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ABSTRACT
Successful bidding involves defining relevant technical bid solutions that conform to the cus-
tomers’ requirements, then selecting the most interesting one for the commercial offer. However, 
in Engineer-To-Order (ETO) industrial contexts, this selection process is complicated by issues of 
imprecision, uncertainty and confidence regarding the values of the decision criteria. To address this 
complexity, a Multi-Criteria Decision Making (MCDM) support approach is proposed in this study. 
This approach is based on possibility theory and the Pareto-dominance principle. It involves three 
main stages. First, a method is proposed to automatically model the values of the decision criteria 
by possibility distributions. Second, four possibilistic mono-criterion dominance relations are devel-
oped to compare two solutions with respect to a single decision criterion. Finally, an interactive 
method is devised to determine the most interesting technical bid solutions with respect to all the 
decision criteria. The method is applied to the design of a technical bid solution of a crane. The results 
show that this approach enables bidders to select the most interesting solution during a bidding 
process, while taking into account imprecision, uncertainty and their own confidence regarding the 
values of the decision criteria.
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1. Introduction

In order to increase their business volume and to remain
competitive, systems contractors (or bidders) must suc-
cessfully bid to a range of different customers (Wang,
Wang, and Yongwei Shan 2020). A successful bid implies
that the bid proposal is attractive, profitable and feasible
(Chapman, Ward, and Bennell 2000; Arslan et al. 2006).
Therefore, a bidder needs to propose a solution that com-
bines both attractiveness (good values for the evaluation
criteria) and feasibility (low uncertainty or high confi-
dence about the company’s ability to develop and deliver
the technical system according to these values).

In this article, we consider bid proposals related to
the development and delivery of physical products (e.g.
cranes, robots, machine tools). In this context, in order
to submit a bid to a customer, generally, a bidder designs
and evaluates several technical bid solutions that comply
with the customer’s requirements. Then, from this panel
of potential solutions, the bidder must select the most
interesting one in order to elaborate and transmit a com-
mercial offer to the customer (Chalal andGhomari 2008).
As in (Yan et al. 2006; Guillon et al. 2020), we con-
sider that a technical bid solution is composed of a
technical system (a set of sub-systems and components)
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and its delivery process (a set of required activities and
resources to implement the technical system). In the
literature, many works offer solutions to the strategic
bidding problem (Kumar, Vinod Kumar, and Edukon-
dalu 2013; Liu et al. 2014; Egemen and Mohamed 2008;
Takano, Ishii, and Muraki 2018; Rayati, Goodarzi, and
Ranjbar 2019; Yadav 2020). Based on internal costs and
market behaviour, various approaches are proposed to
determine the optimal bid price that maximise the prob-
ability of winning and the expected profit once the bid
proposal is accepted. Generally, it is assumed that the
technical bid solution relevant to the customer’s require-
ments has been identified and its cost estimated. There-
fore, the problem related to the selection of the most
interesting technical bid solution among several poten-
tial ones has not been widely considered in the literature.
In Ling et al. (2013), the authors propose an extended
Analytical Target Cascading-based method to generate
a solution for customer demands which are time and
cost sensitive. Their paper focuses on Make-To-Order
products, which means that the technical bid solutions
relevant to the customer’s demand have been designed
and evaluated before the bidding process. Uncertainty
and confidence issues regarding the future ability of the
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bidder to deliver the technical system are not taken into
account within the selection process. It is, however, a very
important dimension in order to propose competitive
and feasible solutions.

In an Engineer-To-Order (ETO) bidding process, tak-
ing into account uncertainty and confidence is extremely
important as it allows the bidder to anticipate risk related
to the development and the delivery of the technical sys-
tem once the offer is accepted by the customer (e.g. cost
growth and schedule slippage). In fact, in an ETO bid-
ding process, some engineering or design activities are
necessary in order to define relevant solutions that meet
the customer’s requirements (Johnsen and Hvam 2019;
Cannas et al. 2020). However, as there is no guaran-
tee that the bid proposal will be accepted, the bidders,
very often, avoid a detailed design in order to min-
imise potential losses of resources and time, especially
in cases where their bid proposals are not accepted by
the customers (Krömker, Weber, and Wänke 1998; Sylla
et al. 2017). Thus, some parts of the technical systems
and the delivery processes are only partially designed.
Consequently, appropriate knowledge necessary to eval-
uate the technical bid solutions is not fully available. The
values of the evaluation criteria are imprecise and uncer-
tain (Chapman, Ward, and Bennell 2000; Erkoyuncu
et al. 2013). The confidence of the bidder about her/his
ability to deliver the technical system according to these
values can be low (Sylla et al. 2017). This confidence
depends not only on the developmental maturity or
readiness of the technical system and its delivery pro-
cess, but also on the expert feeling of the designer (Sylla
et al. 2017; Mankins 1995). The more a technical sys-
tem and its delivery process are mature and the feel-
ing of the designer is high, the more the confidence
of the bidder to deliver the technical system according
to the values of the evaluation criteria is high. There-
fore, in such ETO situations, in order to choose the
most attractive and feasible solutions among several
potential ones, it is necessary to consider uncertainty,
imprecision and, more importantly, the bidder’s confi-
dence in the values of the evaluation criteria (or decision
criteria).

In this article, the design and evaluation of relevant
technical bid solutions are supposed done. Their perfor-
mances have been evaluated in order to provide decision
criteria (e.g. the cost of the technical bid solutions and
the duration of the delivery processes). In addition, each
solution has been evaluated in terms of the bidder’s con-
fidence. Therefore, the focus is placed on the selection
of the most interesting technical bid solution. A Multi-
Criteria Decision Making (MCDM) support approach is
proposed. It is based on possibility theory and the Pareto
dominance principle. The aim is to help a bidder (the

decision maker) to choose the best solution to propose
to a customer during an ETO bidding process.

The key contributions of the proposed approach are:
(i) a new method which takes into account the bidder’s
confidence in the technical bid solutions to automati-
cally model the uncertain and imprecise values of the
decision criteria by possibility distributions, (ii) four new
generic possibilistic dominance relations which are able
to compare two solutions with respect to a single decision
criterion in any situations where the values of the deci-
sion criteria aremodelled by possibility distributions, and
(iii) a new interactive method which allows the construc-
tion of a the restricted set of themost interesting solutions
(Pareto front) by taking into account the level of certainty
of dominance between solutions.

The remainder of this article is organised as follows. In
Section 2, relevant background on Multi-Criteria Deci-
sion Making under imprecision and uncertainty is pre-
sented in order to describe the detailed contributions
of this article. In Section 3, the proposed MCDM sup-
port approach, along with the supporting algorithms, are
described. In Section 4, the application of the proposed
approach on an example related to the design of a tech-
nical bid solution for a crane is presented and discussed
in order to validate the contributions. Conclusion and
future research are provided in Section 5.

2. Multi-criteria decision making (MCDM) under
imprecision and uncertainty

As mentioned in Section 1, in the literature, several
research works have been reported on the strategic
bidding problem (Kumar, Vinod Kumar, and Edukon-
dalu 2013; Egemen and Mohamed 2008; Takano, Ishii,
and Muraki 2018; Rayati, Goodarzi, and Ranjbar 2019).
However, we did not find any work focusing on the
selection of technical bid solutions (pairs of techni-
cal system/delivery process) in an Engineer-To-Order
(ETO) bidding process. Therefore, in this section,
some MCDM support approaches which allow impre-
cision and uncertainty to be taken into account in
a selection process are reviewed. Various approaches
have been reported in the literature (see the reviews
in Durbach and Stewart 2012; Kahraman, Onar, and
Oztaysi 2015; Broekhuizen et al. 2015; Pelissari et al. 2019;
ZahediKhameneh and Kılıçman 2019). They differ in
two aspects: (i) the uncertainty theory used to deal with
imprecision and uncertainty and, (ii) theMCDMsupport
approach used to compare the potential solutions and to
model the preference (or dominance) relations between
them.

