational Search Algorithm in a Pool Based Electricity Market[END_REF][START_REF] Egemen | SCB MD: A Knowledge-based System Software for Strategically Correct Bid/no Bid and Mark-up Size Decisions[END_REF][START_REF] Takano | Determining Bid Markup and Resources Allocated to Cost Estimation in Competitive Bidding[END_REF][START_REF] Rayati | Optimal Bidding Strategy of Coordinated Wind Power and Gas Turbine Units in Real-time Market Using Conditional Value At Risk[END_REF]. However, we did not find any work focusing on the selection of technical bid solutions (pairs of technical system/delivery process) in an Engineer-To-Order (ETO) bidding process. Therefore, in this section, some MCDM support approaches which allow imprecision and uncertainty to be taken into account in a selection process are reviewed. Various approaches have been reported in the literature (see the reviews in [START_REF] Durbach | Modeling Uncertainty in Multi-criteria Decision Analysis[END_REF][START_REF] Kahraman | Fuzzy Multicriteria Decision-Making: A Literature Review[END_REF][START_REF] Broekhuizen | A Review and Classification of Approaches for Dealing with Uncertainty in Multi-Criteria Decision Analysis for Healthcare Decisions[END_REF][START_REF] Pelissari | SMAA Methods and Their Applications: a Literature Review and Future Research Directions[END_REF][START_REF] Zahedikhameneh | Multiattribute Decision-making Based on Soft Set Theory: a Systematic Review[END_REF]. They differ in two aspects: (i) the uncertainty theory used to deal with imprecision and uncertainty and, (ii) the MCDM support approach used to compare the potential solutions and to model the preference (or dominance) relations between them.

The most common uncertainty theories used to deal with imprecision and uncertainty in decision making is probability theory and fuzzy set theory (or possibility theory) [START_REF] Mardani | Decision Making Methods Based on Fuzzy Aggregation Operators : Three Decades Review From 1986 to 2017[END_REF]Kaya, Colak, and Terzi 2019). With the probability theory, uncertain values of each potential solution S i following a decision criterion k, is modelled with a probability distribution function F k i . Two methods are very often used to compare the potential solutions: (i) Muti-Attributes Utility Theory (MAUT) (see von [START_REF] Von Neumann | Theory of Games and Economic Behavior[END_REF][START_REF] Grabisch | A Review of Methods for Capacity Identification in Choquet Integral Based Multi-attribute Utility Theory Applications of the Kappalab R Package[END_REF][START_REF] Wilson | Allocation of Tasks for Reliability Growth Using Multi-attribute Utility[END_REF] and (ii) Stochastic Dominance approach (SD) (see [START_REF] Nowak | Preference and Veto Thresholds in Multicriteria Analysis Based on Stochastic Dominance[END_REF][START_REF] D' Avignon | Theory and Methodology An Outranking Method Under Uncertainty[END_REF][START_REF] Zhang | A Method Based on Stochastic Dominance Degrees for Stochastic Multiple Criteria Decision Making[END_REF]. In MAUT, based on the probability distributions of all the criteria, a function permits to compute the expected utility of each solution. Then a solution S i is preferred to another one S j if and only if the expected utility of S i is greater than that of S j . In the SD approach, a pairwise comparison of probability distributions is first performed in order to compare the potential solutions and to establish preference (or dominance) relations between them, following each decision criterion. Then, a method is used to built deterministic/stochastic preference (or dominance) relations following all the decision criteria.

With the fuzzy set theory, the imprecise and uncertain values of the decision criteria are modelled with fuzzy numbers [START_REF] Durbach | Modeling Uncertainty in Multi-criteria Decision Analysis[END_REF][START_REF] Longaray | Efficiency Indicators to Evaluate Services in Port Services: A Proposal Using Fuzzy-ahp Approach[END_REF]. The possibility theory is known to be a very good framework to simultaneously deal with imprecision (vagueness) and uncertainty due to a lack of accurate and complete information (knowledge) [START_REF] French | Uncertainty and Imprecision: Modelling and Analysis[END_REF][START_REF] Solaiman | Introduction to Possibility Theory[END_REF][START_REF] Hose | Robust Optimization in Possibility Theory[END_REF][START_REF] Denoeux | Representations of Uncertainty in Artificial Intelligence: Probability and Possibility[END_REF]. Moreover, it also permits to easily and effectively take into account expert's points of view (thus to take into account the confidence of the bidders in each technical bid solution) [START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF]. Therefore, in this article, we consider the possibility theory framework to cope with uncertainty, imprecision and confidence related to the values of the decision criteria.

According to the reviews presented in [START_REF] Broekhuizen | A Review and Classification of Approaches for Dealing with Uncertainty in Multi-Criteria Decision Analysis for Healthcare Decisions[END_REF], [START_REF] Mardani | Decision Making Methods Based on Fuzzy Aggregation Operators : Three Decades Review From 1986 to 2017[END_REF] and Kaya, Colak, and Terzi (2019), the Analytic Hierarchy Process (AHP) is the most common MCDM support approach used with fuzzy set theory. Indeed, in AHP, the estimation of the weights and the values of the decision criteria is based on judgments. These judgments have a qualitative nature and may be inconsistent [START_REF] Durbach | Modeling Uncertainty in Multi-criteria Decision Analysis[END_REF]. Therefore, the fuzzy set theory is very often used: (i) to model the weight and/or values of the decision criteria with fuzzy numbers, and (ii) to perform the aggregation of these values into a global score for each potential solution, which is used to select the most interesting solution.

Some recent applications of AHP with fuzzy set theory are related to supplier selection [START_REF] Burney | Fuzzy Multi-Criteria Based Decision Support System for Supplier Selection in Textile Industry[END_REF][START_REF] Lu | Green Supplier Selection in Straw Biomass Industry Based on Cloud Model and Possibility Degree[END_REF][START_REF] Liu | A Fuzzy Decision Tool to Evaluate the Sustainable Performance of Suppliers in An Agrifood Value Chain[END_REF]) and product design [START_REF] Chakraborty | Analysis of Product Design Characteristics for Remanufacturing Using Fuzzy AHP and Axiomatic Design[END_REF][START_REF] Mondragon | An AHP and Fuzzy AHP Multifactor Decision Making Approach for Technology and Supplier Selection in the High-Functionality Textile Industry[END_REF][START_REF] Khamhong | Fuzzy Analytic Hierarchy Process (AHP)-based Criteria Analysis for 3D Printer Selection in Additive Manufacturing[END_REF][START_REF] Haber | Integrating QFD for Product-service Systems with the Kano Model and Fuzzy AHP[END_REF]. There is another stream of methods, named outranking methods (ELECTRE and PROMETHEE), which are used with fuzzy set theory [START_REF] Broekhuizen | A Review and Classification of Approaches for Dealing with Uncertainty in Multi-Criteria Decision Analysis for Healthcare Decisions[END_REF]Kaya, Colak, and Terzi 2019;[START_REF] Liao | Two New Approaches Based on ELECTRE II to Solve the Multiple Criteria Decision Making Problems with Hesitant Fuzzy Linguistic Term Sets[END_REF]. In the outranking methods, first, for each decision criterion and for each pair of potential solutions (S i , S j ), based on the estimation of the two solutions, the preference degree of S i over S j is computed. Based on this and the relative importance of the decision criteria, the overall preference degree of the solution S i over S j with respect to all the decision criteria is computed. This overall preference degree is exploited in order to select the most interesting solution. These methods have also been used with fuzzy set theory for supplier selection [START_REF] Coello | A New Extension to PROMETHEE Under Intuitionistic Fuzzy Environment for Solving Supplier Selection Problem with Linguistic Preferences[END_REF][START_REF] Fei | An ELECTRE-Based Multiple Criteria Decision Making Method for Supplier Selection Using Dempster-Shafer Theory[END_REF][START_REF] Wan | Some New Information Measures for Hesitant Fuzzy PROMETHEE Method and Application to Green Supplier Selection[END_REF]) and for product design [START_REF] Barajas | Improved Fuzzy Ranking Procedure for Decision Making in Product Design[END_REF][START_REF] Gul | A Fuzzy Logic Based PROMETHEE Method for Material Selection Problems[END_REF].

