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Abstract. Usage of a three-dimensional (3-D) sensor and point clouds provides various benefits 
over the usage of a traditional camera for industrial inspection. We focus on the development of 
a classification solution for industrial inspection purposes using point clouds as an input. The 
developed approach employs deep learning to classify point clouds, acquired via a 3-D sensor, 
the final goal being to verify the presence of certain industrial elements in the scene. We possess 
the computer-aided design model of the whole mechanical assembly and an in-house developed 
localization module provides initial pose estimation from which 3-D point clouds of the elements 
are inferred. The accuracy of this approach is proved to be acceptable for industrial usage. 
Robustness of the classification module in relation to the accuracy of the localization algorithm 
is also estimated. 

Keywords: three-dimensional point cloud; three-dimensional scanner; classification; robotized
industrial inspection; neural networks.

1 Introduction

1.1 Problem Statement and Hardware Setup

Our main objective is to perform automatic visual inspection of a mechanical assembly by using
a three-dimensional (3-D) scanner. This includes checking if the assembly (an airplane engine,
for example) is in a state corresponding to its 3-D computer-aided design (CAD) model speci-
fication and consequently providing a report to an operator with a list of objects of interest and
their statuses. This work is focused on the verification of the presence of the elements, typically
metallic supports whose sizes vary from 5 to 15 cm.

The sensor used for this task is an Ensenso N35. It is a 3-D sensor mounted on a robot end-
effector. The setup is shown in Fig. 1. We rely on an in-house-developed model-based two-
dimensional (2-D)–3-D alignment method in order to obtain an initial guess of the relative pose
of our sensor with respect to the assembly being inspected.

Our inspection module requires as accurate as possible pose estimation in order to properly
observe or focus on an element of interest. However, our pose estimation module has limited
accuracy. This comes from the fact that robot-based inspection platform is a complex system,
each part of which introduces a certain degree of calibration error, which gradually accumulates.
In addition, the robot is moving while performing the inspection. For all of these reasons, in
some cases, the final pose estimation might not be accurate enough. Therefore, it is important
to combat these difficulties due to the fact that they directly affect the system’s performance. In
the system discussed in this paper, there are two available directions of improvement for the
overall system’s accuracy:
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• Make classification more robust to the noisy pose, i.e., when there is an error present in a
pose estimation phase [the region of interest (ROI) is placed in a way that the object to be
inspected is only partially visible].

• Improvement of the pose estimation approach directly.

The main goal of this work is the first direction: development of a classification approach
with the pose estimation as it is, i.e., the approach should be suitable for usage with pose esti-
mation errors being present. Therefore, this classification solution was evaluated on cases with
different levels of noise in the pose estimation results.

1.2 Related Work

Automatic visual inspection (AVI) is gaining popularity due to the development of affordable
2-D and 3-D sensors as well as new software solutions. There are numerous application fields
where development and integration of AVI systems is actively ongoing, including automobile
industry,1 structure damage evaluation,2 inspection of the textile materials,3 quality inspection of
food products,4 and inspection of printed circuit boards.5 Many of these solutions rely on differ-
ent approaches from conventional image processing.6,7 AVI in industry is also a topic of our
earlier publications, which propose various solutions for existing problems in the field.8–11

There is another direction from which the problem of AVI can be tackled. Machine learning
techniques are currently gaining an influx of attention in the computer vision community, pro-
viding more generalization for some of the tasks. Many works applied machine learning for
inspection types of tasks, such as surface defect inspection,12 AVI of machine components,13

and AVI of microdrill bits in printed circuit board production.14 With the rise of the interest
in deep learning, this specific technology was also applied to a wide range of AVI tasks, for
example, structural inspection,15 surface defect detection and recognition,16 defect classification
system,17 and others.18–21 Even design tools for the creation of deep convolutional networks for
AVI were developed.22 To conclude, deep learning is being applied to a wide range of tasks
inside the AVI field, starting with detection, classification, and recognition for the purpose
of defect inspection and finishing with full-scale automated production support.23

Classification is a process of assigning a class or a label to an entity, the representation of
which depends on the data used. In this paper, classification of 3-D point clouds has been per-
formed. There are many works presented for the classification of point clouds with the use of
traditional computer vision approaches. Usually, such works are based on a pipeline, which can
be generalized to extract salient features from the clouds, followed by generation of descriptors
and their consequent comparison to the ones previously extracted from a reference object or a set
of objects of interest. In this case, the approaches mostly differ by the algorithms used at each
step of the said pipeline (e.g., which key-point extraction or description-matching method to use)
and the treatment of data (e.g., usage of transformations to different representations).24–26

Fig. 1 (a) Robot-based inspection system with three cameras mounted on an end effector and
(b) Ensenso N35 3-D sensor.