The most common uncertainty theories used to deal
with imprecision and uncertainty in decision making



is probability theory and fuzzy set theory (or possibil-
ity theory) (Mardani, Zavadskas, and Zare 2018; Kaya,
Colak, and Terzi 2019). With the probability theory,
uncertain values of each potential solution Si following
a decision criterion k, is modelled with a probability dis-
tribution function Fki . Two methods are very often used
to compare the potential solutions: (i) Muti-Attributes
Utility Theory (MAUT) (see von Neumann and Mor-
genstern 1953; Grabisch, Kojadinovic, and Meyer 2008;
Wilson and Quigley 2016) and (ii) Stochastic Domi-
nance approach (SD) (see Nowak 2004; D’Avignon and
Vincke 1988; Zhang, Fan, and Liu 2010). InMAUT, based
on the probability distributions of all the criteria, a func-
tion permits to compute the expected utility of each solu-
tion. Then a solution Si is preferred to another one Sj if
and only if the expected utility of Si is greater than that of
Sj. In the SD approach, a pairwise comparison of prob-
ability distributions is first performed in order to com-
pare the potential solutions and to establish preference
(or dominance) relations between them, following each
decision criterion. Then, a method is used to built deter-
ministic/stochastic preference (or dominance) relations
following all the decision criteria.

With the fuzzy set theory, the imprecise and uncer-
tain values of the decision criteria are modelled with
fuzzy numbers (Durbach and Stewart 2012; Longaray
et al. 2019). The possibility theory is known to be a very
good framework to simultaneously deal with impreci-
sion (vagueness) and uncertainty due to a lack of accurate
and complete information (knowledge) (French 1995;
Solaiman and Éloi Bossé 2019; Hose, Mäck, and
Hanss 2019; Denœux, Dubois, and Prade 2020). More-
over, it also permits to easily and effectively take into
account expert’s points of view (thus to take into account
the confidence of the bidders in each technical bid solu-
tion) (Dubois and Prade 2012). Therefore, in this article,
we consider the possibility theory framework to cope
with uncertainty, imprecision and confidence related to
the values of the decision criteria.

According to the reviews presented in Broekhuizen
et al. (2015), Mardani, Zavadskas, and Zare (2018) and
Kaya, Colak, and Terzi (2019), the Analytic Hierarchy
Process (AHP) is the most common MCDM support
approach used with fuzzy set theory. Indeed, in AHP,
the estimation of the weights and the values of the
decision criteria is based on judgments. These judg-
ments have a qualitative nature and may be inconsis-
tent (Durbach and Stewart 2012). Therefore, the fuzzy
set theory is very often used: (i) to model the weight
and/or values of the decision criteria with fuzzy num-
bers, and (ii) to perform the aggregation of these val-
ues into a global score for each potential solution,
which is used to select the most interesting solution.

Some recent applications of AHP with fuzzy set theory
are related to supplier selection (Burney and Ali 2019;
Lu et al. 2019; Liu et al. 2019) and product design
(Chakraborty,Mondal, andMukherjee 2017;Mondragon
et al. 2019; Khamhong, Yingviwatanapong, and Ran-
sikarbum 2019; Haber, Fargnoli, and Sakao 2020). There
is another stream of methods, named outranking meth-
ods (ELECTRE and PROMETHEE), which are used with
fuzzy set theory (Broekhuizen et al. 2015; Kaya, Colak,
and Terzi 2019; Liao, Yang, and Xu 2018). In the outrank-
ingmethods, first, for each decision criterion and for each
pair of potential solutions (Si, Sj), based on the estima-
tion of the two solutions, the preference degree of Si over
Sj is computed. Based on this and the relative importance
of the decision criteria, the overall preference degree of
the solution Si over Sj with respect to all the decision
criteria is computed. This overall preference degree is
exploited in order to select the most interesting solution.
These methods have also been used with fuzzy set theory
for supplier selection (Krishankumar, Ravichandran, and
Saeid 2017; Fei et al. 2019; Ping Wan et al. 2020) and for
product design (Barajas and Agard 2010; Gul et al. 2017).

For both AHP and outranking methods, a formal
definition of the relative importance of the decision cri-
teria is required. However, in the context of a bidding
process, in many situations, the bidders do not know to
which criterion the customer demand is more sensitive
(Ling et al. 2013).Moreover, even in situationswhere they
have this information, most of the time, a non-expert
decision maker cannot explicitly formalise the relative
importance of each decision criterion. He/She may be
able to choose a good solution according to her/his feel-
ing with regard to many criteria but he/she is not able
to provide a formal importance or weight for each crite-
rion. Therefore, the MCDM problem considered in this
article does not involve a formal prioritisation of the rel-
ative importance of the criteria. Moreover, as far as we
know, the approaches found in the literature do not per-
mit taking into account the confidence of the bidder in
the decision process.

The Pareto-dominance approach is another approach
used with fuzzy set theory for decision making under
imprecision and uncertainty (Köppen, Vicente-Garcia,
and Nickolay 2005; Ganguly, Sahoo, and Das 2013;
Asrari, Lotfifard, and Payam 2016; Bahri, Talbi, and Ben
Amor 2018). It is based on the conventional Pareto-
dominance method. First, a pairwise comparison of the
potential solutions is performed with respect to a single
decision criterion in order to establish mono-criterion
dominance relations between them. Second, based on
themono-criterion dominance relations, a pairwise com-
parison of the potential solutions is performed with
respect to all the decision criteria in order to establish



Pareto-dominance relations between them and deter-
mine the restricted set of the most interesting solutions
(Pareto front). In the fuzzy Pareto-dominance approach,
a degree of dominance characterises the dominance
relation between two solutions (Ganguly, Sahoo, and
Das 2013).

This approach is suitable for the decision problem
considered in this article because it does not require a for-
mal definition of the relative importance of the decision
criteria.Moreover, this approach can provide the decision
makerwithmore flexibility in choosing themost interest-
ing solution from a set of non-dominated solutions dur-
ing the offer elaboration process (Asrari, Lotfifard, and
Payam 2016; Pitiot et al. 2019). In Bahri, Ben Amor, and
El-Ghazali (2014); Bahri, Talbi, and Ben Amor (2018),
the authors have proposed an empirical approach where
fuzzy triangular numbers model criteria values. By com-
paring two fuzzy numbers, following the overlapping of
their possibility distributions, three relations of domi-
nance are defined for a single criterion (mono-criterion
dominance relations): total dominance, partial strong-
dominance and partial weak-dominance. These relations
are easy to implement and make it possible to define the
Pareto front. However, they are not generic enough to
be used in situations where the values of the decision
criteria are modelled with fuzzy numbers other than tri-
angular ones. Moreover, as with the other approaches,
these approaches do not allow the bidder’s confidence to
be taken into account in the selection process.

With regard to this literature analysis, in this article, a
new Multi-Criteria Decision Making (MCDM) support
approach is proposed for the selection of the most inter-
esting technical bid solution in an Engineer-To-Order
(ETO) bidding process. It takes into account imprecision,
uncertainty and the bidder’s confidence in the decision
process. The main contributions developed in this article
are:

• Amethod is proposed to model the values of the deci-
sion criteria by possibility distributions. The original-
ity of this method is that the possibility distributions
are automatically built using two confidence indica-
tors OCS (Overall Confidence in System) and OCP
(Overall Confidence in Process) which have been
defined in our previous work (Sylla et al. 2017). They
represent the bidder’s confidence in the technical bid
solutions and gather reliable knowledge about their
feasibility. Therefore, this method allows the confi-
dence to be taken into account in the decision process.

• Four new possibilistic mono-criterion dominance
relations are developed in order to perform the com-
parison of two solutions with respect to a single deci-
sion criterion. As opposed to the dominance relations

proposed in Bahri, Talbi, and Ben Amor (2018),
the dominance relations proposed in this article are
generic and can be used in any situation where the
values of the decision criteria are modelled with fuzzy
numbers or possibility distributions. They are devel-
oped based on the indexes proposed in Dubois and
Prade (1983, 2012) which are powerful theoretical
materials, and their computation is fully automated.

• A method is proposed to help the decision maker to
interactively construct the restricted set of the most
interesting solutions (Pareto front). The Pareto front
is built by taking into account the certainty of dom-
inance between solutions. Only solutions which are
dominated with a level of certainty defined by the
decision maker are removed from the Pareto front.
To the best of our knowledge this is the only method
which allows the decisionmaker to interactively select
the most interesting technical bid solutions following
a required level of certainty of dominance between
solutions.

In the next section, the proposed MCDM approach
along with the supporting algorithms are presented.