For both AHP and outranking methods, a formal definition of the relative importance of the decision criteria is required. However, in the context of a bidding process, in many situations, the bidders do not know to which criterion the customer demand is more sensitive [START_REF] Ling | Multi-options Bidding Strategy in Distributed Environment[END_REF]. Moreover, even in situations where they have this information, most of the time, a non-expert decision maker cannot explicitly formalise the relative importance of each decision criterion. He/She may be able to choose a good solution according to her/his feeling with regard to many criteria but he/she is not able to provide a formal importance or weight for each criterion. Therefore, the MCDM problem considered in this article does not involve a formal prioritisation of the relative importance of the criteria. Moreover, as far as we know, the approaches found in the literature do not permit taking into account the confidence of the bidder in the decision process.

The Pareto-dominance approach is another approach used with fuzzy set theory for decision making under imprecision and uncertainty [START_REF] Köppen | Fuzzy-Pareto-Dominance and Its Application in Evolutionary Multi-Objective Optimization[END_REF][START_REF] Ganguly | Multi-objective Particle Swarm Optimization Based on Fuzzy-Paretodominance for Possibilistic Planning of Electrical Distribution Systems Incorporating Distributed Generation[END_REF][START_REF] Asrari | Pareto Dominance-Based Multiobjective Optimization Method for Distribution Network Reconfiguration[END_REF][START_REF] Bahri | A Generic Fuzzy Approach for Multi-objective Optimization Under Uncertainty[END_REF]. It is based on the conventional Paretodominance method. First, a pairwise comparison of the potential solutions is performed with respect to a single decision criterion in order to establish mono-criterion dominance relations between them. Second, based on the mono-criterion dominance relations, a pairwise comparison of the potential solutions is performed with respect to all the decision criteria in order to establish Pareto-dominance relations between them and determine the restricted set of the most interesting solutions (Pareto front). In the fuzzy Pareto-dominance approach, a degree of dominance characterises the dominance relation between two solutions [START_REF] Ganguly | Multi-objective Particle Swarm Optimization Based on Fuzzy-Paretodominance for Possibilistic Planning of Electrical Distribution Systems Incorporating Distributed Generation[END_REF].

This approach is suitable for the decision problem considered in this article because it does not require a formal definition of the relative importance of the decision criteria. Moreover, this approach can provide the decision maker with more flexibility in choosing the most interesting solution from a set of non-dominated solutions during the offer elaboration process [START_REF] Asrari | Pareto Dominance-Based Multiobjective Optimization Method for Distribution Network Reconfiguration[END_REF][START_REF] Pitiot | Optimisation of the Concurrent Product and Process Configuration: An Approach to Reduce Computation Time with An Experimental Evaluation[END_REF]. In Bahri, Ben Amor, and El-Ghazali (2014); [START_REF] Bahri | A Generic Fuzzy Approach for Multi-objective Optimization Under Uncertainty[END_REF], the authors have proposed an empirical approach where fuzzy triangular numbers model criteria values. By comparing two fuzzy numbers, following the overlapping of their possibility distributions, three relations of dominance are defined for a single criterion (mono-criterion dominance relations): total dominance, partial strongdominance and partial weak-dominance. These relations are easy to implement and make it possible to define the Pareto front. However, they are not generic enough to be used in situations where the values of the decision criteria are modelled with fuzzy numbers other than triangular ones. Moreover, as with the other approaches, these approaches do not allow the bidder's confidence to be taken into account in the selection process.

With regard to this literature analysis, in this article, a new Multi-Criteria Decision Making (MCDM) support approach is proposed for the selection of the most interesting technical bid solution in an Engineer-To-Order (ETO) bidding process. It takes into account imprecision, uncertainty and the bidder's confidence in the decision process. The main contributions developed in this article are:

• A method is proposed to model the values of the decision criteria by possibility distributions. The originality of this method is that the possibility distributions are automatically built using two confidence indicators OCS (Overall Confidence in System) and OCP (Overall Confidence in Process) which have been defined in our previous work [START_REF] Sylla | Readiness, Feasibility and Confidence : How to Help Bidders to Better Develop and Assess Their Offers[END_REF]. They represent the bidder's confidence in the technical bid solutions and gather reliable knowledge about their feasibility. Therefore, this method allows the confidence to be taken into account in the decision process. • Four new possibilistic mono-criterion dominance relations are developed in order to perform the comparison of two solutions with respect to a single decision criterion. As opposed to the dominance relations proposed in [START_REF] Bahri | A Generic Fuzzy Approach for Multi-objective Optimization Under Uncertainty[END_REF], the dominance relations proposed in this article are generic and can be used in any situation where the values of the decision criteria are modelled with fuzzy numbers or possibility distributions. They are developed based on the indexes proposed in Dubois andPrade (1983, 2012) which are powerful theoretical materials, and their computation is fully automated. • A method is proposed to help the decision maker to interactively construct the restricted set of the most interesting solutions (Pareto front). The Pareto front is built by taking into account the certainty of dominance between solutions. Only solutions which are dominated with a level of certainty defined by the decision maker are removed from the Pareto front.

To the best of our knowledge this is the only method which allows the decision maker to interactively select the most interesting technical bid solutions following a required level of certainty of dominance between solutions.

In the next section, the proposed MCDM approach along with the supporting algorithms are presented.

Possibilistic Pareto-dominance approach for technical bid selection

The proposed approach is organised in three main steps: (i) the first step corresponds to the modelling of the values of the decision criteria by possibility distributions, (ii) the second step corresponds to the pairwise comparison of the potential solutions with respect to a single decision criterion, and (iii) the third step corresponds to the interactive construction of the restricted set of the most interesting solutions (Pareto front). In the following sections, the methods and algorithms that support the three steps are described.