Some of the methods used, depending on the field, are presented in the following works:
classification of point cloud data by using local neighborhood statistics,27,28 usage of geometric
features for classification,29 employment of a covariance descriptor for classification,30 and
others.31–33

Currently, deep learning in the imaging domain mostly focuses on treating 2-D images for
various purposes. Usages of other types of data, including point clouds, for the purpose of deep
learning are being researched, but they are still underrepresented. Nevertheless, many publica-
tions are discussing deep learning on point clouds and possible network designs and correspond-
ing approaches, for example, segmentation-based classification in the road environment,34

treatment of LiDAR data of urban objects,35 airborne data,36 and others.37

As indicated in this section, similar works mostly deal with surface inspections using 3-D
sensors for industry. For nonindustrial approaches, classification using 3-D is usually done on
household objects (e.g., ModelNet40 dataset).38 Our work features a deep learning approach for
classification of point clouds in an industrial environment.

There are several main directions in the development of deep learning on point clouds that
can be followed:

• deep learning on unordered sets (raw point clouds),
• deep learning on multiview data representation, and
• deep learning on volumetric representation.

Out of these directions, deep learning on unordered sets and also deep learning on multiview
data representation currently show the highest performance. This work strongly relies on the
state-of-the-art achievements in deep learning on unordered sets. Specifically, a concept from
a paper “PointNet: deep learning on point sets for 3D classification and segmentation” will be
used.39 The cited paper introduces a type of neural network that directly consumes point clouds
and provides a unified architecture for three modes: classification, part segmentation, and scene
semantic parsing.

PointNet manages to extract the so-called set of critical points from each object, which it uses
to differentiate between them. A set of critical points can be roughly called a skeleton of the
object. While critical points jointly determine the global shape feature for a given object, any
point cloud that falls between the critical points set and the upper bound shape gives exactly the
same feature. This emphasizes the robustness of PointNet, meaning that losing some noncritical
points does not change the global shape signature.39

2 Methodology

PointNet is used as a network for our classification task. This section covers all the steps taken
for the task at hand, starting with prior organization of the data and corresponding information
about the network. Results will be discussed in Sec. 3.

2.1 Dataset

We have trained PointNet with a ModelNet40 dataset.38 It contains 12,311 CAD models from
40 man-made object classes, split into 9843 models for training and 2468 models for testing.
Available classes and some models from one of the classes (class “Chair”) as an example are
shown in Fig. 2.

2.2 Industrial Dataset Generation

As shown in Fig. 2, ModelNet40 dataset consists mostly of nonindustrial objects. It represents
different objects we can find in our everyday life. Considering the domain at hand (e.g., mechani-
cal assembly of an aircraft engine), first, a relevant dataset should be created.

We first implemented a pipeline to adapt our industrial dataset to the input expected by
PointNet system. It is shown in Fig. 3.



First, initial data, obtained with the Ensenso N35 sensor, is converted to point clouds. One of
the resulting examples in comparison with the regular scene image in RGB is shown in Fig. 4.

The data used in this paper features four industrial objects or, specifically, “supports”—one at
each scene (e.g., see Fig. 4). To form the said dataset, a 3-D annotation tool was implemented to
crop the ROI in point cloud scenes (crop the objects of interest out of the scene) using a movable
3-D box. Each scene is cropped only once, to extract the corresponding support. These four
supports form four classes of our dataset that will be fed to PointNet. Cropping results are shown
in Fig. 5 along with the RGB images of the corresponding scenes from which the crops and CAD
models of the objects in question were obtained.

Fig. 3 Steps for industrial dataset generation and preparation of data for PointNet.

Fig. 2 (a) Cloud of classes, bigger word marks class with more samples and (b) some samples
from class “Chair.”

Fig. 4 Industrial scene with support #1 in two formats.



It is important to note that the quality of point clouds varies, depending on the scene and
lighting conditions. Namely, parts of the support can be missing due to a not favorable point of
view (causing occlusion) or poor scanning (e.g., because of reflective materials). In the case of
support #2 shown in Fig. 6, two examples of point clouds are provided—one acquired with a
favorable point of view and the other with the one that is less informative, which leads to missing
points due to auto-occlusion of the object by itself. In addition, a CAD model of the support is
shown for reference. The same problem for support #4 is also showcased. Sometimes this issue
cannot be solved in an industrial environment, since the assemblies, as shown in Fig. 5, have
complicated structure. This does not allow to obtain a satisfactory point of view for each chosen
element of interest, since it might be unsuitably positioned and be subject to severe occlusion by
other pieces. The solution proposed in this paper is developed with this limitation in mind.

