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A B S T R A C T   

In the humanitarian response, multiple decision-makers (DMs) need to collaborate in various problems, such as 
locating temporary relief distribution centres (RDCs). Several studies have argued that maximising demand 
coverage, reducing logistics costs and minimising response time are among the critical objectives when locating 
RDCs after a sudden-onset disaster. However, these objectives are often conflicting and the trade-offs can 
considerably complicate the situation for finding a consensus. 

To address the challenge and support the DMs, we suggest investigating the stability of non-dominated al
ternatives derived from a multi-objective model based on Monte Carlo Simulations. Our approach supports 
determining what trade-offs actually matter to facilitate discussions in the presence of multiple stakeholders. To 
validate our proposal, we extend a location-allocation model and apply our approach to an actual data-set from 
the 2015 Nepal earthquake response. Our analyses show that with the relative importance of covering demands 
� 0:4, the trade-offs between logistics costs and response time affects the numbers and locations of RDCs 
considerably. We show through a small experiment that the outputs of our approach can effectively support 
group decision-making to develop relief plans in disasters response.   

1. Introduction 

The response to sudden-onset disasters is typically characterised by 
the influx of many organisations and individuals that rush to help the 
people in need. The humanitarian community thus relies on collabora
tion and coordination, which require joint or aligned decision-making 
within and across organisations [1]. There is strong evidence that 
decision-making on the front-line of humanitarian operations is a social 
process [2,3]. Therefore, group decisions are very common in the hu
manitarian disasters response, specifically in the United Nations (UN) 
cluster coordination system [4]. 

According to Wu & Xu [5]; conflicting objectives can challenge and 
prolong the process of finding a consensus in group decisions. This 
challenge is specifically prominent in international disaster response, 
characterised by many actors working under pressure, and examples 
have been observed for instance in inter-organisational forums, such as 
inter-cluster or clusters [2,6]. Observations show that humanitarian 

organisations (HOs) often have different preferences and sometimes 
follow conflicting objectives [7]. In such contexts, the larger the 
decision-making group, the more difficult and time-consuming it is to 
come to decisions [8,9]. 

Incorporating the preferences and objectives of multiple actors is 
specifically necessary for problems in sudden-onset natural disasters 
response such as locating temporary relief distribution centres (RDCs) 
[10]. The choice of locations sets the basis for other decisions, like 
transportation or routing [11,12]. Including the interests of all stake
holders improves the sense of ownership among responders and facili
tate planning [1,6]. 

However, attempts to address challenges of group decisions 
regarding location problems are scarce (e.g, Maharjan & Hanaoka [1] 
and Maharjan & Hanaoka [9]) where the multi-objective optimisation 
approach has mainly been followed. In this approach, decision Makers’ 
(DMs’) preferences can be applied either before the optimisation (a 
priori approach) or thereafter (a posteriori approach), and several 
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methods have been used for eliciting such preferences (e.g., goals [13], 
weights [1] and priorities [9]). 

A priori methods require that an agreement on preferences need to 
be available as input for a decision. While there are many dedicated 
preference elicitation techniques, they are subject to well-known biases 
(such as anchoring) and distortions, even if the decision-makers try to 
reveal their true preferences [14]. Furthermore, applying preferences 
before optimisation may result in neglecting some non-dominated al
ternatives1 (specifically in non-convex problems) [15]. 

In contrast, an a posteriori approach presents decision-makers with 
the full set of non-dominated solutions, allowing them to identify the 
most satisfactory solution. This approach allows decision-makers to 
explore trade-offs among objectives and the robustness of performance 
(e.g., Baharmand et al. [16]). The main problem with a posteriori ap
proaches is typically that the Pareto set can be very large. That said, 
field-based DMs do not normally have enough time and resources in the 
response phase to run deliberative processes to elicit the preferences of 
stakeholders and converge to a consensus among non-dominated alter
natives [9,17]. 

Research gap: an approach is required to support group decisions in 
disasters response while incorporating an effective a posteriori articu
lation of preferences. 

In fact, much has been written about the humanitarian cluster sys
tem, and the competitive or power-related behaviour that it sparks [18, 
19]. However, one of the keys to humanitarian management is infor
mation that is to enable core of timely and effective decision-making 
[20]. We therefore here focus on the informational over the behav
ioural aspects of decision-making, and assume that decision-makers are 
rationale, i.e., we assume they follow their mandate and preferences, 
and do not engage in tactics and political decisions. 

To address the research gap, we adapt the findings from Baharmand 
et al. [16]’s study and suggest a model that determines the Pareto al
ternatives for the number and location of RDCs based on demand 
coverage, response time, and logistics costs under constrained resources. 
The model parameters have been informed by an empirical study con
ducted after the 2015 Nepal earthquake. Furthermore, we suggest 
calculating an overall (performance) value for each Pareto alternative 
and thereafter, running a sensitivity analysis based on Monte Carlo 
Simulations to reveal tipping points. 

As such, the contribution of our study is threefold. First, our model 
contributes to the literature by addressing three objectives simulta
neously to locate RDCs in disasters response which, to the best of our 
knowledge, have not yet been covered in the literature. We benchmark 
our findings against UN World Food Programme (UN WFP)’s operations 
and examine the sensitivity of model suggestions to changes in the main 
parameters. Second, the suggested approach contributes to under
standing what trade-offs actually matter in a given logistics decision. 
This information offers DMs an indication of where they might need 
further discussions in the presence of several non-dominated location 
alternatives. We support this contribution by applying our proposal to 
the UN WFP’s real dataset for the 2015 Nepal earthquake response. 
Third, we add to the existing body of research about the value of Monte 
Carlo Simulations to address the uncertainties and ambiguities [21] 
regarding the preferences of multiple DMs in disasters response. To 
validate our proposal and support the second contribution, we conduct a 
group decision-making experiment based on the described case with 
participants from multiple HOs. 

The remainder of the paper is structured as follows. We provide 
background regarding the criteria for location problems and methods to 
address DMs’ preferences when such criteria are modelled in Section 2. 
In Section 3, our multi-objective location–allocation model is briefly 

presented. The sensitivity analysis approach is explained in Section 4. 
We apply our model to the Nepal case and analyse the trade-offs through 
our approach in Section 5. We discuss our analysis and experimental 
results in Section 6. Finally, conclusions are presented in Section 7. 
Formulation of the model, input data information, study’s question
naire, and the sensitivity analysis of the model are provided in Appendix 
A, Appendix B, Appendix C and Appendix D respectively. 

2. Background 

In this section, we first demonstrate the challenges of group decision- 
making in disasters through the findings of empirical studies in the 
humanitarian contexts. Then, we review operations research (OR) 
models to identify relevant criteria for our study. Finally, we investigate 
what techniques have been used in the literature to address the prefer
ences of multiple stakeholders in group decision-making processes. 

2.1. Group decision-making in the disasters 

Decision-making after sudden-onset disasters is a challenging task 
because of ‘ill-structured problems; uncertain dynamic environments; 
shifting, ill-defined, or competing goals; time stress; high stakes; [and] 
multiple players’ [22]. To cope with this complexity, humanitarian 
decision-making guidelines suggest that ‘decisions should be made by a 
group rather than by individuals’ [2,23–25]. Group decisions are based 
on a broader information foundation, thus tending to be of better quality 
[24]. However, group decision-making, particularly where it relies on 
consensus, can be slow and cumbersome [26–28]. 