Modelling of the values of the decision criteria as possibility distributions

The possibility theory together with the confidence indicators offer a good opportunity to model the uncertain and imprecise values of the decision criteria by possibility distributions. For a solution S i , the possibility distribution μ k Si corresponding to the possible values of the decision criterion k, is characterised with five parameters: a, b, c, d and e (see Figure 1). Moreover, it can be formally defined by Equation (1). For every value of the criterion k for the solution i (noted

S k i ), μ k Si (S k i )
is the possibility of the value S k i . For instance, a configuration software can be used to compute these intervals [START_REF] Sylla | Readiness, Feasibility and Confidence : How to Help Bidders to Better Develop and Assess Their Offers[END_REF].

μ k Si (S k i ) = ⎧ ⎪ ⎨ ⎪ ⎩ 0 if (S k i < a) ∨ (S k i > d) e if (a ≤ S k i < b) ∨ (c < S k i ≤ d) 1 if (b ≤ S k i ≤ c) (1) e = 1 -(α * OCS + (1 -α) * OCP)/9 ( 2 )
• The parameter α makes it possible to take into account the relative importance of each item (technical system and delivery process) according to the criterion in consideration. In the context of the elaboration of a technical bid solution in a bidding process, for a criterion that characterises the two items (e.g. the cost of the technical bid solution), both the OCS and OCP indicators are relevant. Therefore, assuming that the two items have the same importance, α is equal to 0.5. For a criterion, that characterises only the delivery process (e.g. the duration of the delivery process), only the OCP indicator is relevant, α is equal to 0. For a criterion, that characterises only the technical system (e.g. a technical performance of the technical system), only the OCS indicator is relevant, α is equal to 1.

For example, let us consider the estimation of the cost of a technical bid solution for a crane, (which is composed of the crane technical system and its delivery process). As this criterion characterises both the technical system and its delivery process, α is equal to 0.5. In this estimation, it is known with certainty that the Estimation Domain (ED) of the technical bid solution for the crane is equal to [60, 100] k$. Based on the available information, an expert (or a computerised system) indicates that it is more possible that the cost of this solution be equal to [75,85] k$. This interval [75,85] k$ represents the interval of the Estimation values (EV). The system also provides the values of the confidence indicators OCS and OCP.

• If OCS = 9 and OCP = 9 (high confidence), then according to Equation ( 2), e = 0. The possibility e to have a value outside of this interval [75,85] k$ is then equal to 0. That means that the bidder is, with certainty, able to develop and deliver the technical system according to the Estimation Values (EV) [75, 85] k$. Therefore, it is certain that the cost of this technical bid solution will be in the interval of the EV [75, 85] k$. • If OCS = 7 and OCP = 6, then according to the Equation ( 2), e = 0.28. This means that it is not certain that the bidder is able to develop and deliver the technical system according to the EV [75, 85] k$. Therefore, there is a possibility that the cost of the technical bid solution will be outside the interval of the EV [75,85] k$. This possibility e is equal to 0.28.

For a technical bid solution, given the four parameters (a, b, c and d) and the confidence indicators (OCS and OCP), this method allows the corresponding possibility distribution for each decision criterion to be built automatically. Thus it allows imprecision, uncertainty and confidence in the decision making process to all be taken into account. In the next section, the possibilistic monocriterion dominance relations developed to compare the potential technical bid solutions with respect to a single decision criterion are presented.

Comparison of technical bid solutions with respect to a single criterion

In this section, four generic dominance relations are proposed in order to automatically compare two solutions S i and S j in any situations where the values of a decision criterion k are modelled by possibility distributions (μ k Si for S i and μ k Sj for S j ). They are developed based on the indexes (POD, PSD, NOD and NSD) suggested in [START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF]. In fact, as shown in many works [START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF][START_REF] Bortolan | A Review of Some Methods for Ranking Fuzzy Subsets[END_REF][START_REF] Iskander | A Suggested Approach for Possibility and Necessity Dominance Indices in Stochastic Fuzzy Linear Programming[END_REF]; Wang and Kerre 2001), these indexes, described in Table 1 , provide for each distribution (μ k Si and μ k Sj ) four values in the interval [0,1] corresponding to their possibility and necessity of being smaller than the other one. However, they do not indicate globally which distribution has to be considered as the smaller [START_REF] Wang | Reasonable Properties for the Ordering of Fuzzy Quantities (II)[END_REF]. Moreover, they cannot be used in this form by a decision-maker to compare two solutions and to establish dominance relations between them. An expert who understands their meaning is required. But, even for an expert, in a real decision problem, it is not possible to analyse, for each pair of potential solutions, eight values (four for each solution) in order to decide the dominance relations between these solutions. Some relations that enable an automatic comparison of the potential solutions and establish dominance relations between them are required.

Therefore, in order to provide a decision maker with tools that allow her/him to automatically compare two solutions, we take advantage of these indexes to develop new generic possibilistic mono-Criterion Dominance Relations (mono-CDR). In order to do that, an empirical study was performed. All possible configurations of the possibility distributions μ k Si and μ k Sj were generated and studied. For each configuration, and for each of the two solutions S i and S j , the four dominance indexes (POD k , PSD k , NOD k and NSD k ) were computed and summarised in a vector (noted D k Si≺Sj for the solution S i and D k Sj≺Si for the solution S j , see Equations ( 3) and ( 4)). For details about the computation method of the indexes, 3) and (4).

D k Si≺Sj = [POD k Si≺Sj , PSD k Si≺Sj , NOD k Si≺Sj , NSD k Si≺Sj ] (3) D k Sj≺Si = [POD k Sj≺Si , PSD k Sj≺Si , NOD k Sj≺Si , NSD k Sj≺Si ] (4) 
For each configuration, the values of the two vectors were thoroughly analysed with regard to the definition of the four dominance indexes. This analysis made it possible to define three categories of dominance (certain dominance, strong possibility of dominance, weak possibility of dominance) and one category of indifference between two solutions S i and S j . They are formalised with four new generic possibilistic dominance relations. Considering a single decision criterion, these relations make it possible: (i) to indicate if a solution S i dominates (or not) another one S j and (ii) if it dominates it, to indicate the necessity or possibility of dominance (certain, strong and weak). They are presented as follows.