To showcase the point-of-view issue, an example of the resulting crops of supports #2 and #4
is shown in Fig. 6, which represents a cloud with missing parts.

The original shape of the support is shown in Fig. 7 in the form of a CAD model (to observe
the final size of our manually produced training and testing set per class, refer to Fig. 7).

To match the ModelNet40 dataset format and the input format of PointNet, the clouds should
be downsampled to 2048 points. For this purpose, initially, random sampling was used, which
was made available by MeshLab.40 Results of downsampling and comparison with the original
crop are shown in Fig. 8.

As can be seen, random sampling does not preserve the structure of the cloud. For this reason,
the farthest point sampling (FPS) algorithm was employed. It shows much better results in

Fig. 5 (a)–(d) Support #1, Support #2, Support #3, and Support #4 in three formats.



comparison with a random sampling approach. FPS preserves the structure of the cloud, which is
shown in Fig. 9.

It is important to mention that PointNet by itself can internally perform a downsampling of a
point cloud given to it as an input. Nevertheless, the points are selected randomly, which can be

Fig. 7 Final training and testing set for all classes along with their CAD models.

Fig. 8 (a) Original and (b) downsampled (random sampling) clouds of the support.

Fig. 6 Examples of point-of-view issue—supports #2 and #4.



viewed as a further random sampling from 2048 to a prespecified size (1024/512/256 or 128
points). Lower numbers of points (higher levels of downsampling) allow to perform training
faster, while the resulting classification accuracy is negatively affected, which is discussed
in Sec. 3. The whole downsampling pipeline is shown in Fig. 10. We will specify our experi-
ments and our final choice of the cloud size in Sec. 3.

It is important to note that data augmentation of training data in the form of rotation and
jittering was applied using PointNet. Rotation was performed randomly around one axis placed
in the center of the support. Jittering refers to a random displacement of each point of a point
cloud by a small value. Both of these augmentation steps positively affect generalization capa-
bilities of the network. The corresponding sizes of the final training sets after data augmentation
for each support can be observed in Fig. 11.

3 Results and Analysis

3.1 Experiments with PointNet

Based on the limited amount of data being available and prior experiments with PointNet, trans-
fer learning was chosen as a learning method for this task. PointNet is first trained with original

Fig. 10 Generalized developed cloud processing pipeline for usage with PointNet.

Fig. 11 Training set sizes for all four classes after applying data augmentation with PointNet along
with their CAD models.

Fig. 9 (a) Support #3—random sampling output and (b) FPS output.



ModelNet40 dataset, which features nonindustrial objects. Afterward, the obtained weights are
used for transfer learning with the aforementioned newly generated industrial dataset. It is impor-
tant to note that for both training the whole network with ModelNet40 dataset and transfer learn-
ing with the relevant industrial dataset, it is possible to choose the size of the point clouds. This is
done by changing downsampling parameters. Therefore, while discussing the experiments’
results, the number of points used will be specified additionally.

3.1.1 Training two fully connected layers

For the first experiment, corresponding parameters and accuracy can be found in Table 1, where:

• the column “Number of points per cloud when training with ModelNet40” will signify
which size of point clouds was used for training with ModelNet40 dataset in order to get
weights for transfer learning;

• the column “Number of points per cloud when training with our domain specific dataset
(transfer learning)” states which size of point clouds was used during transfer learning for
both training and testing sets. This amount can reach 2048 points maximum, due to the
used PointNet setup;

• the column “Batch” shows batch size;
• the columns S1 to S4 feature resulting classification accuracies for each of the four classes

(supports).

Results of the first experiment, training two fully connected layers, chosen based on the
amount of data available, is shown in Table 1

Misclassified examples for this experiment can be observed in Fig. 12. It can be seen that
one of the good acquisitions of support #2 is misclassified, as well as a comparatively worse

Table 1 Transfer learning: training two fully connected layers instead of one.

Number of points per
cloud when training
with ModelNet40

Number of points per cloud when
training with our domain specific

dataset (transfer learning) Batch S1 S2 S3 S4

512 512 32 60.0% 64.3% 81.8% 80.0%

Fig. 12 Misclassified samples: training two fully connected layers.



acquisition of support #1. While observing the resulting accuracies, it must be noted that sup-
ports #1 and #2 have very variable data. This means that acquisitions of point clouds for these
supports have very variable points of view due to their placement in the assembly. This resulted
in unstable quality of point clouds.