Decision analysis and optimisation-based approaches rely on struc
tured, analytical processes that make important assumptions as to the 
nature of the problem. However, such assumptions are often not fulfilled 
[3,29]. Analytical approaches have also been criticised for being rela
tively difficult to converge when the group of DMs is large [25]. As a 
result, DMs typically find themselves engaged in intuitive forms of 
decision-making. Such naturalistic decision-making [30] and the 
connection between sensemaking and decision-making are poorly un
derstood [3,31]. Thus, any attempt to facilitate group decision-making 
within the analytical approaches can contribute to quicker and easier 
decisions in the field. 

In our study, we focus on an analytical group decision-making 
approach regarding the location decision. This approach tries to fulfil 
the requirements of different stakeholders by making the optimal choice 
with regard to considered criteria systematically. To the best of our 
knowledge, Maharjan & Hanaoka [9] and Ghavami et al. [17] are the 
only two studies that discusses group decision-making for logistics de
cisions in disasters response. Maharjan & Hanaoka [9] focus on locating 
distribution centres after sudden-onset disasters and propose a fuzzy 
factor rating system to determine the relative importance of minimising 
unsatisfied demands vs. logistics costs. However, Maharjan & Hanaoka 
[9] do not provide justification for model assumptions (e.g., uncapaci
tated fleets/facilities) as well as choices to address DMs’ requirements 
(e.g., considered objectives) and to model preferences (e.g., weights) for 
managing conflicting objectives. In the other study, Ghavami et al. [17] 
suggests three phases (pre-negotiation, automated negotiation, and 
evaluation) to reach a consensus on the relative importance of consid
ered criteria by using software agents. However, Ghavami et al. [17]’s 
approach (a) do not address the problem of time constraints for eliciting 
DMs’ preferences, and (b) cannot guarantee the convergence of the 
negotiation phase. In the following two sections, we further review the 
literature to identify gaps for supporting DMs. 

2.2. OR models for locating RDCs in disasters response 

In the humanitarian logistics (HL) literature, OR models have been 
widely used to address location problems for shelters, medical facilities, 
warehouses/distribution centres, vehicle hubs, and debris containers in 

1 A non-dominated solution or a Pareto optimal solution is the one where an 
objective function cannot be improved without reducing the other objective 
function. [79]. 
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different contexts [32,33]. In this section, we provide an overview of the 
most important recent publications that have proposed OR models for 
locating distribution centres and/or warehouses in the contexts of 
sudden-onset disasters response. Literature reviews with wider scopes 
can be found in Galindo & Batta [34]; Anaya-Arenas et al. [32]; Habib 
et al. [35]; and Boonmee et al. [33]. 

Table 1 shows the list of reviewed papers. We distinguished multi- 
objective, goal programming and single-objective modelling ap
proaches (cf. Section 2.3). The latter category also includes those papers 
that transform multiple objectives into a single-objective problem 
through weights and penalty functions. Interestingly, there are a few 
objectives that have been frequently used. Several empirical studies 
have confirmed that minimising the unsatisfied demand (UD), response 
time (RT) and logistics costs (LC) are of high priority for HOs in sudden- 
onset disasters response [65–68]. However, as Table 1 shows, these 
objectives have been rarely addressed simultaneously. 

Furthermore, considered assumptions and constraints in the 
reviewed location models often hardly represent the environment and 
challenges of the relief operations in the field. According to Galindo & 
Batta [34] and Anaya-Arenas et al. [32]; considering unlimited fleets 
capacity, unlimited facility capacity, single commodity and single 
transportation mean makes the proposed models hardly applicable in 
reality. 

Moreover, to the best of our knowledge, only Baharmand et al. [16]’s 
consider a distinction between the immediate response and the relief 
phases after sudden-onset disasters. Baharmand et al. [16] propose a 
bi-objective model for locating RDCs in the immediate response. 
Pedraza-Martinez & Van Wassenhove [69] and Kunz et al. [7] highlight 
that recognising the context is important in order to bridge the gap 
between research and practice. The immediate response phase is the first 

chaotic phase after a disaster, and typically covers the first 72 h after the 
incident and can last up to two or three weeks. Thereafter, the relief 
phase covers the time after the immediate response up to the early re
covery [70]. In this phase, as a result of rapid needs assessments, de
mands and beneficiaries are often prioritised and hence, relief 
operations are more structured [71]. 

Such distinction not only affects the choice of addressed objectives 
(time- and cost-efficiency vs. efficiency þ effectiveness) and constraints 
(scarce vs. more available resources) but also impacts on the nature of 
input data parameters (stochastic vs. deterministic) [72]. The data is 
modelled by stochastic and robust approaches in %50 of the reviewed 
papers that address multiple objectives. Although stochastic and robust 
methods are strongly recommended for uncertain contexts, it has been 
proven that they have a limited applicability in sudden-onset disasters 
response even in the relief phase, owing to a lack of access to (a) 
probability distributions (for stochastic approaches) and (b) data/
computational resources (for robust approaches) [73]. 

Moreover, it is interesting that only two of the reviewed papers [16, 
59] have benchmarked their outcomes with a real operation although 
several used a case study. Other reviewed research papers confine their 
research to numerical analyses based on randomly generated datasets. 
However, benchmarking results with real operations can provide helpful 
insights for practitioners, and eventually contributes to convincing HOs, 
as the final users of proposals, to use decision support systems for a more 
efficient and effective response [7]. 

2.3. Modelling preferences in multi-criteria location models 

The number of multi-objective location models for the context of 
sudden-onset disaster response has increased considerably over the 

Table 1 
Characteristics of OR models in the literature for locating facilities in sudden-onset disasters response.  

Relevant studies Type of facility Objective(s) Data modelling type Problem modelling method Case study 