1. Certain Dominance (denoted ≺ CD ). This relation corresponds to situations where the two possibility distributions (μ k Si for the solution S i and μ k Sj for the solution S j ) are completely disjoint (see Figure 2). Whatever the value of each variable, one of them is (with certainty) smaller than the other one. Therefore, one solution certainly dominates the other one following the criterion k. A solution S i certainly dominates a solution S j , if the value of NSD k Si≺Sj (Necessity of Strict Dominance of S i over S j ) is equal to 1 (see Equation (5) and Figure 2(a)). Then, S i ≺ CD S j if: ≺ SPD S j if:

D k Si≺Sj (4) = 1 ( 5 )
[D k Si≺Sj (4) < 1] ∧ [∀ t ∈ {1, . . . , 4}; D k Si≺Sj (t) > D k Sj≺Si (t)] ( 6 )

Weak Possibility of Dominance (denoted ≺ WPD ). The two possibility distributions (μ k

Si for the solution S i and μ k Sj for the solution S j ) are not disjoint. However, in contrast to the ≺ SPD relation, all the dominance indexes of the two vectors D k Si≺Sj and D k Sj≺Si are not consistent for the comparison of the two variables S k i and S k j . Most of the indexes of the two vectors indicate that one variable is generally smaller than the other one, but some of them are not consistent with that. Three cases have been identified:

(a) In the first case, formalised in Equation ( 7), three indexes (POD k , NOD k and NSD k or POD k , PSD k and NSD k ) indicate that the variable S k i of the solution S i is generally smaller than the variable S k j of the solution S j , and one index (PSD k or NOD k ) indicates whether: (i) the variable S k j of the solution S j is generally smaller than that of the solution S i or (ii) the variable S k j of the solution S j is equal to S k i . (b) In the second case, formalised in Equations ( 8) and ( 9), two indexes (POD k and NSD k or PSD k and NOD k ) indicate that the variable S k i of the solution S i is generally smaller than the variable S k j of the solution S j and the two other indexes (PSD k and NOD k or POD k and NSD k ) indicate that the variable S k i of the solution S i is equal to that of the solution S j . (c) In the third case, formalised in Equation ( 9), one of the indexes PSD k or NOD k indicates that the variable S k i of the solution S i is generally smaller than the variable S k j of the solution S j and the other indexes

(POD k , NSD k and NOD k or POD k , NSD k and PSD k ) indicate that the variable S k i of the solution S i is equal to S k j .
Therefore, a solution S i uncertainly dominates, but with a weak possibility, a solution S j (denoted S i ≺ WPD S j ), if it satisfies one of the four Equations ( 7), ( 8), ( 9) or (10) below.

[∃ t ∈ {1, . . . , 4} : D k Si≺Sj (t) ≤ D k Sj≺Si (t)] ∧ [∀ l = t : D k Si≺Sj (l) > D k Sj≺Si (l)] (7) [∀ t ∈ {1, 4} : D k Si≺Sj (t) = D k Sj≺Si (t)] ∧ [∀ l = t : D k Si≺Sj (l) > D k Sj≺Si (l)] (8) [∀ t ∈ {1, 4} : D k Si≺Sj (t) > D k Sj≺Si (t)] ∧ [∀ l = t : D k Si≺Sj (l) = D k Sj≺Si (l)] (9) [∃ t ∈ {1, . . . , 4} : D k Si≺Sj (t) > D k Sj≺Si (t)] ∧ [∀ l = t : D k Si≺Sj (l) = D k Sj≺Si (l)] ( 10 
)
The example shown in Figure 2(c) corresponds to the first case (Equation ( 7)). It can be seen through this 12) and ( 13), two dominance indexes (POD k and NSD k ) indicate that the two variables S k i and S k j are equal and for the two others, each variable has one dominance index (PSD k or NOD k ) that indicates that it is smaller than the other one. The example shown in Figure 2(d) corresponds to this case.

Therefore, two technical bid solutions S i and S j are indifferent (denoted S i IND S j ) if one of the three Equations (11), ( 12) and ( 13) is true:

[∀ t ∈ {1, . . . , 4} : D k Si≺Sj (t) = D k Sj≺Si (t)] (11) [∀ t ∈ {1, 4} : D k Si≺Sj (t) = D k Sj≺Si (t)] ∧[D k Si≺Sj (2) > D k Sj≺Si (2)] ∧ [D k Si≺Sj (3) < D k Sj≺Si (3)] (12) [∀ t ∈ {1, 4} : D k Si≺Sj (t) = D k Sj≺Si (t)] ∧ [D k Si≺Sj (2) < D k Sj≺Si (2)] ∧ [D k Si≺Sj (3) > D k Sj≺Si (3)] ( 13 
)
In the proposed approach, these relations CD, SPD, WPD and IND are used to compare two solutions S i and S j with respect to a single criterion. The Equations (5) to (13) present the conditions to be satisfied for a solution S i : (i) to dominate another solution S j (Equations ( 5), ( 6), ( 7), ( 8), ( 9) and ( 10)), or (ii) to be indifferent to a solution S j (Equations ( 11), ( 12) and ( 13)). In the following parts, the mono-criterion dominance relation of a solution S i over a solution S j is noted mono-CDR(S i , S j ).

Comparing two solutions S i and S j , if none of the four mono-CDR is applicable (which means that the solution S i is dominated by the solution S j ), the mono-CDR(S i , S j ) takes the value 'NA' (Not Applicable) and it is noted by S i ⊀ S j . In the next section, the construction method of the Pareto front is developed.

Construction of the Pareto front

In this section, the method which allows the comparison of technical bid solutions with respect to all the decision criteria and the determining of the set of non-dominated solutions (Pareto front) is described.

In the context of the bidding process, when selecting the most interesting technical bid solutions, in situations where the values of the decision criteria are imprecise and uncertain, it is necessary to take into account the point of view of the decision maker about the level of certainty or possibility required on the dominance of one solution over another one. Therefore, the concept of Required Level of Dominance for a decision criterion (RLD) is introduced to capture this point of view and take it into account in the decision making process. For a decision criterion k, the required level of dominance is noted RLD k . In this article, we consider four possible values for RLD k . These values correspond to the four possibilistic mono-CDR (CD, SPD, WPD and IND). For n decision criteria (n > 1), all possible combinations of the four values are allowed, except that combining only the value IND. Indeed, in that case, none of the two solutions Pareto-dominates the other one.

Accordingly, let us consider two technical bid solutions S i and S j to be compared following n decision criteria. Given a RLD k for each decision criterion k, a technical bid solution S i Pareto-dominates another one S j (denoted S i ≺S j ), if and only if, for each decision criterion k, the possibilistic mono-criterion dominance of the solution S i over S j (mono-CDR k (S i , S j )) is at least stronger (noted by ≥ ) than the required level of dominance on this decision criterion (RLD k ). The mono-CDR value CD is stronger than SPD, which is stronger than WPD, which is also stronger than IND which in turn is stronger than NA (CD > SPD > WPD > IND > NA). Equation ( 14) represents the Pareto-dominance relation of a solution S i over S j with respect to n decision criteria. Moreover, a solution belongs to the Pareto Front (PF) if there is no other solution that Pareto-dominates it. Let S be the set of m potential technical bid solutions. Let PF be the Pareto front. PF is defined by Equation (15).

S i ≺ S j if ∀ k ∈ {1, . . . , n}, mono -CDR k (S i , S j ) ≥ RLD k (14) PF = {S l , S l ∈ S, S t /S t ≺ S l } (15) 
Therefore, by performing a pairwise comparison of the potential solutions using Equation ( 14), the Pareto front is built based on Equation ( 15). Thus, this method enables the decision maker to interactively determine the set PF (which is the set of the most interesting technical bid solutions) according to the required level of dominance on each decision criterion. In the next Section 3.4, the algorithms that support the proposed approach are described.

Description of the algorithms to support the proposed approach

The first algorithm (Algorithm 1) computes the possibilistic mono-criterion dominance of solution S i over solution S j . It corresponds to the function mono-CDR k (S i , S j ).

