Preparation of PLA/starch foams by an extrusion process
Margot Chauvet, Martial Sauceau, Jacques Fages

To cite this version:
Margot Chauvet, Martial Sauceau, Jacques Fages. Preparation of PLA/starch foams by an extrusion process. Eurofillers Polymer Blends 2015, Apr 2015, Montpellier, France. hal-02930915

HAL Id: hal-02930915
https://imt-mines-albi.hal.science/hal-02930915
Submitted on 4 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Preparation of PLA/starch foams by an extrusion process

INTRODUCTION

Interest of foaming a blend of PLA/starch:
- Biobased, biocompatible and biodegradable polymers
- Reduce the cost and the density
- Improve the barrier properties and the crystallinity

Interest of extrusion assisted by supercritical CO2:
- Modification of the polymer properties (especially, decrease of the viscosity and the \(T_g \))
- Creation of porosity

MATERIALS AND METHODS

scCO\(_2\) assisted extrusion
- Single-screw extruder (Scamex, France)
- \(D=30 \) mm and \(L/D=37 \)
- \(T_1 \) to \(T_4 \) : 160, 180, 180 and 160\(^\circ\)C
- Blend of 95% PLA with 5% starch

PLA from NaturePlast (PLE001)
- Semi-crystalline (\(T_g \approx 60\)°C; \(T_m \approx 150\)°C)
- Low D-lactic acid content

Native corn starch from Roquette
- Lost at drying \(\approx 13\% \)

RESULTS

Thermal analysis with 3 mL/min scCO\(_2\)
- \(\chi_c \) crystallinity with \(T_5 \) and \(T_6 \)
- Highest porosity \(\Rightarrow \) highest crystallinity

<table>
<thead>
<tr>
<th>Sample</th>
<th>(T_g) (°C)</th>
<th>(T_{cc}) (°C)</th>
<th>(\Delta H_{cc}) (J/g)</th>
<th>(T_m) (°C)</th>
<th>(\Delta H_m) (J/g)</th>
<th>(\chi_c) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLA raw</td>
<td>59</td>
<td>104</td>
<td>12.4</td>
<td>146</td>
<td>12.4</td>
<td>0</td>
</tr>
<tr>
<td>Foam of PLA (110°C)</td>
<td>59</td>
<td>78</td>
<td>11.5</td>
<td>150</td>
<td>29.4</td>
<td>19</td>
</tr>
<tr>
<td>Foam of PLA (105°C)</td>
<td>58</td>
<td>73</td>
<td>5.2</td>
<td>148</td>
<td>31.5</td>
<td>28</td>
</tr>
</tbody>
</table>

CONCLUSION

Production of foams with a porosity up to 95%
- Increased crystallinity with the addition of scCO\(_2\)
- Perspectives: more tests for the blend (PLA/starch) with decreasing temperatures \(T_5 \) and \(T_6 \) and increasing scCO\(_2\)