3. Possibilistic Pareto-dominance approach for
technical bid selection

The proposed approach is organised in three main steps:
(i) the first step corresponds to the modelling of the val-
ues of the decision criteria by possibility distributions, (ii)
the second step corresponds to the pairwise comparison
of the potential solutions with respect to a single deci-
sion criterion, and (iii) the third step corresponds to the
interactive construction of the restricted set of the most
interesting solutions (Pareto front). In the following sec-
tions, the methods and algorithms that support the three
steps are described.

3.1. Modelling of the values of the decision criteria 
as possibility distributions

The possibility theory together with the confidence indi-
cators offer a good opportunity to model the uncertain
and imprecise values of the decision criteria by possibility
distributions. For a solution Si, the possibility distribu-
tion μk

Si corresponding to the possible values of the deci-
sion criterion k, is characterised with five parameters: a,
b, c, d and e (see Figure 1). Moreover, it can be formally
defined by Equation (1). For every value of the criterion
k for the solution i (noted Ski ), μ

k
Si(S

k
i ) is the possibility of

the value Ski .



Figure 1. Possibility distributionμk
Si(S

k
i ) of a criterion k for a solu-

tion Si .

• Parameters a and d represent respectively the lower
and upper bounds of the Estimation Domain (ED) of
a criterion. This domain is supposed certain. It means
that the value of a criterion for a technical bid solution
is, with certainty, included in this domain.

• Parameters b and c represent respectively the lower
and upper bounds of the interval of the Estimation
Values (EV). The interval EV corresponds to the most
possible values (the values that have their possibil-
ity level at the maximum level). Given the estimation
domain of a criterion, based on experience, an expert
(or a computerised system) estimates the interval of
the most possible values. For instance, a configuration
software can be used to compute these intervals (Sylla
et al. 2017).

μk
Si(S

k
i ) =

⎧⎪⎨
⎪⎩

0 if (Ski < a) ∨ (Ski > d)
e if (a ≤ Ski < b) ∨ (c < Ski ≤ d)
1 if (b ≤ Ski ≤ c)

(1)

e = 1− (α ∗ OCS+ (1− α) ∗ OCP)/9 (2)

• Parameter e represents the possibility of a value being
outside of the interval EV. It depends on the confi-
dence indicators (OCS and OCP) which represent the
bidder’s confidence in the technical bid solution. It is
calculated using the Equation (2). The value ‘9’ repre-
sents the maximum level on the OCS and OCP scales.
Thus the values of e belong to the real interval [0, 1].

The parameterα makes it possible to take into account
the relative importance of each item (technical system
and delivery process) according to the criterion in con-
sideration. In the context of the elaboration of a technical
bid solution in a bidding process, for a criterion that

characterises the two items (e.g. the cost of the techni-
cal bid solution), both the OCS and OCP indicators are
relevant. Therefore, assuming that the two items have the
same importance, α is equal to 0.5. For a criterion, that
characterises only the delivery process (e.g. the duration
of the delivery process), only the OCP indicator is rel-
evant, α is equal to 0. For a criterion, that characterises
only the technical system (e.g. a technical performance of
the technical system), only the OCS indicator is relevant,
α is equal to 1.

For example, let us consider the estimation of the cost
of a technical bid solution for a crane, (which is composed
of the crane technical system and its delivery process).
As this criterion characterises both the technical system
and its delivery process, α is equal to 0.5. In this esti-
mation, it is known with certainty that the Estimation
Domain (ED) of the technical bid solution for the crane
is equal to [60, 100] k$. Based on the available informa-
tion, an expert (or a computerised system) indicates that
it is more possible that the cost of this solution be equal
to [75, 85] k$. This interval [75, 85] k$ represents the
interval of the Estimation values (EV). The system also
provides the values of the confidence indicators OCS and
OCP.

• If OCS = 9 and OCP = 9 (high confidence), then
according to Equation (2), e = 0. The possibility e to
have a value outside of this interval [75, 85] k$ is then
equal to 0. That means that the bidder is, with cer-
tainty, able to develop and deliver the technical system
according to the Estimation Values (EV) [75, 85] k$.
Therefore, it is certain that the cost of this technical
bid solution will be in the interval of the EV [75, 85]
k$.

• If OCS = 7 and OCP = 6, then according to the
Equation (2), e = 0.28. This means that it is not cer-
tain that the bidder is able to develop and deliver
the technical system according to the EV [75, 85]
k$. Therefore, there is a possibility that the cost of
the technical bid solution will be outside the inter-
val of the EV [75, 85] k$. This possibility e is equal
to 0.28.

For a technical bid solution, given the four parameters
(a, b, c and d) and the confidence indicators (OCS and
OCP), this method allows the corresponding possibility
distribution for each decision criterion to be built auto-
matically. Thus it allows imprecision, uncertainty and
confidence in the decision making process to all be taken
into account. In the next section, the possibilistic mono-
criterion dominance relations developed to compare the
potential technical bid solutions with respect to a single
decision criterion are presented.



3.2. Comparison of technical bid solutions with 
respect to a single criterion

In this section, four generic dominance relations are pro-
posed in order to automatically compare two solutions
Si and Sj in any situations where the values of a decision
criterion k are modelled by possibility distributions (μk

Si
for Si and μk

Sj for Sj). They are developed based on the
indexes (POD, PSD,NODandNSD) suggested inDubois
and Prade (2012). In fact, as shown in many works
(Dubois and Prade 2012; Bortolan and Degani 1985;
Iskander 2005; Wang and Kerre 2001), these indexes,
described in Table 1 , provide for each distribution (μk

Si
and μk

Sj) four values in the interval [0,1] corresponding
to their possibility and necessity of being smaller than
the other one. However, they do not indicate globally
which distribution has to be considered as the smaller
(Wang and Kerre 2001). Moreover, they cannot be used
in this form by a decision-maker to compare two solu-
tions and to establish dominance relations between them.
An expert who understands their meaning is required.
But, even for an expert, in a real decision problem, it is
not possible to analyse, for each pair of potential solu-
tions, eight values (four for each solution) in order to
decide the dominance relations between these solutions.
Some relations that enable an automatic comparison of
the potential solutions and establish dominance relations
between them are required.

Therefore, in order to provide a decision maker with
tools that allow her/him to automatically compare two
solutions, we take advantage of these indexes to develop
new generic possibilistic mono-Criterion Dominance
Relations (mono-CDR). In order to do that, an empir-
ical study was performed. All possible configurations
of the possibility distributions μk

Si and μk
Sj were gener-

ated and studied. For each configuration, and for each of
the two solutions Si and Sj, the four dominance indexes
(PODk, PSDk, NODk and NSDk) were computed and
summarised in a vector (noted Dk

Si≺Sj for the solution Si
and Dk

Sj≺Si for the solution Sj, see Equations (3) and (4)).
For details about the computationmethod of the indexes,

Table 1. POD, PSD, NOD and NSD indexes.

Indexes Definition

Possibility of Dominance (POD) the possibility that Ski is
not greater than Skj

Possibility of Strict Dominance (PSD) the possibility that Ski is
smaller than Skj

Necessity of Dominance (NOD) the necessity that Ski is
not greater than Skj

Necessity of Strict Dominance (NSD) the necessity that Ski is
smaller than Skj

consult (Dubois and Prade 2012). Dk
Si≺Sj provides the

possibility and necessity of μk
Si being smaller than μk

Sj
whereas Dk

Sj≺Si provides the possibility and necessity of
μk
Sj being smaller than μk

Si. The two vectors are shown in
Equations (3) and (4).

Dk
Si≺Sj = [PODk

Si≺Sj, PSD
k
Si≺Sj, NOD

k
Si≺Sj, NSD

k
Si≺Sj]

(3)

Dk
Sj≺Si = [PODk

Sj≺Si, PSD
k
Sj≺Si, NOD

k
Sj≺Si, NSD

k
Sj≺Si]

(4)

For each configuration, the values of the two vectors were
thoroughly analysed with regard to the definition of the
four dominance indexes. This analysis made it possible
to define three categories of dominance (certain domi-
nance, strong possibility of dominance, weak possibility
of dominance) and one category of indifference between
two solutions Si and Sj. They are formalisedwith four new
generic possibilistic dominance relations. Considering a
single decision criterion, these relations make it possible:
(i) to indicate if a solution Si dominates (or not) another
one Sj and (ii) if it dominates it, to indicate the necessity
or possibility of dominance (certain, strong and weak).
They are presented as follows.