The function mono-CDR k (S i , S j ) has two arguments S i and S j . First the vectors D k Si≺Sj and D k Sj≺Si are computed. Then, using Equations ( 5) to (13) described in Section 3.2, the mono-CDR value is selected among Certain Dominance (CD), Strong Possibility of Dominance (SPD), Weak Possibility of Dominance (WPD), Indifference (IND) and Not Applicable (NA) when S i is dominated by S j .

The second algorithm (Algorithm 2) defines the function Pareto-front(S, {RLD 1 , RLD 2 , . . . , RLD n }) which returns the set of non-dominated solutions (i.e. the Pareto-front). This function has several arguments: (i) S, the set of the potential technical bid solutions, (ii) {RLD 1 , RLD 2 , . . . , RLD n }, the set of n required levels of dominance corresponding to the n decision criteria. The function 'Pareto-front' realises a pairwise comparison of the potential solutions of the set S. Each solution is compared to each of the others. For each pair (S i , S j ) of solutions (with i = j) and for each decision criterion k (with k ∈ {1, 2, . . . , n}), the function mono-CDR k (S i , S j ) is called. The result is the possibilistic mono-criterion dominance of solution S i over S j with respect to the decision criterion k. If for any decision criterion k, the mono-CDR k (S i , S j ) is stronger than the corresponding RLD k , then solution S i Pareto-dominates solution S j , and consequently S j is removed from the set PF. At the end, the resulting PF is returned by the function Pareto-front.

Illustrative application of the proposed approach

This application is inspired by a real industrial case of the design of a technical bid solution for a crane in a French company. The company has to select one solution from a panel of twelve potential ones designed and estimated using a configuration software. For the sake of simplicity and clarity, we consider only two decision criteria: (i) the cost of the technical bid solution (cost) which # The most interesting solutions with regard to the RLDs gathers both the technical system cost and the delivery process cost, and (ii) the duration of the delivery process (duration). The details are provided in the following sub-section.

Description of the example

As shown in Figure 3,e a c hs o l u t i o ni sc o m p os e do f two interconnected parts. The first part is the technical system which is composed of four sub-systems: an engine (EN), a jib (JI), a tower (TO) and a basket (BA). The jib sub-system is integrated with the tower and the engine sub-systems whereas the basket sub-system is integrated with the tower sub-system. For each sub-system, there are three possible solutions (for instance: EN1, EN2 and EN3 for the engine sub-system). Each sub-system i is characterised with a cost i (see Table 4). For the sake of clarity, we do not consider the costs of the integrations between 
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solutions. Therefore, the cost of a technical system is the sum of the costs of its sub-systems (see Table 5). The composition of technical systems which satisfy the customer's requirements is presented in Table 5.

The second part is the delivery process of the crane technical system. It is composed of four main activities: finalising design (FD), sourcing (SO), producing (PR) and delivering (DE). Each activity l is characterised with a cost l and a duration l . For each activity, a same resource is used independently to the technical systems. For instance, the same designer performs the design of the twelve technical systems. Therefore, the duration of an activity depends solely on the technical systems. The costs of the FD and PR activities are computed as their duration multiplied by 2 (cost l = duration l *2). Whereas the costs of the SO and DE activities are computed as their duration multiplied by 1.5 (cost l = duration l *1.5). The duration and cost of the activities are presented in Table 6. The cost and the duration of a delivery process are computed as the sum of the costs and durations of its activities (see Table 7). The cost of a crane technical bid solution is computed as the sum of the cost of the technical system and the cost of its delivery process (see Table 8).

Moreover, each technical bid solution is characterised with the confidence indicators OCS (Overall Confidence in System) and OCP (Overall Confidence in Process) which represent the bidder's confidence in this solution.

Both OCS and OCP indicators are based on two kinds of metrics: (i) factual ones which relate on the readiness of the technical system and the feasibility of the delivery process, and (ii) subjective ones which are the expert feeling of the designer [START_REF] Sylla | Readiness, Feasibility and Confidence : How to Help Bidders to Better Develop and Assess Their Offers[END_REF][START_REF] Sauser | A System Maturity Index for the Systems Engineering Life Cycle[END_REF].

Therefore, in order to compute the OCS of a technical system, each sub-system i is characterised with a readiness level (TRL i ) and a designer feeling (CIS i ). The TRL i and CIS i indicators are measured on a nine-level scale and a five-level scale, respectively (see Table 4). Each integration between two sub-systems i and j is also characterised with a readiness level (IRL ij ) and a designer feeling CIS ij . Like the TRL i and CIS j , the IRL ij and CIS ij indicators are measured on a nine-level scale and a fivelevel scale (see Table 2). In Table 2, the IRL ij /CIS ij of the integration of two sub-systems i and j are presented once these subsystems are present in the same system. If there is no integration between two subsystems i and j which are present in the same system, their IRL ij /CIS ij are equal to 0. Furthermore, according to the method presented in [START_REF] Sylla | Readiness, Feasibility and Confidence : How to Help Bidders to Better Develop and Assess Their Offers[END_REF] and [START_REF] Sauser | A System Maturity Index for the Systems Engineering Life Cycle[END_REF], the IRL ii /CIS ii of a subsystem i with itself is equal to the highest values (9/5). The readiness level (SRL), the designer feeling (CIS) and the OCS of a technical system are computed using the methods presented in [START_REF] Sylla | Readiness, Feasibility and Confidence : How to Help Bidders to Better Develop and Assess Their Offers[END_REF] and [START_REF] Sauser | A System Maturity Index for the Systems Engineering Life Cycle[END_REF]. The SRL and CIS indicators are measured on a five-level scale. The OCS indicator is measured on a nine-level scale. They are presented in Table 5.

On the other side, in order to compute the OCP of the delivery process, each activity l is characterised with a feasibility level (AFL l ) and a designer feeling (CIP l ). The AFL l and CIP l are measured on a five-level scale (see Table 3). The feasibility level (PFL), the designer feeling (CIP) and the OCP of a delivery process are computed using the methods presented in [START_REF] Sylla | Readiness, Feasibility and Confidence : How to Help Bidders to Better Develop and Assess Their Offers[END_REF]. The PFL and CIP indicators are measured on a five-level scale. The OCP indicator is measured on a nine-level scale. They are presented in Table 7. For more detail about the OCS and OCP indicators, consult [START_REF] Sylla | Readiness, Feasibility and Confidence : How to Help Bidders to Better Develop and Assess Their Offers[END_REF][START_REF] Sauser | A System Maturity Index for the Systems Engineering Life Cycle[END_REF].

The proposed Multi-Criteria Decision (MCDM) support approach is used to provide the decision maker with a restricted set of the most interesting technical bid solutions while taking into account: (i) uncertainty, imprecision and, more importantly, the bidder's confidence in the values of the decision criteria, and (ii) the required level of certainty on the dominance of one solution S i over another one S j . Thus, from this Pareto front, the decision maker has the flexibility to choose the most interesting solution to propose to a customer during the offer elaboration process. The application is performed using the Matlab software (MATLAB R2018b). In the following section, the main results are presented and discussed.