Horner & Downs [36] DC LC Det SOP ✓ 
Zhan & Liu [37] DC UD,RT Sto GP  
Vitoriano et al. [38] DC RT,LC,OO,FE Det GP  
Lin et al. [39] W SC,LC Det SOP ✓ 
Abounacer et al. [40] DC LC Det SOP  
Barzinpour & Esmaeili [41] DC UD,LC Sto GP ✓ 
Manopiniwes et al. [42] W LC Det SOP ✓ 
Bell et al. [43] W RT Det SOP ✓ 
Rath & Gutjahr [44] W UD,LC Det MOP  
Khayal et al. [45] DC LC,SC Det SOP  
Ahmadi et al. [46] W UD,RT,LC Sto MOP ✓ 
Najafi et al. [47] DC RT,LC Det MOP  
Ransikarbum & Mason [13] W UD,LC,FE Sto GP ✓ 
Rath et al. [48] DC UD,LC Sto MOP  
Zokaee et al. [49] DC LC Rob SOP ✓ 
Bastian et al. [50] DC UD,LC,RT Sto GP  
Gutjahr & Dzubur [51] DC UD,LC Det MOP ✓ 
Haghi et al. [15] DC UD,LC,SC Rub MOP  
Mohamadi & Yaghoubi [52] DC RT,LC Sto MOP ✓ 
Cao et al. [53] DC UD,RT,FE Det MOP  
Nedjati et al. [54] DC UD,RT Det MOP  
Golabi et al. [55] DC RT Det SOP ✓ 
Fereiduni & Shahanaghi [56] DC UD,LC Rob MOP ✓ 
Timperio et al. [57] DC UD,LC,OO Det MADA ✓ 
Prabowo et al. [58] W LC Det SOP ✓ 
Dufour et al. [59] DC UD,RT,FE Det SOP ✓ 
Maharjan & Hanaoka [1] DC UD, LC Det SOP ✓ 
Loree & Aros-Vera [60] DC LC,SC Det SOP  
Mahootchi & Golmohammadi [61] W UD,LC Sto MOP ✓ 
Fikar et al. [62] DC UD,LC Det MOP ✓ 
Vahdani et al. [63] DC RT,LC Rob MOP  
Noyan & Kahvecio�glu [64] DC UD,RT Sto MOP ✓ 
Baharmand et al. [16] DC RT,LC Det MOP ✓ 
Maharjan & Hanaoka [9] DC UD Det SOP ✓ 

Distribution Centres (DC); Warehouses (W); Medical Centres (MC); Unsatisfied Demand (UD); Response time (RT); Logistics Costs (LC); Fairness/Equity (FE); Social 
Costs (SC); Other Objectives (OO); Deterministic (Det); Stochastic (Sto); Robust (Rub); Goal Programming (GP); Single-objective Programming (SOP); Multi-objective 
Programming (MOP); Multi-attribute decision analysis methods (MADA). 
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course of the last five years (cf. Table 1). To consolidate conflicting 
objectives, optimisation should involve a trade-off between two or more 
objectives. This trade-off can be made before (or after) optimisation 
through a priori (or a posteriori) articulation of preferences [74]. As a 
posteriori method offer a Pareto-optimal set to potential 
decision-makers before their final choices, it can reinforce their confi
dence in the final decision [75]. The Pareto-optimal set consists of all 
alternative solutions in which one or more objectives cannot be 
improved without deteriorating the performance of one or of the more 
other objectives [76]. However, this selection process has proven to be 
challenging in disasters due to time and resource constraints. 

In HL literature, several scholars use methods from multiple criteria 
decision analysis (MCDA) to address stakeholder’s preferences and 
model trade-offs between conflicting criteria [77]. The strength of 
MCDA methods is that they help to achieve consensus and make 
trade-offs transparent when there are several stakeholders. Common 
MCDA methods in the HL literature and their ‘decision rules’ are shown 
in Fig. 1. Generally, MCDA methods can be classified into multiple 
objective decision analysis (MODA) and multiple attribute decision 
analysis. A decision rule is a procedure to select one or more from a set of 
alternatives [78]. 

The location problem is often addressed with MODA methods. 
Table 1 from the previous section shows that goal programming and 
transforming multiple objectives into a single-objective (through pen
alty functions and weights) are the most commonly used methods for 
addressing location problems in sudden-onset disasters response. There 
may be two reasons behind this. First, goal programming allows DMs to 
incorporate pre-specified environmental, organisational and managerial 
consideration into a model through goal levels and priorities more 
transparent than other approaches [37]. Second, solving 
single-objective models is easier and requires fewer computational re
sources than multi-objective models [79]. As shown by darker boxes in 
Fig. 1, we further examined which preference parameters may need to 
be elicited from DMs for MODA methods. Table 2 explains if these pa
rameters can be used in a priori and/or a posteriori approach to model 
DMs’ preferences and address conflicting objectives. Some instances are 
also provided (if available in HL literature). 

All MODA methods in Table 2 that have been used in the literature 
imply some challenges when it comes to group decision-making. Goal 
programming and penalty functions imply preference articulation 
before the optimisation (i.e. a priori articulation of preferences). 
Weights, costs, goals and penalty functions need to be justified in close 
collaboration with experts and stakeholders [66], though empirical 
studies confirm that this is hardly feasible during the response phase [2]. 
Maharjan & Hanaoka [1] propose using fuzzy factor rating system by a 
group of DMs to facilitate determining weights for multiple objectives 
(minimising costs and unsatisfied demand). However, there is an issue 
with combining a priori articulation of preferences and the weighted 
sum method. The location problem is typically non-convex (because 
some variables are often constrained to be integers) [15] and there may 
exist non-dominated solutions that cannot be found using the weighted 
sum method [81]. Furthermore, as mentioned earlier, eliciting prefer
ences (although through fuzzy parameters) can add to the length of the 
decision-making process which is not desirable in the contexts of 
sudden-onset disasters response. 

In a different context, Bertsch & Fichtner [82] suggest that 
combining sensitivity analysis with multi attribute value theory (MAVT) 
can provide valuable assistance to help decision-makers in the energy 
sector. They present a multi-dimensional sensitivity analysis with 
weight intervals through Monte Carlo Simulation that allows for 
simultaneous variation of preference parameters to check the stability of 
a set of five alternatives. They use a posteriori weighted sum approach 
and address the deficiency of deterministic analysis in dealing with 
uncertainty of preferences. In general, the deterministic analysis is able 
to look for the most affecting preference (weight) on the overall value 
over a few scenarios. However, it is easier in Monte Carlo Simulation 

with thousands of scenarios to find preferences showing the largest 
impact on the final results. 

We note that adopting Bertsch & Fichtner [82]’s approach to the 
location problem after sudden-onset disasters is ineffective. MAVT is 
often criticised for the risks of cognitive and motivational biases [83] 
which have been specifically noted among humanitarian DMs [3]. The 
main challenge is that MAVT may not be able to determine the majority 
of non-dominated alternative networks (i.e., sets of distribution centres 
locations). Overall, our review shows that literature lacks a posteriori 
approach to effectively support locating temporary distribution centres. 
Having such an approach can facilitate group decision-making 
significantly. 

2.4. Research contribution 

Group decision-making processes can be thought of as the series of 
activities or steps by which information is collected, a decision is made 
and action is taken on the basis of the decision [73]. Fig. 2 shows a 
typical group decision-making process in the humanitarian context [2, 
8]. 

We showed in Table 1 that several OR location models support DMs 
‘generating decision alternatives’ in the second step. However, some 
gaps still exist between research proposals and practice requirements for 
locating temporary distribution centres (cf. Sections 2.1 and 2.2) due to 
unrealistic assumptions and/or constraints (e.g., Maharjan & Hanaoka 
[1]. We adapt Baharmand et al. [16]’s findings and develop a model to 
support the location decision in the relief phase. Our model addresses 
minimising response time, logistics costs, and unsatisfied demands while 
considering different assumptions and constraints that have been vali
dated by practitioners. We use multi-objective approach (cf. Section 2.3) 
to develop our model because it is assumed that identifying 
non-dominated alternatives with respect to conflicting objectives con
tributes to preparing a strong basis to start the group decision-making 
process. 