1. Certain Dominance (denoted ≺CD). This relation
corresponds to situations where the two possibility dis-
tributions (μk

Si for the solution Si andμk
Sj for the solution

Sj) are completely disjoint (see Figure 2). Whatever the
value of each variable, one of them is (with certainty)
smaller than the other one. Therefore, one solution cer-
tainly dominates the other one following the criterion k.
A solution Si certainly dominates a solution Sj, if the value
of NSDk

Si≺Sj (Necessity of Strict Dominance of Si over Sj)
is equal to 1 (see Equation (5) and Figure 2(a)). Then, Si
≺CD Sj if:

Dk
Si≺Sj(4) = 1 (5)

2. Strong Possibility of Dominance (denoted≺SPD).This
relation corresponds to situations where the two possi-
bility distributions (μk

Si for the solution Si and μk
Sj for the

solution Sj) are not disjoint (see Figure 2(b)). However, all
the four dominance indexes of the two vectorsDk

Si≺Sj and
Dk
Sj≺Si indicate that one variable is generally smaller than

the other one. Accordingly, one solution dominates the
other one, not certainly, but with a strong possibility. A
solution Si uncertainly, butwith a strong possibility, dom-
inates a solution Sj, if all the values of the four elements of
the vectorDk

Si≺Sj are respectively greater than those of the
vectorDk

Sj≺Si (see Equation (6) and Figure 2(b)). Then, Si



Figure 2. Examples of the dominance relations.

≺SPD Sj if:

[Dk
Si≺Sj(4) < 1] ∧ [∀ t ∈ {1, . . . , 4};

Dk
Si≺Sj(t) > Dk

Sj≺Si(t)] (6)

3.Weak Possibility of Dominance (denoted≺WPD).The
two possibility distributions (μk

Si for the solution Si and
μk
Sj for the solution Sj) are not disjoint. However, in con-

trast to the ≺SPD relation, all the dominance indexes of
the two vectors Dk

Si≺Sj and Dk
Sj≺Si are not consistent for

the comparison of the two variables Ski and Skj . Most of



the indexes of the two vectors indicate that one variable
is generally smaller than the other one, but some of
them are not consistent with that. Three cases have been
identified:

(a) In the first case, formalised in Equation (7), three
indexes (PODk, NODk and NSDk or PODk, PSDk

and NSDk) indicate that the variable Ski of the solu-
tion Si is generally smaller than the variable Skj of the
solution Sj, and one index (PSDk orNODk) indicates
whether: (i) the variable Skj of the solution Sj is gen-
erally smaller than that of the solution Si or (ii) the
variable Skj of the solution Sj is equal to Ski .

(b) In the second case, formalised in Equations (8)
and (9), two indexes (PODk and NSDk or PSDk and
NODk) indicate that the variable Ski of the solution Si
is generally smaller than the variable Skj of the solu-
tion Sj and the two other indexes (PSDk and NODk

or PODk and NSDk) indicate that the variable Ski of
the solution Si is equal to that of the solution Sj.

(c) In the third case, formalised in Equation (9), one of
the indexes PSDk or NODk indicates that the vari-
able Ski of the solution Si is generally smaller than the
variable Skj of the solution Sj and the other indexes
(PODk, NSDk andNODk or PODk, NSDk andPSDk)
indicate that the variable Ski of the solution Si is equal
to Skj .

Therefore, a solution Si uncertainly dominates, but
with a weak possibility, a solution Sj (denoted Si ≺WPD
Sj), if it satisfies one of the four Equations (7), (8), (9)
or (10) below.

[∃ t ∈ {1, . . . , 4} : Dk
Si≺Sj(t)

≤ Dk
Sj≺Si(t)] ∧ [∀ l 
= t : Dk

Si≺Sj(l) > Dk
Sj≺Si(l)] (7)

[∀ t ∈ {1, 4} : Dk
Si≺Sj(t)

= Dk
Sj≺Si(t)] ∧ [∀ l 
= t : Dk

Si≺Sj(l) > Dk
Sj≺Si(l)] (8)

[∀ t ∈ {1, 4} : Dk
Si≺Sj(t)

> Dk
Sj≺Si(t)] ∧ [∀ l 
= t : Dk

Si≺Sj(l) = Dk
Sj≺Si(l)] (9)

[∃ t ∈ {1, . . . , 4} : Dk
Si≺Sj(t) > Dk

Sj≺Si(t)]

∧ [∀ l 
= t : Dk
Si≺Sj(l) = Dk

Sj≺Si(l)] (10)

The example shown in Figure 2(c) corresponds to the first
case (Equation (7)). It can be seen through this Figure 2
(c) that the two distributions μk

Si and μk
Sj have almost

the same positions as in Figure 2(b). The only differ-
ence is that, in Figure 2(c), the possibility to have a value
of Ski that is greater than Skj has been increased. That

is why the strength of the dominance of Si over Sj has
been decreased from ≺SPD (in Figure 2(b)) to ≺WPD (in
Figure 2(c)).

4. Indifference (denoted IND). This relation corre-
sponds to situations where the two possibility distribu-
tions μk

Si and μk
Sj strongly overlap (see Figure 2(d)). The

dominance indexes of the two vectors Dk
Si≺Sj and Dk

Sj≺Si
are not consistent for the comparison of the two vari-
ables Ski and Skj . In addition, in contrast to the previous
dominance relations, none of the two variables exceeds
the other one in number of indexes indicating that it is
smaller than the other one. Two cases have been identi-
fied:

(a) In the first case, formalised in Equation (11), the four
dominance indexes (PODk, PSDk, NODk andNSDk)
indicate that the two variables Ski and Skj are equal.

(b) In the second case, formalised in Equations (12)
and (13), two dominance indexes (PODk andNSDk)
indicate that the two variables Ski and Skj are equal
and for the two others, each variable has one dom-
inance index (PSDk or NODk) that indicates that it
is smaller than the other one. The example shown in
Figure 2(d) corresponds to this case.

Therefore, two technical bid solutions Si and Sj are
indifferent (denoted Si IND Sj) if one of the three Equa-
tions (11), (12) and (13) is true:

[∀ t ∈ {1, . . . , 4} : Dk
Si≺Sj(t) = Dk

Sj≺Si(t)] (11)

[∀ t ∈ {1, 4} : Dk
Si≺Sj(t) = Dk

Sj≺Si(t)]

∧[Dk
Si≺Sj(2) > Dk

Sj≺Si(2)] ∧ [Dk
Si≺Sj(3) < Dk

Sj≺Si(3)]
(12)

[∀ t ∈ {1, 4} : Dk
Si≺Sj(t) = Dk

Sj≺Si(t)]

∧ [Dk
Si≺Sj(2) < Dk

Sj≺Si(2)] ∧ [Dk
Si≺Sj(3) > Dk

Sj≺Si(3)]
(13)

In the proposed approach, these relations CD, SPD,
WPD and IND are used to compare two solutions Si
and Sj with respect to a single criterion. The Equa-
tions (5) to (13) present the conditions to be satisfied for
a solution Si: (i) to dominate another solution Sj (Equa-
tions (5), (6), (7), (8), (9) and (10)), or (ii) to be indifferent
to a solution Sj (Equations (11), (12) and (13)). In the fol-
lowing parts, themono-criterion dominance relation of a
solution Si over a solution Sj is noted mono-CDR(Si, Sj).
Comparing two solutions Si and Sj, if none of the four
mono-CDR is applicable (which means that the solution
Si is dominated by the solution Sj), themono-CDR(Si, Sj)
takes the value ‘NA’ (Not Applicable) and it is noted by Si



⊀ Sj. In the next section, the construction method of the
Pareto front is developed.

3.3. Construction of the Pareto front

In this section, the method which allows the comparison
of technical bid solutions with respect to all the decision
criteria and the determining of the set of non-dominated
solutions (Pareto front) is described.

In the context of the bidding process, when selecting
the most interesting technical bid solutions, in situations
where the values of the decision criteria are imprecise
and uncertain, it is necessary to take into account the
point of view of the decision maker about the level of
certainty or possibility required on the dominance of
one solution over another one. Therefore, the concept
of Required Level of Dominance for a decision criterion
(RLD) is introduced to capture this point of view and
take it into account in the decision making process. For
a decision criterion k, the required level of dominance
is noted RLDk. In this article, we consider four possible
values for RLDk. These values correspond to the four pos-
sibilistic mono-CDR (CD, SPD, WPD and IND). For n
decision criteria (n>1), all possible combinations of the
four values are allowed, except that combining only the
value IND. Indeed, in that case, none of the two solutions
Pareto-dominates the other one.