Owing to the aforementioned factors, after downsampling, some supports from different
classes may look quite similar. This happens due to the loss of information caused by down-
sampling. For example, for this experiment, only 512 points out of the initial 30,000 to 50,000
were given to the network to match ModelNet40 and PointNet convention. Nevertheless, this
experiment showed positive results and can be a good baseline for further ones.

3.1.2 1024 points for training and testing with lower batch size

For this experiment, the algorithm was tested with clouds that contain 1024 points (both training
and testing) but with a reduced batch size. This was done to evaluate the importance of the
number of points per cloud and batch size for the network. The results and parameters are pro-
vided in Table 2.

It can be seen that there is a big improvement over the previous experiment’s results. Support
#1 improved by 40%, support #3 improved by 9.9%, while support #4 kept the same accuracy—
80%—and support #2 lost 37.6%. This leads to two important conclusions.

• First, it is confirmed that support #1 became similar to support #2 due to a low number of
points used previously, which negatively affected classification results. The increase in the
number of points drastically improved the accuracy for support #1, hence this conclusion
is viable.

• Batch size strongly affects the performance of PointNet.

Following these conclusions and a manual checkup of the available data for support #2, it can
be declared that clouds put in the training set for this support were not representative enough for
all cases present in the testing set. This issue results from the fact that initial training/testing set
separation was done only once for all experiments covered so far, and the choice of whether a
certain cloud belonged to the training or to the testing set was random. As a result, each already-
discussed experiment had the same data used for training and testing sets from one experiment
to another, but the initial decision, where each of the exemplars belonged, was made randomly.
To solve this issue, it was decided to select the training set data in such a way that it will be
representative, i.e., allow the network to observe the most diversity from the available data.
Therefore, point clouds for this support were sorted based on their qualities into seven groups.
From each group, 80% were taken for training and 20% for testing. Furthermore, examples,
which did not fit into any of the groups, were put in a testing set to test the network’s gener-
alization capabilities.

3.1.3 Using weights from training ModelNet40 with 2048 points and manual
training and test sets segregation

In this and further experiments, the weights from training PointNet with ModelNet40 were
acquired using 2048 points for each point cloud, showcasing an increase in the number of points
per cloud in comparison with previous experiments. In addition, manual sorting of the data to
create a representative training set for support #2 was done as described above. This led to the
results that can be observed in Table 3.

Table 2 Transfer learning: 1024 points for training and testing with lower batch size.

Number of points per
cloud when training
with ModelNet40

Number of points per cloud when
training with our domain specific

dataset (transfer learning) Batch S1 S2 S3 S4

512 1024 16 100% 26.7% 91.7% 80.0%



Based on the results observed, there are some important remarks that need to be made.

• Considering the previously low accuracy score for support #2, it is important to note that
the low number of points in a cloud was not the only reason for poor accuracy results. As a
result of manual forming of the training set and an increase in the number of points being
used, the accuracy has substantially improved.

• It can be seen that the batch size is confirmed to be very important for PointNet. Therefore,
the batch size was selected empirically based on the specifications of PointNet and con-
ducted experiments, which contributed to overall improvement of accuracy.

3.1.4 Usage of farthest point sampling instead of random sampling

Following the previous results, a different sampling algorithm was used—FPS. This algorithm
excels at preserving the meaningful structure of the cloud compared to random sampling.
Corresponding results can be observed in Table 4.

Some remarks on the results achieved should be made:

• It is confirmed that a clear structure of a cloud and, hence, FPS, positively affects the
performance of PointNet.

• In addition, it is important to note that FPS is generally fast when used on clouds with
fewer than 35,000 points, amounting to less than a second per cloud on average. To speed
up the processing of clouds with more than 35,000 points, it is possible to use a two-step
downsampling for each cloud: first, random sampling is used to reduce the number of
points below 35,000. Then, FPS is performed. This two-step approach makes FPS usable
in real time even on clouds with more than 35,000 points. This might be beneficial if usage
of bigger clouds becomes desirable.

Improvement, shown during this experiment, confirms that even when the dataset features
clouds that are only parts of the object itself—given some key shape features are preserved—
good classification accuracy can still be achieved.