In addition, our study contributes to Steps 3 and 4 by presenting a 
sensitivity analysis approach to test the performance of non-dominated 
alternatives. We use Monte Carlo Simulation to explore the potential 
impact of uncertainties in stakeholders’ preferences on the location 
decision after non-dominated alternatives are determined. Our contri
bution is to help DMs to identify where the important thresholds in the 
preferences (i.e., weights) are so that they can position themselves with 
respect to these thresholds. The information from the sensitivity analysis 
should help DMs to manage conflicting objectives and converge to a 
consensus quicker in a group decision-making. 

3. Multi-objective location–allocation model for generating 
decision alternatives 

We describe the relief distribution network in the affected region 
during the response as in Fig. 3. A temporary distribution centre, i.e., a 
staging area (SA), refers to a place which receives relief items from main 
entry points (MEPs) (e.g. airports, ports), regional warehouses, or local 
supply points (if any) for temporary storing, additional sorting, and 
further distribution to the points of demands (PODs). In the 2015 Nepal 
and the 2016 Ecuador earthquakes response, SAs were a key part of 
relief distribution networks [6,84]. 

As depicted in Fig. 3, Baharmand et al. [16] distinguish three layers 
in the in-country relief distribution network depending on the topog
raphy of the affected region:  

i Locations that remain accessible by MEPs through highways or main 
roads. Relief items are normally sent to these locations by high ca
pacity trucks and/or trailers.  

ii Locations that are not accessible by MEPs through highways or main 
road. These places can be reached from temporary SAs in layer 1 
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using smaller trucks (like 4� 4 trucks or tractors). If necessary, air 
transport can be utilised to support these locations.  

iii Remote and hard-to-reach locations; ground transportation is 
impossible or too risky. The only way to reach beneficiaries in these 
locations is through air transport, porters, or a combination thereof 
from SAs in layer 1. 

Our model determines the optimum location of SAs and the number 
of mobile storage units (MSUs) to be erected, the flow of commodities 
between different layers and inventory at SAs such that the total logistics 
costs, response time, and unsatisfied demands are minimised. The 
objective functions of the model have conflicting natures. For the sake of 
brevity, we only describe the objective functions and constraints in 
informal terms in this section. The detailed explanations of notations, 
indices, parameters, decision variables and formulas of objective func
tions and constraints are presented in Appendix A. 

First objective: The minimisation of logistics costs is the first objec
tive which consists of ground transportation cost Eq.  (A.1), air trans
portation cost Eq.  (A.2), recurring cost Eq.  (A.3) and human resource 
cost Eq.  (A.4), as formulated below. The ground transportation cost 
includes the transit cost from MEPs to SAs, MEPs to PODs in layer 1 and 
SAs to PODs in Layers 1 and 2. Air transportation cost consists of costs 
related to shipping items from SAs to PODs in level 2 and 3 through air 
fleets. Recurring cost and human resource cost per location are rough 
estimations for the duration of the project. 

Minimize total logistics costs ¼ Ground transportation cost
þ Air transportation cost
þ Recurring cost

þ Human resource cost 

Second objective: The second objective is the minimisation of 
response time and consists of two components. The first component 
consists of the required time for setting up MSUs at located staging areas 
Eq.  (A.5). It includes the result of multiplying required days for erecting 
one MSU (or multiple MSUs simultaneously) and the summation of the 
binary variable Et. This variable is calculated by constraints and refers to 
every attempt to erect one MSU (or multiple MSUs simultaneously). The 
second component refers to the busy time steps during the operation Eq. 
(A.6). It represents the summation of the binary variable Lt. This vari
able counts every time step in the network that includes a shipment from 
MEPs to SAs/PODs and/or from SAs to PODs. The binary variable Lt is 
determined through the constraints (cf. Appendix A). 

Fig. 1. Classification of common MCDA methods in HL literature [77] and preference parameters in MODA.  

Table 2 
Common methods for modelling preferences in MODA approaches.  

Method Brief explanation A priori 
(example 
article) 

A posteriori 
(example 
article) 

Penalty functions Each objective is 
formulated in terms of 
costs. Penalty functions 
refer to estimated costs of 
optimising alternative 
objectives. 

✓ (Khayal 
et al. [45]  

Weighted sum The relative importance 
of each objective is 
represented by a weight 
between 0 and 1. If 
objectives have different 
scales, normalisation 
(weights or objectives) is 
required. 

✓ (Maharjan 
& Hanaoka 
[1] 

✓ (Maharjan & 
Hanaoka [9] 

ε-constraint or 
lexicographic 
ordering 

Objectives are prioritised 
and the most priority 
objective will be 
optimised while the rest 
are kept as constraints. 

✓ (Laguna- 
Salvad�o et al. 
[80] 

✓ (Baharmand 
et al. [16] 

Goal 
programming 

Certain goals would be 
considered for each 
objective and then 
objectives would be 
optimised in order to 
have the least deviation 
from goals. 

✓ [13]   

Fig. 2. Analytical group decision-making process in the humanitarian contexts (inspired by ALNAP [2] and Heyse [8] and the position of our contribution.  
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Minimize total response time¼ MSU setup time þ Operation time 

Third objective: This objective minimises the total unsatisfied de
mands, as formulated below. It consists of the summation of differences 
between the sent relief items to PODs in layers 1, 2 and 3, Eq.  (A.8) and 
their relevant quantity of demands Eq.  (A.7). Our model considers that 
multiple commodities have to be sent to PODs while the minimum 
amount of demand coverage has to be decided by the DM(s). 

Minimise total uncovered demand ¼ Total demands � Total shipped items 

We included those parameters in the model that related information 
could be easily reached in disasters response. In fact, disasters are not 
any more totally data lacking contexts: HOs normally have access to 
maps, distances and logistics prices through information sharing plat
forms such as Relief Web,2 Logistics Cluster,3 and Humanitarian Data 
Exchange4 in rather early days of disasters response. Our interviewees 
also informed us that in situations where data is not available or it is 
incomplete, practitioners use estimates. 

4. Approach to examine the impact of trade-offs 

Fig. 4 shows the proposed approach. The set of Pareto optimal so
lutions, sð1Þ… sðnÞ, refers to all alternatives that, from the mathematical 
point of view, are equally acceptable as a non-dominated solution. The 
overall performance value, vðsðnÞÞ, will be calculated for every Pareto 
optimal solution to enable further analysis of alternatives. This value is 
assumed to be calculated by an (additive) aggregation formula [78], as 
shown in Equation (1). 

vðsðnÞ Þ ¼
Xn

i¼1
wi�ð1 � NfiðsðnÞ Þ Þ wi � 0;

Xn

i¼1
wi ¼ 1 (1) 

In this equation, NfiðsðnÞÞ and wi refer to the normalised value of 
objective functions and their weights, respectively. Note that the nor
malised values should be deducted from 1 to compensate for the mini
misation direction of objective functions [82] (not needed for 
maximisation). The normalisation of objectives is necessary due to their 
different magnitudes and scales. While there are several normalisation 

schemes, we suggest using Equation (2), as it is widely referred to as an 
effective, practical approach [85]. 