Accordingly, let us consider two technical bid solu-
tions Si and Sj to be compared following n decision
criteria. Given a RLDk for each decision criterion k, a
technical bid solution Si Pareto-dominates another one Sj
(denoted Si≺Sj), if and only if, for each decision criterion
k, the possibilisticmono-criterion dominance of the solu-
tion Si over Sj (mono-CDRk(Si, Sj)) is at least stronger
(noted by ≥ ) than the required level of dominance on
this decision criterion (RLDk). Themono-CDR value CD
is stronger than SPD, which is stronger thanWPD, which
is also stronger than IND which in turn is stronger than
NA (CD > SPD > WPD > IND > NA). Equation (14)
represents the Pareto-dominance relation of a solution
Si over Sj with respect to n decision criteria. Moreover,
a solution belongs to the Pareto Front (PF) if there is no
other solution that Pareto-dominates it. Let S be the set of
m potential technical bid solutions. Let PF be the Pareto
front. PF is defined by Equation (15).

Si ≺ Sj if ∀ k ∈ {1, . . . , n},
mono− CDRk(Si, Sj) ≥ RLDk (14)

PF = {Sl, Sl ∈ S,� St/St ≺ Sl} (15)

Therefore, by performing a pairwise comparison of the
potential solutions using Equation (14), the Pareto front
is built based on Equation (15). Thus, this method

enables the decisionmaker to interactively determine the
set PF (which is the set of the most interesting technical
bid solutions) according to the required level of domi-
nance on each decision criterion. In the next Section 3.4,
the algorithms that support the proposed approach are
described.

3.4. Description of the algorithms to support the 
proposed approach

The first algorithm (Algorithm 1) computes the possi-
bilistic mono-criterion dominance of solution Si over
solution Sj. It corresponds to the function mono-
CDRk(Si, Sj).

The function mono-CDRk(Si, Sj) has two arguments
Si and Sj. First the vectors Dk

Si≺Sj and Dk
Sj≺Si are com-

puted. Then, using Equations (5) to (13) described in
Section 3.2, the mono-CDR value is selected among Cer-
tain Dominance (CD), Strong Possibility of Dominance
(SPD), Weak Possibility of Dominance (WPD), Indiffer-
ence (IND) and Not Applicable (NA) when Si is domi-
nated by Sj.

The second algorithm (Algorithm 2) defines the func-
tion Pareto-front(S, {RLD1,RLD2, . . . ,RLDn}) which
returns the set of non-dominated solutions (i.e. the
Pareto-front). This function has several arguments: (i)
S, the set of the potential technical bid solutions, (ii)
{RLD1,RLD2, . . . ,RLDn}, the set of n required levels of
dominance corresponding to the n decision criteria. The
function ‘Pareto-front’ realises a pairwise comparison of
the potential solutions of the set S. Each solution is com-
pared to each of the others. For each pair (Si, Sj) of
solutions (with i 
= j) and for each decision criterion k
(with k ∈ {1, 2, . . . , n}), the function mono-CDRk(Si, Sj)
is called. The result is the possibilistic mono-criterion
dominance of solution Si over Sj with respect to the
decision criterion k. If for any decision criterion k, the
mono-CDRk(Si, Sj) is stronger than the corresponding
RLDk, then solution Si Pareto-dominates solution Sj, and
consequently Sj is removed from the set PF. At the end,
the resulting PF is returned by the function Pareto-front.

4. Illustrative application of the proposed
approach

This application is inspired by a real industrial case of
the design of a technical bid solution for a crane in a
French company. The company has to select one solu-
tion from a panel of twelve potential ones designed and
estimated using a configuration software. For the sake of
simplicity and clarity, we consider only two decision cri-
teria: (i) the cost of the technical bid solution (cost) which



Algorithm 1Mono−CDRk(Si, Sj)
ComputeDk

Si≺Sj # Dubois and Prade’s dominance indexes for Si
ComputeDk

Sj≺Si # Dubois and Prade’s dominance indexes for Sj
if (equation 13 is TRUE) then
return CD # Si certainly dominates Sj (Si ≺CD Sj)

else if (equation 14 is TRUE)
return SPD # Si dominates Sj, with a strong possibility (Si ≺SPD Sj)

else if ((equation 15 is TRUE) ∨ (equation 16 is TRUE) ∨ (equation 17 is TRUE) ∨ (equation 18 is TRUE))
returnWPD # Si dominates Sj, with a weak possibility (Si ≺WPD Sj)

else if ((equation 19 is TRUE) ∨ (equation 20 is TRUE) ∨ (equation 21 is TRUE))
return IND # Si is indifferent to Sj (Si IND Sj)

else
return NA # Si is dominated by Sj (Sj ≺ Si)

end if

Algorithm 2 Pareto-front(S,
{
RLD1,RLD2, . . . ,RLDn})

PF← S # The initial Pareto front includes all the solutions
for Sj ∈ S do
for Si ∈ S / Si 
= Sj do

NbDom← 0 # Number of decision criteria by which Si dominates Sj
for k ∈ {1, ..., n} do

ifMono-CDRk(Si,Sj) ≥ RLDk

NbDom← NbDom+ 1 # NbDom is increased by 1
end if

end for
if NbDom = n then
PF← PF − {Sj} # Sj is removed from PF because it is dominated

end if
end for

end for
return PF # The most interesting solutions with regard to the RLDs

gathers both the technical system cost and the delivery
process cost, and (ii) the duration of the delivery pro-
cess (duration). The details are provided in the following
sub-section.

4.1. Description of the example
As shown in Figure 3, each solution is compo sed of  
two interconnected parts. The first part is the technical

systemwhich is composed of four sub-systems: an engine
(EN), a jib (JI), a tower (TO) and a basket (BA). The jib
sub-system is integrated with the tower and the engine
sub-systems whereas the basket sub-system is integrated
with the tower sub-system. For each sub-system, there are
three possible solutions (for instance: EN1, EN2 and EN3
for the engine sub-system). Each sub-system i is charac-
terised with a costi (see Table 4). For the sake of clarity,
we do not consider the costs of the integrations between

Figure 3. A crane technical bid solution.



Table 2. Integration readiness Level IRLij/Confidence In Sub-systems i and j CISij.

IRLij/CISij EN1 EN2 EN3 JI1 JI2 JI3 TO1 TO2 TO3 BA1 BA2 BA3

EN1 9/5 – – 5/4 – – 0/0 – – 0/0 – 0/0
EN2 – 9/5 – 6/5 5/3 – 0/0 0/0 – 0/0 0/0 0/0
EN3 – – 9/5 – – 8/5 0/0 0/0 0/0 0/0 0/0 0/0
JI1 5/4 6/5 9/5 – – 6/4 – – 0/0 – 0/0
JI2 – 5/3 – – 9/5 – – 5/3 6/3 – 0/0 0/0
JI3 – – 8/5 – – 9/5 7/5 8/5 6/5 – 0/0 0/0
TO1 0/0 0/0 0/0 6/4 7/5 9/5 – – 8/4 – 5/4
TO2 – 0/0 0/0 – 5/3 8/5 – 9/5 – – 7/4 0/0
TO3 – 0/0 0/0 – 6/3 6/5 – – 9/5 – 5/4 6/5
BA1 0/0 0/0 0/0 0/0 – 0/0 8/4 – – 9/5 – –
BA2 – 0/0 0/0 – 0/0 0/0 – 7/4 5/4 – 9/5 –
BA3 0/0 0/0 0/0 0/0 0/0 0/0 5/4 – 6/5 – – 9/5

Table 3. AFLl and CIPl of the crane delivery process activities.

Finalising design Sourcing Producing Delivering

Cranes AFLl CIPl AFLl CIPl AFLl CIPl AFLl CIPl

CR1 3 4 4 4 3 4 4 4
CR2 3 3 3 3 3 3 4 4
CR3 4 4 4 4 4 4 4 4
CR4 4 5 4 5 4 5 4 5
CR5 3 4 4 4 3 4 4 4
CR6 4 5 4 5 4 5 4 5
CR7 3 3 3 4 3 3 4 4
CR8 4 4 4 5 4 5 4 4
CR9 3 4 3 4 3 4 4 4
CR10 3 3 3 4 3 3 4 4
CR11 3 4 4 5 3 4 4 4
CR12 3 3 4 4 3 3 4 4

solutions. Therefore, the cost of a technical system is the
sumof the costs of its sub-systems (see Table 5). The com-
position of technical systems which satisfy the customer’s
requirements is presented in Table 5.