Results and discussion of the experiments

In this section, first, for each decision criterion, the dominance relations between the potential solutions are computed and presented. Then, three different Pareto fronts are interactively built according to particular combinations of RLDs imputed by the decision maker. Finally, two different ways to exploit the Pareto front are presented.

The dominance relations between the potential solutions

Before computing the possibilistic mono-criterion dominance relations (mono-CDR), the possibility distributions which represent the evaluation of the potential solutions are computed using the method presented in Section 3.1. Then, these possibility distributions are used to compute the two vectors D k Si≺Sj and D k Sj≺Si for each pair (S i , S j ) and for each criterion k. As some examples of possibility distributions are presented in Section 3.2 (Figure 2), we have not presented this result in this section.

The vectors (D k Si≺Sj and D k Sj≺Si ) are further exploited to compute the mono-CDR between the potential solutions using Algorithm 2, presented in Section 3.4. The result is shown in Figure 4. The matrix at the upper level represents the possibilistic dominance of solution S i over solution S j with respect to the cost. The matrix at the lower level represents the possibilistic dominance of solution S i over solution S j with respect to the duration. For instance, solution S 11 certainly dominates (CD) solution S 1 with respect to the duration. Then, mono-CDR Duration (S 11 , S 1 ) is equal to CD. However, with respect to the cost, S 11 dominates S 1 , not certainly, but with a weak possibility (WPD). Then, mono-CDR Cost (S 11 , S 1 ) is equal to WPD. Consequently, S 1 is dominated by S 11 with respect to the two decision criteria. That is why mono-CDR Duration (S 1 , S 11 ) and mono-CDR Cost (S 1 , S 11 ) are equal to NA (Not Applicable). As the dominance of a solution over itself is not relevant, it is not shown in Figure 4.

In the next section, these two matrices are used to construct the Pareto-front.

The Pareto-dominance and the Pareto-front

The twelve potential solutions are represented in Figure 5. Each solution is represented by two lines. The horizontal line represents the duration of the solution whereas the vertical line represents the cost of the solution. For each line, the solid part represents the interval of the estimation values (EV) which are the most possible values (possibility = 1). The dotted parts of the line (at the two sides of the solid line) represent the values that are outside the interval EV. At both sides, the possibility of these valuesisequal tothepara met er e which is computed using Equation (2), and represented on one side of the dotted linesinFigu re5.

Algorithm 2 is used to determine the set of nondominated solutions (Pareto front). At this stage, the person in charge of the elaboration of the technical bid solution (bidder or decision maker) provides the Required Level of Dominance (RLD k ) for each decision criterion k. As two decision criteria are considered, fifteen combinations of RLD k are allowed (see the left part of Figure 6). However, we consider only three combinations in this example. They are shown in the right part of Figure 6 and correspond to the three scenarios which are presented and discussed in the following (CD-CD, SPD-SPD, and WPD-WPD). 1. Combination 1 (CD-CD). In this scenario, the decision maker has defined the Certain Dominance relation (CD) as the RLD for each decision criterion (cost and duration). This RLD combination is the less discriminating one. In order that a solution S i Pareto-dominates another solution S j , for each decision criterion, the dominance relation of S i over S j must be certain CD. From Figure 4, it can be seen that the dominated solutions with respect to this RLD combination are S 5 , S 10 and S 12 . They are shown in red colour in Figure 7.

With this RLDs combination (CD-CD), the obtained non-dominated solutions (S 1 , S 2 , S 3 , S 4 , S 6 , S 7 , S 8 , S 9 , and S 11 ) are, with certainty, the most interesting ones. However, the number of potential solutions is still too large (nine solutions). In order to reduce the number of solutions in the Pareto-front, the decision maker has to reduce the RLD on the decision criteria.

2. Combination 2 (SPD-SPD). In this scenario, the decision maker has reduced the RLD combination to SPD-SPD. This second combination is more discriminating than the first one. Indeed, in order that a solution S i Pareto-dominates another solution S j , for each decision criterion, the dominance relation of S i over S j must be certain (CD) or uncertain but with a strong possibility (SPD). Consequently, four additional solutions (S 1 , S 3 , S 6 and S 9 ) are dominated with respect to this RLD combination. They are shown in cyan colour in Figure 7.

Compared to the first scenario, in this second scenario, the number of non-dominated solutions has decreased. Even if the resulting set of non-dominated solutions is not certain with the defined RLDs, the decision maker knows that it is most plausible that the five non-dominated solutions (S 2 , S 4 , S 7 , S 8 and S 11 ) are the five most interesting ones. The decision maker can further reduce the RLD on the decision criteria in order to discriminate more solutions.

3. Combination 3 (WPD-WPD). The decision maker has further reduced the RLDs. At present, the RLD combination is WPD-WPD which is more discriminating than the previous ones. In order that a solution S i Pareto-dominates another solution S j , for each decision criterion, the dominance of S i over S j must be either: certain (CD) or uncertain but with a strong possibility (SPD) or uncertain with a weak possibility (WPD). As shown in Figure 4, two additional solutions (S 4 and S 7 ) are dominated with respect to this RLD combination. They are shown in blue colour in Figure 7. Only three solutions S 2 , S 8 and S 11 , shown in green colour, are nondominated. Even if it is not certain that these solutions S 2 , S 8 and S 11 are the best ones, with this RLD combination, the decision maker knows that it is most plausible that these three solutions are the most interesting ones.

Exploiting the Pareto front for decision making

In situations where only one solution remain in the Pareto front, the decision maker just selects this solution for the commercial offer. However, most of the time, more than one solution remain in the Pareto front. In this example, with the last combination (WPD-WPD), three potential solutions S 2 , S 8 and S 11 remain in the Pareto front. They are indifferent to each other with respect to all the decision criteria. Therefore, in order to choose one solution, it is necessary to give more importance or priority to one decision criterion. Two different approaches can be adopted depending on the availability of additional information about the prioritisation of the decision criteria.

In some cases there is no additional information about the prioritisation of the decision criteria or the decision maker cannot explicitly formalise it. In such a case, the decision maker selects the most interesting solution according to her/his preferences regarding the decision criteria even if she/he is not able to explicitly provide these preferences. In Figure 4, one can see that solution S 11 dominates solution S 2 with a weak possibility with respect to the duration (S 11 ≺ duration WPD S 2 ). Solution S 2 dominates solution S 11 with a weak possibility with respect to the cost (S 2 ≺ cost WPD S 11 ). Solution S 8 , in In the contrary, in some other cases, some additional information about the prioritisation of the decision criteria are available and the decision maker is able to formalise it as a weight (or a relative importance) for each decision criterion. In such a case, some well-known outranking methods as PROMETHEE or ELECTRE [START_REF] Renzi | A Review on Decision-making Methods in Engineering Design for the Automotive Industry[END_REF][START_REF] Behzadian | PROMETHEE : A Comprehensive Literature Review on Methodologies and Applications[END_REF]) can be used to rank the solutions remaining in the Pareto front. As this article focuses on situations where the decision maker does not have additional information about the prioritisation of the decision criteria, for seek of clarity, this case is not developed here. It should be considered for future research. First ideas have been reported in Sylla et al. (2019a).