NfiðsðnÞÞ¼
fiðsðnÞÞ � zU

i

zN
i � zU

i
(2) 

In Equation (2), zU
i and zN

i refer to Utopia and Nadir values of the 
objective function. While details and formulas regarding how to calcu
late these values are provided in detail by Grodzevich & Romanko [85]; 
they are often calculated according to the best and worst possible result 
of an objective per alternatives. 

The final step, cf. Fig. 4, refers to comparing alternatives through the 
sensitivity of scores. Multidimensional sensitivity analysis means 
simultaneous variations of weight parameters which helps to investigate 
the stability of the alternatives and supports consensus building in group 
decision-making process. It refers to inserting different combination of 
weights into Equation (1) and see which combinations have a significant 
impact on the overall score of alternatives. Such insights should help 
DMs to have an effective overview regarding where they need more 
discussions in a set of non-dominated alternatives. To this end, using 
intervals instead of exact weights, IðwiÞ, enables the opportunity for 
simultaneous variation of all weights while their summation equals to 1. 
According to Bertsch & Fichtner [82]; in the case of group 
decision-making, intervals can be computed by first, eliciting individual 

Fig. 3. Schematic presentation of key locations in a relief distribution network [16].  

Fig. 4. Approach to check the stability of alternatives and investigate the 
impact of trade-offs. 

2 https://reliefweb.int/.  
3 https://logcluster.org/.  
4 https://data.humdata.org/. 

H. Baharmand et al.                                                                                                                                                                                                                           

https://reliefweb.int/
https://logcluster.org/
https://data.humdata.org/


International Journal of Disaster Risk Reduction 45 (2020) 101455

7

weights from practitioners and second, defining the supersets of elicited 
weights regarding each criterion as the intervals, or ½0 � 1�. After con
structing the weight intervals, Monte Carlo Simulation with uniform 
distributions is suggested to draw samples within the intervals. When 
the samples are ready, the rest of the calculation is straightforward for 
each alternative following Equation (1). 

Using the proposed approach supports group decision-making in two 
aspects. First, as our approach considers uncertainty in modelling pref
erences (using intervals instead of exact values), it can contribute to 
bypassing the lengthy discussion among stakeholders regarding the 
relative importance of each objective. Second, it transparently shows the 
performance of alternatives and reflects information regarding the 
trade-offs that actually matter. This information can set a starting point 
in DMs’ discussions regarding where they need to argue about in the set 
of alternatives. Therefore, it can help a group of DMs to converge to one 
alternative quicker and easier while it ensures the quality of the deci
sion. In the next section, we demonstrate the application of our method 
through the Nepal case study. 

5. Case study 

To test and validate the proposed approach, we apply it to the 2015 
Nepal earthquake data from the UN WFP. The UN WFP is the leading 
agency of the Logistics Cluster and as such often coordinates the logistics 
activities in the humanitarian response. The stakeholders for UN WFP’s 
decision can be representatives from other HOs who normally partici
pate in the Logistics Cluster decision-making meetings and may have 
different aims, mandates and priorities [18]. Reports published after 
multiple recent disasters since the Haiti Earthquake in 2010 confirm that 
majority of responders coordinate under the UN Cluster System. These 
organisations include UN agencies, IFRC societies, local or international 
NGOs, and volunteers. For instance, in the 2015 Nepal earthquake 
response, “as of 20 June [2015], over 250 participants from around 110 
organisations attended coordination meetings in Kathmandu, Deurali and 
Chautara” [86]. 

5.1. Overview of Nepal case 

Due to the high magnitude of the 2015 Nepal earthquakes, approx
imately 9000 people lost their lives, nearly 22,500 people were injured, 
and more than half a million houses collapsed or were damaged [87]. To 
distribute food items among severely affected people (see Fig. 5), who 
lost their household food stocks or did not have access to markets, UN 
WFP proposed Emergency Operation Plan 200,668 that had two phases: 
the immediate and the structured relief [88]. In the structured relief 
phase, UN WFP aimed at delivering 20-day food rations to approxi
mately 1.1 million people in two months starting from June 2015 [88]. 

The Humanitarian Staging Area (HSA), which was located at Kath
mandu International Airport, served as the main entry point for relief 
items. In addition, UN WFP established eight SAs across the country 
before the structured relief phase. The sequence and approximate 
opening times of each location are depicted in Fig. 5. According to 
Ref. [89]; they used mainly two SAs (Deurali and Chautara) for their 
distribution. The remaining SAs were used either for strategic purposes 
(for instance Dhulikhel and Bharatpur to decrease the pressure on the 
HSA in Kathmandu) or to support partner HOs through the Logistics 
Cluster (Dhading Besi, Bidur, Dhunche, and Charikot) [88]. More details 
regarding the input data for the Nepal case is provided in Appendix B. 

5.2. Model results 

Fig. 7 compares the performance of models’ results with the UN 
WFP’s network for the Nepal relief phase. We fix the UN WFP’s SAs in 
the model constraints and solve the model by using Mavrotas & Florios 
[90]’s algorithm, which is called augmented epsilon constraint method 
version 2 (known as AUGMECON2). The algorithm has been 

demonstrated to be very efficient for providing the set of Pareto optimal 
solutions in multi-objective mixed-integer problems compared to the 
alternative methods in the literature. Then, we order alternatives based 
on the demand coverage, response time and logistics costs. The empty 
cells in Fig. 6 mean that the solution algorithm could not find any 
non-dominated alternative for the specific response time. For the Nepal 
case, the algorithm could solve the model in 115 min using a personal 
laptop with Intel Core i5-4300U processor at 1.90 GHz and 8 GB of RAM 
operating under Windows 10. We note that the solution time may vary 
with changes to the input data for the model parameters (e.g., number of 
locations, estimated demand, etc.). 

As Fig. 6 shows, UN WFP’s network suggests approximately %4 more 
logistics costs compared to the Pareto solution for the same number of 
delivery days (60 days). By extending the operation’s timeline (see for 
instance the column for 66 days), we found that this divergence de
creases gradually. For further analysis, the model’s suggested network 
for delivering items in 60 days (Sol.Model) is compared with UN WFP’s 
network (Sol.WFP) in Fig. 7. Both networks have one location in com
mon, Dhulikhel. These networks show that targeted demands could be 
addressed by three SAs located in the western, eastern, and central parts 
of the affected region in Nepal (in addition to HSA in Kathmandu). 
Indeed, the travelling distance and travelling time from locations 1 and 2 
(SAs in Sol.WFP) to densely populated PODs impose more costs 
comparing to locations 5 (Dhading Besi) and 8 (Charikot) in Sol.Model. 

The road access from/to Dhading Besi and Charikot were constrained 
during the immediate response [91] and this affected the UN WFP’s 
decision when they first decided to locate their SAs. However, since UN 
WFP used MSUs as storage facilities in SAs, which were erected easily 
and quickly [92], the location decision could have been revised. This 
could be carried out by using other locations to enhance the efficiency of 
relief network (given that 8 locations were already opened when UN 
WFP started the relief phase). To compensate for a potential lack of 
transportation fleets in the new SA locations, the UN WFP could use 
partnerships logistics service providers. 