The second part is the delivery process of the crane
technical system. It is composed of four main activi-
ties: finalising design (FD), sourcing (SO), producing
(PR) and delivering (DE). Each activity l is characterised
with a costl and a durationl. For each activity, a same
resource is used independently to the technical systems.
For instance, the same designer performs the design of
the twelve technical systems. Therefore, the duration of
an activity depends solely on the technical systems. The
costs of the FD and PR activities are computed as their
duration multiplied by 2 (costl = durationl*2). Whereas
the costs of the SOandDEactivities are computed as their
duration multiplied by 1.5 (costl = durationl*1.5). The
duration and cost of the activities are presented inTable 6.
The cost and the duration of a delivery process are com-
puted as the sumof the costs and durations of its activities
(see Table 7). The cost of a crane technical bid solution is
computed as the sum of the cost of the technical system
and the cost of its delivery process (see Table 8).

Moreover, each technical bid solution is characterised
with the confidence indicators OCS (Overall Confidence
in System) and OCP (Overall Confidence in Process)
which represent the bidder’s confidence in this solution.

Both OCS and OCP indicators are based on two kinds
of metrics: (i) factual ones which relate on the readi-
ness of the technical system and the feasibility of the
delivery process, and (ii) subjective ones which are the
expert feeling of the designer (Sylla et al. 2017; Sauser
et al. 2008).

Therefore, in order to compute the OCS of a tech-
nical system, each sub-system i is characterised with a
readiness level (TRLi) and a designer feeling (CISi). The
TRLi and CISi indicators are measured on a nine-level
scale and a five-level scale, respectively (see Table 4). Each
integration between two sub-systems i and j is also char-
acterised with a readiness level (IRLij) and a designer
feeling CISij. Like the TRLi and CISj, the IRLij and CISij
indicators are measured on a nine-level scale and a five-
level scale (see Table 2). In Table 2, the IRLij/CISij of
the integration of two sub-systems i and j are presented
once these subsystems are present in the same system. If
there is no integration between two subsystems i and j
which are present in the same system, their IRLij/CISij
are equal to 0. Furthermore, according to the method
presented in Sylla et al. (2017) and Sauser et al. (2008),
the IRLii/CISii of a subsystem i with itself is equal to
the highest values (9/5). The readiness level (SRL), the
designer feeling (CIS) and the OCS of a technical sys-
tem are computed using the methods presented in Sylla
et al. (2017) and Sauser et al. (2008). The SRL and CIS



Table 4. The sub-system solutions.

Costi (K$) TRLi CISj

Sub-systems a b c d [1–9] [1–5]

EN1 15 16 18 20 5 4
EN2 18 19 20 21 7 5
EN3 22 23 23,5 24 8 5
JI1 15 16 17 20 7 5
JI2 15 17 18 19 6 3
JI3 16 16,5 17,5 18 8 5
TO1 25 27 28 30 8 5
TO2 18 19 25 28 8 5
TO3 32 35 36 37 7 5
BA1 9 10 12 14 8 4
BA2 12 13 14 15 8 4
BA3 9 9,5 10 11 7 5

Table 5. The crane technical systems.

Composition Cost (K$) SRL CIS OCS

Cranes EN JI TO BA a b c d [1–5] [1–5] [1–9]

CR1 EN1 JI1 TO1 BA1 64 69 75 84 3 4 6
CR2 EN2 JI2 TO2 BA2 63 68 77 83 3 3 5
CR3 EN2 JI1 TO1 BA1 67 72 77 85 3 4 6
CR4 EN3 JI3 TO1 BA1 72 76,5 81 86 4 5 8
CR5 EN3 JI3 TO3 BA3 79 84 87 90 3 5 7
CR6 EN1 JI1 TO1 BA3 64 68 75 81 3 4 6
CR7 EN2 JI2 TO3 BA2 77 84 88 92 3 3 5
CR8 EN3 JI3 TO2 BA2 68 71,5 80 85 4 5 8
CR9 EN2 JI1 TO1 BA3 67 71,5 75 82 3 5 8
CR10 EN2 JI2 TO3 BA3 74 80,5 84 88 3 3 5
CR11 EN3 JI3 TO3 BA2 82 87,5 91 94 3 5 7
CR12 EN3 JI3 TO1 BA3 72 76 79 83 3 5 7

indicators are measured on a five-level scale. The OCS
indicator is measured on a nine-level scale. They are
presented in Table 5.

On the other side, in order to compute the OCP of
the delivery process, each activity l is characterised with
a feasibility level (AFLl) and a designer feeling (CIPl).
The AFLl and CIPl are measured on a five-level scale (see
Table 3). The feasibility level (PFL), the designer feeling
(CIP) and the OCP of a delivery process are computed
using the methods presented in Sylla et al. (2017). The
PFL andCIP indicators aremeasured on a five-level scale.
The OCP indicator is measured on a nine-level scale.
They are presented in Table 7. For more detail about
the OCS and OCP indicators, consult (Sylla et al. 2017;
Sauser et al. 2008).

The proposed Multi-Criteria Decision (MCDM) sup-
port approach is used to provide the decision maker
with a restricted set of the most interesting technical
bid solutions while taking into account: (i) uncertainty,
imprecision and, more importantly, the bidder’s confi-
dence in the values of the decision criteria, and (ii) the
required level of certainty on the dominance of one solu-
tion Si over another one Sj. Thus, from this Pareto front,
the decision maker has the flexibility to choose the most

interesting solution to propose to a customer during the
offer elaboration process. The application is performed
using the Matlab software (MATLAB R2018b). In the
following section, the main results are presented and
discussed.

4.2. Results and discussion of the experiments

In this section, first, for each decision criterion, the dom-
inance relations between the potential solutions are com-
puted and presented. Then, three different Pareto fronts
are interactively built according to particular combina-
tions of RLDs imputed by the decision maker. Finally,
two different ways to exploit the Pareto front are pre-
sented.

4.2.1. The dominance relations between the potential 
solutions
Before computing the possibilistic mono-criterion dom-
inance relations (mono-CDR), the possibility distribu-
tions which represent the evaluation of the potential 
solutions are computed using the method presented in 
Section 3.1. Then, these possibility distributions are used
to compute the two vectors Dk

Si≺Sj and Dk
Sj≺Si for each



Table 6. Duration of the crane delivery process activities.

(a) Duration of the crane delivery process activities

Finalising design (Weeks) Sourcing (Weeks) Producing (Weeks) Delivering (Weeks)

Cranes a b c d a b c d a b c d a b c d

CR1 18 19 22,5 26 10 10,3 11 12 26 26,5 30 34 9 9,2 10,5 11
CR2 15 15,3 16,5 18 7 7,2 7,5 8 23 23,3 24 25,5 7 7,2 8 8,5
CR3 16 17 18 19 8 8,5 9 9,5 24 24,5 25,8 26 9 10 10,2 10,5
CR4 14,5 15 15,3 15,5 7,5 8 8,2 8,4 24 24,5 24,8 25,2 9 9,5 9,7 9,9
CR5 19 19,5 20 21 10 10,3 10,5 11 25,5 26 26,5 27 9,5 10,2 10,5 11
CR6 20,5 21 22,3 24 10,5 11 11,2 11,5 26,5 27 27,3 28 10,5 11 11,2 11,5
CR7 15 15,3 16 16,3 7,5 7,7 8 8,2 23,5 23,8 25 25,2 7 7,2 8 8,3
CR8 13 15 17 18 7 8 8,5 9 22 23 24 27 7 8 8,5 9
CR9 19,5 19,8 20 22 9,5 9,7 10,2 10,5 23 23,2 25 26 8 8,3 8,8 9
CR10 19 19,2 20,4 21,5 10 10,3 10,5 10,8 25 26 26,5 28,5 10 10,2 10,6 11,2
CR11 13,5 14 15 17 7 7,5 7,8 10 22,5 23 24 25,5 7 7,5 7,8 8,5
CR12 20 21 22 24 10 10,3 10,5 11 26 27 30 35 10 10,2 10,5 11

(b) Cost of the delivery process activities

Finalising design (K$) Sourcing (K$) Producing (K$) Delivering (K$)