One can observe that the Required Levels of Dominance (RLDs) are very useful in the decision making process. By setting them at the higher level (CD-CD), they enables the bidder to make the choice of the most interesting technical bid solution from a Pareto front which is certainly the set of the best solutions. Indeed, as the dominance relations are required to be certain, any solution that remains in the Pareto front is certainly better than any other solution that has been removed. They also allow the bidder, by reducing the RLDs (WPD-WPD for instance), to make the choice of the most interesting solution from a smaller Pareto front while having the knowledge about the level of certainty or possibility that this solution is the most interesting one.

It is important to mention that, by modelling all the possible values that may occur for a decision criterion with their possibility level, this approach allows to take into account the changeability of the values of the decision criteria in the decision process. Therefore, the proposed approach provides a robust Pareto front with regards to changes in parameters (inputs) values.

Conclusion and further research

In this article, we have studied the elaboration of a technical bid solution in an Engineer-To-Order (ETO) bidding process. In such a context, when selecting the most interesting technical bid solution to propose to a customer, a bidder faces the problem of the feasibility of the potential solutions. In fact, the lack of relevant information generates uncertainty and risks regarding her/his future ability to provide the proposed solution once the offer is accepted by the customer.

Therefore, in this article, a Multi-Criteria Decision Making (MCDM) support approach has been proposed in order to help bidders to select the most attractive and feasible solution during an ETO bidding process. An attractive and feasible solution has good values for the evaluation criteria and low uncertainty (or high confidence) about the future ability of the bidder to provide the solution according to these values. The proposed MCDM support approach is based on the Pareto-dominance principle and possibility theory. It brings together three main stages supported by new methods and algorithms which are the key contributions of this article. The first stage is the modelling of the values of the decision criteria. It is supported by a new method which uses the bidder's confidence in the technical bid solutions to automatically model the uncertain and imprecise values of the decision criteria by possibility distributions. Thus, it enables this confidence in the selection process to be taken into account. The second stage is the pairwise comparison of the potential solutions with respect to a single decision criterion. Four new generic possibilistic mono-criterion dominance relations (Certain Dominance (CD), Strong Possibility of Dominance (SPD), Weak Possibility of Dominance (WPD) and Indifference (IND)) and an algorithm have been developed. They make it possible to compute the relevant mono-criterion dominance relation between two solutions and to know the level of certainty of the dominance. The third stage is the interactive construction of the Pareto front which is the set of the most interesting solutions. It is supported by a method and an algorithm which allow comparison of the potential solutions with respect to all the decision criteria and thus determine the restricted set of the most interesting ones (Pareto front) while taking into account the level of certainty of dominance between solutions.

Using the proposed approach, the decision maker will have a restricted set of best solutions. This bring more flexibility to the selection process. Thus, based on her/his feeling or some additional information, she/he can decide which is the most interesting solution to propose to the customer. In an ETO bidding process or, more generally, in any engineering design process, when selecting the most interesting solutions, this approach can be very useful for the designer or the decision maker, especially in the early phases of the design process, which is characterised by imprecision, uncertainty and confidence issues.

The case of the design of a technical bid solution of a crane presented in Section 4 has shown that this approach is applicable and effective. It is important to mention that in situations where many possible configurations (systems) are relevant to customers' requirements, many potential technical bid solutions have to be considered in the decision making process. First, each solution should be evaluated with regards to the decision criteria (cost and duration) but also in terms of confidence indicators (OCS and OCP). This can be done using a configuration software which implements appropriate evaluation methods [START_REF] Sylla | Readiness, Feasibility and Confidence : How to Help Bidders to Better Develop and Assess Their Offers[END_REF](Sylla et al. , 2019b)). Then, the proposed multi-criteria decision support approach can be applied for the selection of the most interesting solution. The algorithms proposed in this article allow to automate and facilitate the whole decision making process even in such situations.

With the proposed MCDM support approach, the decision maker has to interact with the decision support tool to define different combinations of Required Levels of Dominance (RLDs) for the decision criteria in order to determine the most interesting technical bid solutions. In situations where the number of decision criteria is large (greater than five, for instance), this may be time consuming. Moreover, in this article, the focus has been placed on situations where the decision maker cannot explicitly provide the relative importance of each decision criterion. However, in some situations, the decision maker may have this knowledge. In such a context, it is necessary to consider the relative importance of each decision criterion when comparing the potential solutions with respect to all the criteria. Therefore, future research should consider extending the proposed approach to such situations. A method could be developed to integrate the possibilistic mono-CDR with a relevant outranking method (PROMETHEE or ELECTRE) in order to rank the potential solutions. In addition, in this article, we consider one decision-maker's (a bidder) point of view. However, in some practical situations several decision makers are involved in the decision process. Therefore, extending the proposed approach to the case of group decision making should also be considered as future research. It could be achieved by identifying relevant aggregation methods that allow to aggregate the preferences of multiple decision makers. The last aspect of possible future research is to perform a benchmark with competing approaches in the literature.
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 1 Figure 1. Possibility distribution μ k Si (S k i ) of a criterion k for a solution S i .

  Parameter e represents the possibility of a value being outside of the interval EV. It depends on the confidence indicators (OCS and OCP) which represent the bidder's confidence in the technical bid solution. It is calculated using the Equation (2). The value '9' represents the maximum level on the OCS and OCP scales. Thus the values of e belong to the real interval [0, 1].

  2. Strong Possibility of Dominance (denoted ≺ SPD ). This relation corresponds to situations where the two possibility distributions (μ kSi for the solution S i and μ k Sj for the solution S j ) are not disjoint (see Figure2(b)). However, all the four dominance indexes of the two vectors D k Si≺Sj and D k Sj≺Si indicate that one variable is generally smaller than the other one. Accordingly, one solution dominates the other one, not certainly, but with a strong possibility. A solution S i uncertainly, but with a strong possibility, dominates a solution S j , if all the values of the four elements of the vector D k Si≺Sj are respectively greater than those of the vector D k Sj≺Si (see Equation (6) and Figure2(b)). Then, S i
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 2 Figure 2. Examples of the dominance relations.

  Figure 2 (c) that the two distributions μ k Si and μ k Sj have almost the same positions as in Figure 2(b). The only difference is that, in Figure 2(c), the possibility to have a value of S k i that is greater than S k j has been increased. That is why the strength of the dominance of S i over S j has been decreased from ≺ SPD (in Figure 2(b)) to ≺ WPD (in Figure 2(c)). 4. Indifference (denoted IND). This relation corresponds to situations where the two possibility distributions μ k Si and μ k Sj strongly overlap (see Figure 2(d)). The dominance indexes of the two vectors D k Si≺Sj and D k Sj≺Si are not consistent for the comparison of the two variables S k i and S k j . In addition, in contrast to the previous dominance relations, none of the two variables exceeds the other one in number of indexes indicating that it is smaller than the other one. Two cases have been identified: (a) In the first case, formalised in Equation (11), the four dominance indexes (POD k , PSD k , NOD k and NSD k ) indicate that the two variables S k i and S k j are equal. (b) In the second case, formalised in Equations (
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 3 Figure 3. A crane technical bid solution.
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 4 Figure 4. The possibilistic mono-criterion dominance relations.
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 5 Figure 5. The twelve potential technical bid solutions.
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 6 Figure 6. Allowed and studied combinations of RLD.
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 7 Figure 7. Pareto front -Dominated solutions following each RLD combination.