3.2 Robustness to Noise

Estimation of the ability of the network to classify point clouds with the absence of a part of the
cloud is crucial to the task at hand. It is based on the fact that the bounding box marking the
object of interest (e.g., support) in the scene, which at the runtime will be given using 2-D camera
through CAD-based tracking, is not accurate to a certain degree. Evaluation of the maximum
amount of displacement of the bounding box in relation to the real position of the object of

Table 4 Transfer learning: usage of FPS instead of random sampling.

Number of points per
cloud when training
with ModelNet40

Number of points per cloud when
training with our domain specific

dataset (transfer learning) Batch S1 S2 S3 S4

2048 2048 32 100.0% 100.0% 91.7% 100.0%

Table 3 Transfer learning: using weights from training ModelNet40 with 2048 points and manual
train and test sets segregation.

Number of points per
cloud when training
with ModelNet40

Number of points per cloud when
training with our domain specific

dataset (transfer learning) Batch S1 S2 S3 S4

2048 2048 32 90.9% 100.0% 91.7% 80.0%



interest in the scene will allow to estimate and further improve the performance of the network in
relation to noisy pose.

For this purpose, the classification approach is evaluated with damaged data. It is important to
note that the damaging process is applied only to the testing set, while the training set stays the
same as described in the last classification experiment. The damaging process is based on the
idea of the noise being introduced in the positioning of the bounding box, simulating the result of
obtaining a wrong pose. The bounding box, which crops the element of interest out, is displaced
randomly by the following rules:

• The bounding box is moved from its original position, which results in certain parts of the
element of interest being absent and an increase in the number of outliers.

• The movement of the bounding box is done by using random vectors fx; y; zg where
fx; y; zg cannot be equal to {0, 0, 0}, so that the displacement will always occur.

• The values of x, y, and z are always capped by a percentage of the width, length, and height
of the bounding box correspondingly (e.g., 5%, 10%, and 15%).

As an example, when a 10% displacement is chosen, for all of the point clouds in the testing
set, the bounding boxes will get displaced by displacement vectors such as the following: {10%
of width, 0, 0}, {10% of width, 0, 10% of height}, or {10% of width, 10% of length, 10% of
height}.

The results of the displacement and corresponding accuracy changes, compared to the origi-
nal results (i.e., without noisy pose simulation), can be observed in Fig. 13.

In Fig. 13, it can be seen that classification accuracy for all four classes decreases along with
the localization (pose estimation) becoming more noisy and consequently cropping results
becoming less accurate. As discussed above, noise complicates the classification, since for each
cropping result the number of outliers increases, while parts of the object of interest (support) are
cut off, which makes the objects less recognizable to the network.

Fig. 13 Accuracy in relation to the displacement of the bounding box due to noise.



4 Conclusion and Future Work

4.1 Conclusion

During this work, various tasks were completed for creating a solution with capabilities to clas-
sify point clouds obtained from a 3-D sensor in an industrial environment. More precisely, our
application has a goal to inspect mechanical assemblies by verifying the presence of certain
elements (e.g., supports). Initially, the state-of-the-art research of the visual inspection was per-
formed, outlining the main direction for the implementation—deep learning approach. As shown
by the experiments, usage of point clouds and deep learning is especially efficient in terms of
missing data and specifics of the industrial environment. This is a particularly important result
due to regular limitations in the choice of point of view as well as presence of metallic or similar
surfaces, which might pose a problem for more conventional approaches or other data formats,
such as 2-D imagery.

4.2 Future Work

It must be noted that, in regard to the next steps proposed for deep learning on point clouds, the
results presented in this paper can be improved further. One of the available directions is to
continue improvement of the currently developed approach, which uses raw point clouds.
Another suggestion is to use a multiview representation approach, which also gives a high prom-
ise, based on the state-of-the-art research. These and other factors make researched directions
and consequently developed solution promising for further work and improvement with the pur-
pose of achieving the ultimate goal of developing a generalized 3-D classification tool applicable
for a wide range of similar industrial tasks. Moreover, considering the results achieved with deep
learning for the purpose of classification of point clouds, it would be wise to consider a cor-
responding object detection solution with the potential usage of PointNet.

Following this progress, the work will be continued, which will allow to further improve the
accuracy and also develop the network’s generalization capabilities. It is proposed to improve the
current solution, so that it can be used for pose estimation enhancement (i.e., perform bounding
box position refinement). Afterward, it is planned to develop a semantic scene segmentation
approach using point clouds in order to segment and then classify all elements (e.g., supports)
present in the given scene with the approach developed in this paper as a base.
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