Cranes a b c d a b c d a b c d a b c d

CR1 36 38 45 52 15 15,45 16,5 18 52 53 60 68 13,5 13,8 15,75 16,5
CR2 30 30,6 33 36 10,5 10,8 11,25 12 46 46,6 48 51 10,5 10,8 12 12,75
CR3 32 34 36 38 12 12,75 13,5 14,25 48 49 51,6 52 13,5 15 15,3 15,75
CR4 29 30 30,6 31 11,25 12 12,3 12,6 48 49 49,6 50,4 13,5 14,25 14,55 14,85
CR5 38 39 40 42 15 15,45 15,75 16,5 51 52 53 54 14,25 15,3 15,75 16,5
CR6 41 42 44,6 48 15,75 16,5 16,8 17,25 53 54 54,6 56 15,75 16,5 16,8 17,25
CR7 30 30,6 32 32,6 10,5 11,55 12 12,3 47 47,6 50 50,4 10,5 10,8 12 12,45
CR8 26 30 34 36 10,5 12 12,75 13,5 44 46 48 54 10,5 12 12,75 13,5
CR9 39 39,6 40 44 14,25 14,55 15,3 15,75 46 46,4 50 52 12 12,45 13,2 13,5
CR10 38 38,4 40,8 43 15 15,45 15,75 16,2 50 52 53 57 15 15,3 15,9 16,8
CR11 27 28 30 34 10,5 11,25 11,7 15 45 46 48 51 10,5 11,25 11,7 12,75
CR12 40 42 44 48 15 15,45 15,75 16,5 52 54 60 70 15 15,3 15,75 16,5



Table 7. Duration, cost, PFL and CIP of the crane delivery processes.

Duration (Weeks) Cost(K$) PFL CIP OCP

Cranes a b c d a b c d [1–5] [1–5] [1–9]

CR1 63 65 74 83 116,5 120,25 137,25 154,5 3 4 6
CR2 52 53 56 60 97 98,8 104,25 111,75 3 3 5
CR3 57 60 63 65 105,5 110,75 116,4 120 4 4 7
CR4 55 57 58 59 101,75 105,25 107,05 108,85 4 5 8
CR5 64 66 67,5 70 118,25 121,75 124,5 129 3 4 6
CR6 68 70 72 75 121 129 132,8 138,5 4 5 8
CR7 53 54 57 58 98 100,55 106 107,75 3 3 5
CR8 49 54 58 63 91 100 107,5 117 4 4 7
CR9 60 61 64 67,5 111,25 113 118,5 125,25 3 4 6
CR10 64 65,7 68 72 118 121,15 125,45 133 3 3 5
CR11 50 52 54,6 61 93 96,5 101,4 112,75 3 4 6
CR12 66 68,5 73 81 122 126,75 135,5 151 3 3 5

Table 8. The twelve technical bid solutions (S).

Duration(Weeks) Cost(K$) OCS OCP

S a b c d a b c d [1–9] [1–9]

S1 63 65 74 83 180,5 189,25 212,25 238,5 6 6
S2 52 53 56 60 160 166,8 181,25 193,75 5 5
S3 57 60 63 65 172,5 182,75 193,4 205 6 7
S4 55 57 58 59 173,75 181,75 188,05 194,85 8 8
S5 64 66 67,5 70 197,25 205,75 211,5 219 7 6
S6 68 70 72 75 185 197 207,8 219,5 6 8
S7 53 54 57 58 175 184,55 194 199,75 5 5
S8 49 54 58 63 159 171,5 187,5 202 8 7
S9 60 61 64 67,5 178,25 184,5 193,5 207,5 8 6
S10 64 65,7 68 72 194 201,65 209,45 221 5 5
S11 50 52 54,6 61 175 184 192,4 206,75 7 6
S12 66 68,5 73 81 194 202,75 214,5 234 7 5

pair (Si, Sj) and for each criterion k. As some examples
of possibility distributions are presented in Section 3.2
(Figure 2), we have not presented this result in this
section.

The vectors (Dk
Si≺Sj and Dk

Sj≺Si) are further exploited
to compute the mono-CDR between the potential solu-
tions using Algorithm 2, presented in Section 3.4. The
result is shown in Figure 4. The matrix at the upper
level represents the possibilistic dominance of solu-
tion Si over solution Sj with respect to the cost. The
matrix at the lower level represents the possibilistic dom-
inance of solution Si over solution Sj with respect to
the duration. For instance, solution S11 certainly dom-
inates (CD) solution S1 with respect to the duration.
Then, mono-CDRDuration(S11, S1) is equal to CD. How-
ever, with respect to the cost, S11 dominates S1, not cer-
tainly, but with a weak possibility (WPD). Then, mono-
CDRCost(S11, S1) is equal to WPD. Consequently, S1 is
dominated by S11 with respect to the two decision cri-
teria. That is why mono-CDRDuration(S1, S11) and mono-
CDRCost(S1, S11) are equal toNA (NotApplicable). As the
dominance of a solution over itself is not relevant, it is not
shown in Figure 4.

In the next section, these two matrices are used to
construct the Pareto-front.

4.2.2. The Pareto-dominance and the Pareto-front 
The twelve potential solutions are represented in Figure 5. 
Each solution is represented by two lines. The horizon-
tal line represents the duration of the solution whereas 
the vertical line represents the cost of the solution. For 
each line, the solid part represents the interval of the esti-
mation values (EV) which are the most possible values 
(possibility = 1). The dotted parts of the line (at the two 
sides of the solid line) represent the values that are outside 
the interval EV. At both sides, the possibility of these val-
ues is equal  to the par ame te r e which is computed using 
Equation (2), and represented on one side of the dotted 
lines in Fig ure 5.

Algorithm 2 is used to determine the set of non-
dominated solutions (Pareto front). At this stage, the per-
son in charge of the elaboration of the technical bid solu-
tion (bidder or decision maker) provides the Required
Level of Dominance (RLDk) for each decision criterion
k. As two decision criteria are considered, fifteen combi-
nations of RLDk are allowed (see the left part of Figure 6).
However, we consider only three combinations in this
example. They are shown in the right part of Figure 6 and
correspond to the three scenarios which are presented
and discussed in the following (CD-CD, SPD-SPD, and
WPD-WPD).



Figure 4. The possibilistic mono-criterion dominance relations.

Figure 5. The twelve potential technical bid solutions.



Figure 6. Allowed and studied combinations of RLD.

1. Combination 1 (CD-CD). In this scenario, the deci-
sion maker has defined the Certain Dominance relation
(CD) as the RLD for each decision criterion (cost and
duration). This RLD combination is the less discrimi-
nating one. In order that a solution Si Pareto-dominates
another solution Sj, for each decision criterion, the dom-
inance relation of Si over Sj must be certain CD. From
Figure 4, it can be seen that the dominated solutions with
respect to this RLD combination are S5, S10 and S12. They
are shown in red colour in Figure 7.

With this RLDs combination (CD-CD), the obtained
non-dominated solutions (S1, S2, S3, S4, S6, S7, S8, S9,
and S11) are, with certainty, the most interesting ones.
However, the number of potential solutions is still too
large (nine solutions). In order to reduce the number of
solutions in the Pareto-front, the decision maker has to
reduce the RLD on the decision criteria.

2. Combination 2 (SPD-SPD). In this scenario, the
decision maker has reduced the RLD combination to
SPD-SPD. This second combination is more discrimi-
nating than the first one. Indeed, in order that a solu-
tion Si Pareto-dominates another solution Sj, for each
decision criterion, the dominance relation of Si over Sj
must be certain (CD) or uncertain but with a strong pos-
sibility (SPD). Consequently, four additional solutions
(S1, S3, S6 and S9) are dominated with respect to this
RLD combination. They are shown in cyan colour in
Figure 7.

Compared to the first scenario, in this second scenario,
the number of non-dominated solutions has decreased.
Even if the resulting set of non-dominated solutions is not
certain with the defined RLDs, the decisionmaker knows
that it is most plausible that the five non-dominated solu-
tions (S2, S4, S7, S8 and S11) are the five most interesting
ones. The decision maker can further reduce the RLD
on the decision criteria in order to discriminate more
solutions.