Table 1 .

 1 POD, PSD, NOD and NSD indexes.

	Indexes	Definition
	Possibility of Dominance (POD) Possibility of Strict Dominance (PSD) Necessity of Dominance (NOD) Necessity of Strict Dominance (NSD)	the possibility that S k i is not greater than S k j the possibility that S k i is smaller than S k j the necessity that S k i is not greater than S k j the necessity that S k i is smaller than S k j

  Algorithm 1 Mono-CDR k (S i , S j ) Pareto-front(S, RLD 1 , RLD 2 , . . . , RLD n )

	Compute D k Si≺Sj	# Dubois and Prade's dominance indexes for Si
	Compute D k Sj≺Si if (equation 13 is TRUE) then # Dubois and Prade's dominance indexes for Sj
	return CD	# Si certainly dominates Sj (S i ≺ CD S j )
	else if (equation 14 is TRUE)
	return SPD	# Si dominates Sj, with a strong possibility (S i ≺ SPD S j )
	else if ((equation 15 is TRUE) ∨ (equation 16 is TRUE) ∨ (equation 17 is TRUE) ∨ (equation 18 is TRUE))
	return WPD	# Si dominates Sj, with a weak possibility (S i ≺ WPD S j )
	else if ((equation 19 is TRUE) ∨ (equation 20 is TRUE) ∨ (equation 21 is TRUE))
	return IND	# Si is indifferent to Sj (S i IND S j )
	else	
	return NA	# Si is dominated by Sj (S j ≺ S i )
	end if	
	Algorithm 2 PF ← S	# The initial Pareto front includes all the solutions
	for S j ∈ S do	
	for S end if	
	end for	
	if NbDom = n then
	PF ← PF -{S j }	# Sj is removed from PF because it is dominated
	end if	
	end for	
	end for	
	return PF	

i ∈ S / S i = S j do NbDom ← 0 # Number of decision criteria by which Si dominates Sj for k ∈ {1, ..., n} do ifMono-CDR k (S i ,S j ) ≥ RLD k NbDom ← NbDom + 1 # NbDom is increased by 1

Table 2 .

 2 Integration readiness Level IRL ij /Confidence In Sub-systems i and j CIS ij .

	IRL ij /CIS ij	EN1	EN2	EN3	JI1	JI2	JI3	TO1	TO2	TO3	BA1	BA2	BA3
	EN1	9/5	-	-	5/4	-	-	0/0	-	-	0/0	-	0/0
	EN2	-	9/5	-	6/5	5/3	-	0/0	0/0	-	0/0	0/0	0/0
	EN3	-	-	9/5	-	-	8/5	0/0	0/0	0/0	0/0	0/0	0/0
	JI1	5/4	6/5		9/5	-	-	6/4	-	-	0/0	-	0/0
	JI2	-	5/3	-	-	9/5	-	-	5/3	6/3	-	0/0	0/0
	JI3	-	-	8/5	-	-	9/5	7/5	8/5	6/5	-	0/0	0/0
	TO1	0/0	0/0	0/0	6/4		7/5	9/5	-	-	8/4	-	5/4
	TO2	-	0/0	0/0	-	5/3	8/5	-	9/5	-	-	7/4	0/0
	TO3	-	0/0	0/0	-	6/3	6/5	-	-	9/5	-	5/4	6/5
	BA1	0/0	0/0	0/0	0/0	-	0/0	8/4	-	-	9/5	-	-
	BA2	-	0/0	0/0	-	0/0	0/0	-	7/4	5/4	-	9/5	-
	BA3	0/0	0/0	0/0	0/0	0/0	0/0	5/4	-	6/5	-	-	9/5

Table 3 .

 3 AFL l and CIP l of the crane delivery process activities.

		Finalising design	Sourcing	Producing	Delivering
	Cranes	AFL l	CIP l	AFL l	CIP l	AFL l	CIP l	AFL l	CIP l
	C R 1	3	4	4	4	3	4	4	4
	C R 2	3	3	3	3	3	3	4	4
	C R 3	4	4	4	4	4	4	4	4
	C R 4	4	5	4	5	4	5	4	5
	C R 5	3	4	4	4	3	4	4	4
	C R 6	4	5	4	5	4	5	4	5
	C R 7	3	3	3	4	3	3	4	4
	C R 8	4	4	4	5	4	5	4	4
	C R 9	3	4	3	4	3	4	4	

Table 4 .

 4 The sub-system solutions.

			Cost i (K$)		TRL i	CIS j
	Sub-systems	a	b	c	d	[1-9]	[1-5]
	EN1	15	16	18	20	5	4
	EN2	18	19	20	21	7	5
	EN3	22	23	23,5	24	8	5
	JI1	15	16	17	20	7	5
	JI2	15	17	18	19	6	3
	JI3	16	16,5	17,5	18	8	5
	TO1	25	27	28	30	8	5
	TO2	18	19	25	28	8	5
	TO3	32	35	36	37	7	5
	BA1	9	10	12	14	8	4
	BA2	12	13	14	15	8	4
	BA3	9	9,5	10	11	7	5

Table 5 .

 5 The crane technical systems.

			Composition			Cost (K$)			SRL	CIS	OCS
	Cranes	EN	JI	TO	BA	a	b	c	d	[1-5]	[1-5]	[1-9]
	CR1	EN1	JI1	TO1	BA1	64	69	75	84	3	4	6
	CR2	EN2	JI2	TO2	BA2	63	68	77	83	3	3	5
	CR3	EN2	JI1	TO1	BA1	67	72	77	85	3	4	6
	C R 4	E N 3	J I 3	T O 1	B A 1	7 2	7 6 , 5	8 1	8 6	4	5	8
	CR5	EN3	JI3	TO3	BA3	79	84	87	90	3	5	7
	CR6	EN1	JI1	TO1	BA3	64	68	75	81	3	4	6
	CR7	EN2	JI2	TO3	BA2	77	84	88	92	3	3	5
	C R 8	E N 3	J I 3	T O 2	B A 2	6 8	7 1 , 5	8 0	8 5	4	5	8
	C R 9	E N 2	J I 1	T O 1	B A 3	6 7	7 1 , 5	7 5	8 2	3	5	8
	CR10	EN2	JI2	TO3	BA3	74	80,5	84	88	3	3	5
	CR11	EN3	JI3	TO3	BA2	82	87,5	91	94	3	5	7
	C R 1 2	E N 3	J I 3	T O 1	B A 3	7 2	7 6	7 9	8 3	3	5	7

Table 6 .

 6 Duration of the crane delivery process activities.

	(a) Duration of the crane delivery process activities
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