A detailed sensitivity analysis of the model is given in Appendix D. 
Providing an explanation regarding the divergence between our model’s 
results and the choice of practitioners is not in the scope of our study. 
However, we think that the divergence could be discussed in three di
rections: (a) lack of application of a formal and transparent approach to 
model location problems in the field, (b) a different approach to model 
the problem, and (c) not adequately representing the decision situation 
or logisticians’ real circumstances due to missing objectives or con
straints. More investigation on the divergence can be a future research 
direction. 

Fig. 5. An overview of affected districts and the location of UN WFP estab
lished staging areas (source: Government of Nepal and Logcluster.org). 
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5.3. Results of the proposed approach 

Fig. 6 depicts the very common challenge that DMs often face in 
group decision-making; trade-offs between demand coverage, response 
time, and logistics costs. As this figure shows, for instance, within a 60- 
day timeline, a range of %86 to %100 of targeted demands in our case 
could be addressed. However, the latter could have %15 more logistics 
costs than the former. Interestingly, according to the model, covering % 
100 of targeted demands in less than 60 days (targeted timeline for UN 
WFP operations) was unfeasible given the fleet and capacity constraints 
in Nepal case. Also, by extending the coverage values to higher than % 
100, the divergence between the Pareto optimal solutions and values for 
UN WFP solution increased considerably. However, if covering %86 of 
demands was targeted, the operation could be carried out in a range of 
54–57 days with different logistics costs. In all scenarios of targeted 
demands in our case, logistics costs would decrease if the operations 
timeline was prolonged. 

We begin by analysing the impacts of trade-offs with those solutions 
that can correspond to %85 demand coverage (we have justified this 
choice before). This means given the solutions presented in Fig. 6, we 
have 22 non-dominated alternatives (among the total 27 alternatives 
that the solution algorithm could provide). From now on, we refer to a 
solution in Fig. 6 by Sol.[coverage percentage]-[response time]; for 
instance Sol.86-60 means the solution that corresponds to %86 demand 
coverage within 60 days. 

To elicit the preferences of our participants regarding the weights, 
we sent an online questionnaire to 30 experts. These experts were 
mainly those who participated in our Nepal interviews, in addition to 
some logisticians with similar backgrounds. We asked the participants to 

carry out pairwise comparisons for the proposed criteria (i.e. demand 
coverage, response time, and logistics costs) to extract judgement 
matrices with a nine-point scale as suggested by Saaty [93]. We did not 
make any specific reference to a concrete disaster case in the question
naire. The questionnaire presented to experts is given in Appendix C. In 
total, 17 practitioners responded. We removed two preference state
ments, as they were identified inconsistent, and then we constructed the 
weight intervals. The intervals are the supersets of consistent weights. 
Although the elicited weights had variations and peaks in the lower and 
the upper parts of the respective intervals, they were evenly distributed. 
The weights’ intervals are shown in Table 3. 

To perform the multidimensional sensitivity analysis (cf. Section 4), 
we first normalised the values of objective functions for each solution. 
Then, we used MATLAB software to draw random weight vectors. The 
spread of results for multiplying 1000 samples of random weight vectors 
to normalised objective function values of every solution is shown in 
Fig. 8. As this figure shows, the solution with the highest score suggests 
covering %88 of demands in 52 days. On the other hand, solutions with 
longer response times (for instance 100-60, 98-59, 96-59, 92-60, 94-59) 
got lower overall scores. This trend can be explained by the assigned 
weight interval to each criterion, although it is not the only reason. 

To better explain another reason, we prepared Fig. 9 which shows 
the normalised values for the top-5 and the worst-5 solutions based on 
the overall scores. The three top-scored solutions had relatively better 
values for response time and logistics costs (more than 0.7) compared to 
demand coverage (less than 0.6). However, this is vice versa for the 
least-scored solutions which highlights the impact of trade-offs between 
response time and logistics costs when certain demand coverage level 
(more than %86) is considered. 

Fig. 6. Pareto front solutions for the relief phase vs. UN WFP’s network (green ¼ more preferred).  

Fig. 7. Comparing the model’s suggested network for delivering items in 60 days (Sol.Model) and the UN WFP’s network in the relief phase (Sol.WFP).  
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We also considered uncertain weights to show the performance of 
the proposed approach when access to DMs’ is constrained. We exam
ined the sensitivity of alternatives’ scores by substituting all weight in
tervals with ½o � 1� and running the same Monte Carlo Simulation 
analysis. Despite the changes in intervals, as Fig. 10 shows, Sol.88-52 
maintained the top-scored solution. Our investigation shows that 
major changes in the overall scores are due to the differences between 
the values of the response time objective. In the set of Pareto alterna
tives, Sol.90-53 suggests the same network as Sol.88-52. Although the 
Sol.90-53 requires only þ1 day and it covers %2 more demands, it got a 
lower overall score compared to the Sol.88-52. This result could mean 
that the response time objective has more impact than the demand 
coverage counterpart. 

Fig. 10 also shows that although Sol.88-52 is quite robust, other 
solutions are sensitive to weights. For instance, comparing the perfor
mance of Sol.90-53 and Sol.86-54 across the 1000 samples shows that 
these two alternatives took the second top-scored solution inter
changeably, as divergences are highlighted by green circles. The 
changes in the ranks of Sol.90-53 and Sol.86-54 are due to the differ
ences between the values of logistics costs and response time in these 
two solutions. Sol.90-53 offers one day quicker response time while 
Sol.86-54 suggests %3.3 fewer logistics costs. Hence, throughout the 
analysis, when the corresponding weight for the logistics costs was 
greater than the weight for the response time, the solution with fewer 
costs got a better overall score. This observation was true when the 
weight of minimising unsatisfied demand was � 0:4. We also observed 
this trend when we examined other solutions. This suggests a consid
erable trade-off between logistics costs and response time in a certain 
level of demand coverage. 

5.4. Validating the proposed approach 

During the Humanitarian Innovation Day 2018, which was held on 
May 23, 2018 in Oslo, eight DMs from different HOs (IFRC, Norwegian 
Red Cross, Norwegian Refugee Council, Norwegian Church Aid, Save the 

Children, Oxfam, UN HRC, and UNICEF) were asked to participate in a 
group-decision making exercise for the purpose of our study. All par
ticipants had logistics backgrounds and were deployed to humanitarian 
response operations at least two times. They were divided into two 
groups randomly (each group included four DMs), namely Group A and 
B, and one author of this paper acted as a facilitator for both groups. 

In a briefing session, the same Nepal case as described in this study 
was presented to both groups, and participants’ questions were 
answered to ensure a clear understanding of the decision situation. Both 
groups had to imagine their organisation as a part of the Logistics Cluster 
and they had to converge to a plan regarding where to locate SAs in 
Nepal while considering response time, demand coverage, and logistics 
costs. Based on observations from the Nepal field study, further efforts 
were made to simulate the decision-making situation, like access to fa
cilities (e.g., laptops, boards, and maps), available information (data-set 
of this study) and time-pressure (only 1 h to make the final decision) to 
be similar to field situation as far as possible. 