3. Combination 3 (WPD-WPD). The decision maker
has further reduced the RLDs. At present, the RLD com-
bination is WPD-WPD which is more discriminating

than the previous ones. In order that a solution Si
Pareto-dominates another solution Sj, for each decision
criterion, the dominance of Si over Sj must be either:
certain (CD) or uncertain but with a strong possibility
(SPD) or uncertain with a weak possibility (WPD). As
shown in Figure 4, two additional solutions (S4 and S7)
are dominated with respect to this RLD combination.
They are shown in blue colour in Figure 7. Only three
solutions S2, S8 and S11, shown in green colour, are non-
dominated. Even if it is not certain that these solutions
S2, S8 and S11 are the best ones, with this RLD combi-
nation, the decision maker knows that it is most plau-
sible that these three solutions are the most interesting
ones.

4.2.3. Exploiting the Pareto front for decision making 
In situations where only one solution remain in the 
Pareto front, the decision maker just selects this solu-
tion for the commercial offer. However, most of the time, 
more than one solution remain in the Pareto front. In this 
example, with the last combination (WPD-WPD), three 
potential solutions S2, S8 and S11 remain in the Pareto 
front. They are indifferent to each other with respect to 
all the decision criteria. Therefore, in order to choose one 
solution, it is necessary to give more importance or pri-
ority to one decision criterion. Two different approaches 
can be adopted depending on the availability of addi-
tional information about the prioritisation of the decision 
criteria.

In some cases there is no additional information about
the prioritisation of the decision criteria or the deci-
sion maker cannot explicitly formalise it. In such a case,
the decision maker selects the most interesting solution
according to her/his preferences regarding the decision
criteria even if she/he is not able to explicitly provide
these preferences. In Figure 4, one can see that solu-
tion S11 dominates solution S2 with a weak possibility
with respect to the duration (S11 ≺duration

WPD S2). Solu-
tion S2 dominates solution S11 with a weak possibility
with respect to the cost (S2 ≺cost

WPD S11). Solution S8, in



Figure 7. Pareto front – Dominated solutions following each RLD combination.

turn, dominates solution S11 with a weak possibility with
respect to the cost (S8 ≺cost

WPDS11). solution S11 dominates
solution S8 with a weak possibility with respect to the
duration (S11 ≺duration

WPD S8). Finally, solution S2 dominates
solution S8 with aweak possibility with respect to the cost
(S2 ≺cost

WPD S8). The two solutions S2 and S8 are indiffer-
ent to each other with respect to duration (S2 INDduration

S8). If the decision maker has a strong preference for
the criterion Cost, she/he would choose the technical bid
solution S2, as it dominates the other solutions with a
weak possibility with respect to the cost.

In the contrary, in some other cases, some additional
information about the prioritisation of the decision cri-
teria are available and the decision maker is able to for-
malise it as a weight (or a relative importance) for each
decision criterion. In such a case, some well-known out-
ranking methods as PROMETHEE or ELECTRE (Renzi,
Leali, and Di Angelo 2017; Behzadian et al. 2010) can be
used to rank the solutions remaining in the Pareto front.
As this article focuses on situations where the decision
maker does not have additional information about the
prioritisation of the decision criteria, for seek of clarity,
this case is not developed here. It should be considered
for future research. First ideas have been reported in Sylla
et al. (2019a).

One can observe that the Required Levels of Dom-
inance (RLDs) are very useful in the decision mak-
ing process. By setting them at the higher level (CD-
CD), they enables the bidder to make the choice of the

most interesting technical bid solution from a Pareto
front which is certainly the set of the best solutions.
Indeed, as the dominance relations are required to be
certain, any solution that remains in the Pareto front is
certainly better than any other solution that has been
removed. They also allow the bidder, by reducing the
RLDs (WPD-WPD for instance), to make the choice of
the most interesting solution from a smaller Pareto front
while having the knowledge about the level of certainty
or possibility that this solution is the most interesting
one.

It is important to mention that, by modelling all
the possible values that may occur for a decision cri-
terion with their possibility level, this approach allows
to take into account the changeability of the values
of the decision criteria in the decision process. There-
fore, the proposed approach provides a robust Pareto
front with regards to changes in parameters (inputs) val-
ues.

5. Conclusion and further research

In this article, we have studied the elaboration of a techni-
cal bid solution in an Engineer-To-Order (ETO) bidding
process. In such a context, when selecting the most inter-
esting technical bid solution to propose to a customer, a
bidder faces the problem of the feasibility of the poten-
tial solutions. In fact, the lack of relevant information
generates uncertainty and risks regarding her/his future



ability to provide the proposed solution once the offer is
accepted by the customer.

Therefore, in this article, a Multi-Criteria Decision
Making (MCDM) support approach has been proposed
in order to help bidders to select the most attractive
and feasible solution during an ETO bidding process. An
attractive and feasible solution has good values for the
evaluation criteria and low uncertainty (or high confi-
dence) about the future ability of the bidder to provide the
solution according to these values. The proposedMCDM
support approach is based on the Pareto-dominance
principle and possibility theory. It brings together three
main stages supported by new methods and algorithms
which are the key contributions of this article. The first
stage is the modelling of the values of the decision cri-
teria. It is supported by a new method which uses the
bidder’s confidence in the technical bid solutions to auto-
matically model the uncertain and imprecise values of
the decision criteria by possibility distributions. Thus,
it enables this confidence in the selection process to be
taken into account. The second stage is the pairwise
comparison of the potential solutions with respect to a
single decision criterion. Four new generic possibilis-
tic mono-criterion dominance relations (Certain Dom-
inance (CD), Strong Possibility of Dominance (SPD),
Weak Possibility of Dominance (WPD) and Indifference
(IND)) and an algorithm have been developed. They
make it possible to compute the relevant mono-criterion
dominance relation between two solutions and to know
the level of certainty of the dominance. The third stage is
the interactive construction of the Pareto front which is
the set of the most interesting solutions. It is supported
by a method and an algorithm which allow comparison
of the potential solutions with respect to all the decision
criteria and thus determine the restricted set of the most
interesting ones (Pareto front) while taking into account
the level of certainty of dominance between solutions.

Using the proposed approach, the decision maker
will have a restricted set of best solutions. This bring
more flexibility to the selection process. Thus, based on
her/his feeling or some additional information, she/he
can decide which is the most interesting solution to pro-
pose to the customer. In an ETObidding process or,more
generally, in any engineering design process, when select-
ing the most interesting solutions, this approach can be
very useful for the designer or the decision maker, espe-
cially in the early phases of the design process, which is
characterised by imprecision, uncertainty and confidence
issues.

The case of the design of a technical bid solution of a
crane presented in Section 4 has shown that this approach
is applicable and effective. It is important to mention
that in situations where many possible configurations

(systems) are relevant to customers’ requirements, many
potential technical bid solutions have to be considered in
the decision making process. First, each solution should
be evaluated with regards to the decision criteria (cost
and duration) but also in terms of confidence indicators
(OCS and OCP). This can be done using a configura-
tion software which implements appropriate evaluation
methods (Sylla et al. 2017, 2019b). Then, the proposed
multi-criteria decision support approach can be applied
for the selection of the most interesting solution. The
algorithms proposed in this article allow to automate and
facilitate the whole decision making process even in such
situations.

With the proposed MCDM support approach, the
decision maker has to interact with the decision support
tool to define different combinations of Required Levels
of Dominance (RLDs) for the decision criteria in order to
determine themost interesting technical bid solutions. In
situations where the number of decision criteria is large
(greater than five, for instance), thismay be time consum-
ing. Moreover, in this article, the focus has been placed
on situations where the decision maker cannot explicitly
provide the relative importance of each decision crite-
rion. However, in some situations, the decision maker
may have this knowledge. In such a context, it is necessary
to consider the relative importance of each decision crite-
rionwhen comparing the potential solutions with respect
to all the criteria. Therefore, future research should con-
sider extending the proposed approach to such situations.
A method could be developed to integrate the possi-
bilistic mono-CDR with a relevant outranking method
(PROMETHEEor ELECTRE) in order to rank the poten-
tial solutions. In addition, in this article, we consider
one decision-maker’s (a bidder) point of view. However,
in some practical situations several decision makers are
involved in the decision process. Therefore, extending the
proposed approach to the case of group decision mak-
ing should also be considered as future research. It could
be achieved by identifying relevant aggregation methods
that allow to aggregate the preferences of multiple deci-
sion makers. The last aspect of possible future research is
to perform a benchmark with competing approaches in
the literature.
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