Both groups had access to the set of non-dominated alternatives and 
Fig. 6. However, only Group B had access to the tipping points as well as 
Fig. 8–10 (the specific outcomes of the proposed approach in our study). 
Both groups started to make a decision at the same time and the facili
tator measured decision-making time in the background. 

Although this exercise had few similarities to the real situation (in 
terms of stress, time pressure, workload, number and combination of 
DMs), interesting insights were obtained. Decision-making time for 
Group B was %73 less than Group A. Also, Group A selected Sol.92-55 
which received a middle-range overall score in Fig. 8, compared to the 
selection of Group B, Sol.90-53, which is the second top scored alter
native. Surprisingly, no group selected Sol.88-52, which could have 
several reasons. The reason could be the concern of our participants to 
cover as many demands as possible while selecting one of the top-scored 
plans. Further investigation regarding other potential reasons is 
addressed as a future research direction. 

6. Discussion 

In this section, first, we discuss our findings from four aspects: 
originality, commensurability of criteria, number of objectives and 
scalability. Then, we elaborate on the impact of trade-offs, insights from 
the validation experiment, the missing criteria, and implications for 
practice. 

Originality By considering weight intervals, we assumed that the 
relative importance of considered criteria in the model (response time, 

Table 3 
Weight intervals elicited from practitioners.  

Criterion IðwiÞ

Effectiveness (demand coverage) ½0:25 � 0:50�
Cost efficiency (logistics costs) ½0:15 � 0:40�
Time efficiency (response time) ½0:30 � 0:60�

Fig. 8. Overall scores after the multidimensional weight change.  
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demand coverage, and logistics costs) may change over the timeframe of 
response. To the best of our knowledge, this assumption has not been yet 
considered in similar studies in the HL literature. We examined the 
potential impact of shifting in preferences on the relief distribution 
network by considering random weights. Our analysis shows that if we 
address more than %86 demand coverage, the main issue would be to 
manage trade-offs between logistics costs and response time. 

Commensurability of criteria Considering trade-offs between 
criteria assumes commensurability which allows to compare criteria and 
compensate one with the other. We addressed this challenge by not 
allowing exchanges between conflicting criteria, e.g. logistics costs and 
demand coverage, unless minimum achievements or standards are 
accomplished. For instance, we focused only on those solutions that 
could address certain demand coverage (� %86), as noted relevant by 
our interviewees. 

Number of objectives We think that our proposed approach can be 
used for several multi-objective decision problems in the humanitarian 

response. However, we have to note that the number of objectives may 
hinder the effectiveness of our proposed approach and outcomes. Our 
study considers a location model with three conflicting objectives. Ac
cording to our experiments, for mathematical models with ‘number of 
objective functions � 2’, we suggest replacing Equation (1) by weighted 
Chebyshev approach [94]. We have not tested the weighted Chebyshev 
approach; however, it has proven to work effectively with two objectives 
[79]. More investigation for using the weighted Chebyshev approach (or 
any other approach that would work effectively for situations with 
bi-objective models) is addressed as a future research direction. 

Scalability Although group decision-making in humanitarian con
texts has been criticised in the literature for being time-consuming and 
hard-to-converge [28,95], we showed that incorporating Monte Carlo 
Simulations can bring helpful managerial insights for improving the 
speed and transparency of decision-making. As Monte Carlo Simulations 
are notorious for being resources intense, we argue for solving the 
multi-objective model and carrying out Monte Carlo Simulations in back 

Fig. 9. Objective functions’ values for the (a) top-5 solutions and (b) the least scored solutions, in the relief phase.  
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offices (like headquarter offices outside of the affected region) and then, 
presenting the identified tipping points, to the DMs. 

While this approach shifts computation to a back office, it leaves the 
decision-making authority and agency with the operational responders. 
As such, it is different from remote management which has been criti
cised by several scholars (e.g., Donini & Maxwell [96]; Duffield [97]; 
and Comes et al. [98]). Here, we support field-based DMs in managing 
the complexity of their choices by providing the tipping points that are 
specifically important as they indicate areas, where a small change in 
preferences will lead to different set of locations. 

Trade-offs Monte Carlo analysis showed that trade-offs between 
response time and logistics costs can have a significant impact on 
location decision. This has been noted in Baharmand et al. [16] for the 
immediate response phase. For our problem, results showed that when 
the relative importance for minimising unsatisfied demands is consid
ered � 0:4, this is the tipping point at which DMs confront the trade-offs 
between logistics costs and response time. Our study revealed that 
combining this information with the overall value score analysis could 
facilitate group decision-making to a high extent. 

Validation experiment The DMs who participated in our experi
ment selected a network from the best-scored alternatives quicker. This 
means combining a formal decision support system with transparent 
steps for selecting one .alternative not only facilitates converging to a 
decision but also improves the quality of decisions specifically in con
strained and uncertain contexts. Our experiment also highlights the 
importance of validation of proposals in real settings, which is currently 
lacking in the literature [33]. 

Missing criteria and/or constraints - The mathematical model that 
we adapted in our study aims at locating RDCs based on logistics costs, 
response time, and demand coverage. Although we validated these ob
jectives for the Nepal case with our interviewees, we note that there 
might be some other criteria or constraints for different contexts. For 
instance, our model did not account for staff security [99] or fairness 
[100] although both aspects would probably affect the logistics decision 
in disasters response (such as locating RDCs or routing convoys). We 
argue that some concerns (such as staff security) highly depend on the 
context (conflicts vs. natural disasters) [69] and can differ from case to 
case [7]. Our observations in the aftermath of the 2013 Typhoon Haiyan 
and 2015 Nepal earthquake show that staff security was not practi
tioners’ concern while some studies note staff security as a critical issue 
after the 2010 Haiti earthquake [101,102]. For fairness, Baharmand 
et al. [16] contend that practitioners’ approach to consider it in opera
tions was not found clear in the observations (e.g., priority of regions vs. 

targeted groups vs. timeliness of the deliveries). Although some con
cerns cannot be modelled, DMs need to be aware of the consequences to 
make properly informed decisions. As such, a future research direction 
can be to develop a framework for selecting appropriate objectives and 
constraints for HL decisions in distinct contexts (conflicts vs. natural 
disasters) or cases (Asia vs. Africa). 

Implications for practice The proposed approach supports identi
fying tipping points (i.e., the main discussion points between multiple 
decision-makers with neutral backgrounds) for HL problems that often 
inevitably have multiple conflicting criteria [65]. Although we applied 
the approach to a location problem, we think that HOs could adapt our 
work to a wide range of problems in HL. However, the naturalistic 
decision-making approach is more common than analytic approaches in 
HL [4]. Therefore, one important aspect would be to consider and to 
realise the training and education that would be required to shift from 
naturalistic to analytic approaches for a more effective and efficient 
response. As such, Lu et al. [103] have proposed a framework that can 
facilitate the learning process in HOs. 

7. Conclusions 

This study has combined multi-objective optimisation with a poste
riori preference articulation approach to support decision-makers (DMs) 
in a sudden-onset disaster response. Our research has targeted locating 
temporary relief distribution centres (RDCs), which has been referred to 
as one of the first critical decisions for an effective and efficient response 
[9]. A location-allocation model has been adapted to minimise uncov
ered demand, response time, and logistics costs, and this research offers 
an approach based on Monte Carlo Simulation to facilitate group 
decision-making by investigating the stability of the non-dominated 
alternatives. Our approach supports finding the tipping points which 
can assist DMs to focus group discussions and converge to a consensus 
quicker. The proposed methodology has been applied to a real dataset 
from UN WFP’s operations after the 2015 Nepal earthquake and then 
validated by representatives from humanitarian organisations (HOs) 
through a small experiment. 

Our analysis for the Nepal case revealed that when the relative 
importance of demand coverage was � 0:4, DMs confronted a consid
erable trade-off between logistics costs and response time. The experi
ment showed that providing information about tipping points and the 
overall performance of networks can decrease decision-making time up 
to %70. The methodology has therefore proven its ability to generate 
effective and efficient location plans for sudden-onset disasters response 

Fig. 10. Scores averages for all drawn parameter combinations for the top-3 solutions vs. Sol.100-60.  
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given the presence of multiple DMs, time pressure, and constrained 
resources. 

The contributions of our study are threefold. First, we illustrate the 
impact of trade-offs in disasters response that we elaborate from the case 
study. This adds to the existing body of research by formalising and 
increasing understanding on this issue and complements the broader 
research stream dealing with the multi-criteria problems in HL (e.g. 
Gralla et al. [66]. Second, we develop an effective methodology to 
address uncertainties and ambiguities regarding DMs’ preferences while 
multiple conflicting objectives have been considered for locating RDCs. 
We provide further insights into the potential impact of different pref
erences on the number and location of RDCs. Third, this study is in line 
with recent works challenging the importance of group decisions in di
sasters response (e.g. Maharjan & Hanaoka [9] and Ghavami et al. [17] 
and calling for deeper investigation of supporting approaches that can 
be implemented in the field [16,33]. We contribute to this research 
stream, trying to shed light on the potentials of Monte Carlo simulations, 
by discussing which trade-offs have greater impact on a given 
location-allocation decision to facilitate group decisions in the presence 
of multiple stakeholders and several alternatives. Such information can 
be used for investigating other approaches that can support 
decision-making in the field. 

However, it is important to note that locating RDCs can be affected 
by other criteria. Investigating reasons that caused a difference between 
participants’ decision and the top scored alternative of our approach 
requires a dedicated study which can be our first future research di
rection. Furthermore, we tested the performance of our approach on a 
limited set of criteria which can be another limitation of our study. We 
address other investigations with different criteria as the second future 
research direction. Moreover, our findings regarding the impacts of 
trade-offs are based on the Nepal case and they should not be general
ised. Further case studies are required to support the findings of our 
study regarding the impact of trade-offs between response time and 
logistics costs compared to demand coverage in the location decision. 
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Appendix A. Model formulations 

Indices 

B Set of main entry points ðb2 B ¼ f1;2;…;BgÞ
I Set of potential locations for staging areas ði2 I ¼ 1; 2;…; IgÞ
P Set of demand points in POD layer 1 ðp2 P ¼ f1;2;…;PgÞ
J Set of demand points in POD layer 2 ðj2 J ¼ f1;2;…;JgÞ
H Set of demand points in POD layer 3 ðh2 H ¼ f1;2;…;HgÞ
T Set of time steps ðt 2 T ¼ f1;2;…;TgÞ
C Set of relief commodity types ðc2 C ¼ f1;2;…;CgÞ
G Set of ground transportation types available at field ðg2 G ¼ f1;2;…;GgÞ
A Set of air transportation types available at field ða2 A ¼ f1;2;…;AgÞ

Model parameters 

db;i Distance from the bth MEP to ith SA in km 
db;p Distance from the bth MEP to pth POD layer 1 in km 
di;p Distance from the ith SA to pth POD layer 1 in km 
di;j Distance from the ith SA to jth POD layer 2 in km 
tb;i Transit time from the bth MEP to ith SA in minutes 
tb;p Transit time from the bth MEP to pth POD layer 1 in minutes 
ti;p Transit time from the ith SA to pth POD layer 1 in minutes 
ti;j Transit time from the ith SA to jth POD layer 2 in minutes 
αa Estimates air transportation costs in USD=tour 
αg Estimated ground transportation costs in USD=km 
υ Estimated human resources (HR) costs during the operations in USD per one SA 
ϕ Estimated recurring costs including the costs for rental, equipment, utilities, and supplies in USD per one MSU during the operations 
mc

h Demand of commodity c in the hth POD layer 3 in kg 
mc

j Demand of commodity c in the jth POD layer 2 in kg 
mc

p Demand of commodity c in the pth POD layer 1 in kg 
βt Maximum possible number of MSUs that can be erected simultaneously in tth time step 
γ Estimated required time for setting up an MSU in timesteps 
ζ Volume capacity of every MSU in m3 

πi Maximum number of MSUs that can be erected in the ith SA in units 
σ Total number of available MSUs in units 
capa Weight capacity of an air transportation of type a in mTons 
capg Weight capacity of a ground transportation of type g in mTons 
τa

i Number of helicopters of type a available in the ith SA in units 
τg

b Number of trucks of type g available in the bth MEP in units 
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τg
i Number of trucks of type g available in the ith SA in units 

δ Maximum allowed driving time in minutes 
ω Maximum allowed distance for every helicopter tour in km 
kc Weight of the cth commodity in kg=m3 

U A very big number 
M Minimum demand coverage level 

Decision variables 

Binary variables 

LOCi 1, if the ith candidate SA is opened; 0, otherwise 
Xb;p 1 if there is ground shipment between the bth MEP and pth POD (layer 1); 0 otherwise 
Xb;i 1 if there is ground shipment between the bth MEP and ith SA; 0 otherwise 
Yi;p 1 if there is ground shipment between the ith SA and pth POD (layer 1); 0 otherwise 
Yi;j 1 if there is ground shipment between the ith SA and jth POD (layer 2); 0 otherwise 
Zi;j 1 if there is air shipment between the ith SA and jth POD (layer 2); 0 otherwise 
Zi;h 1 if there is air shipment between the ith SA and hth POD (layer 3); 0 otherwise 
Lt 1 if there is an operation in the tth time step; 0 otherwise 
Et 1 if at least one MSU is erected in the tth time step; 0 otherwise 

Continuous variables 

Fc
t;b;p Amount of cth item to be shipped from the bth MEP to pth POD (layer 1) by ground transportation in m3 

Mc
t;b;i Amount of cth item to be shipped from the bth MEP to ith SA by ground transportation in m3 

Oc
t;i;p Amount of cth item to be shipped from the ith SA to pth POD (layer 1) by ground transportation in m3 

Oc
t;i;j Amount of cth item to be shipped from the ith SA to jth POD (layer 2) by ground transportation in m3 

Rc
t;i;j Amount of cth item to be shipped from the ith SA to jth POD (layer 2) by air transportation in m3 

Rc
t;i;h Amount of cth item to be shipped from the ith SA to hth POD (layer 3) by air transportation in m3 

Wt;i Available inventory at SA at the end of t in m3 

Integer variables 

Nt;i Number of MSUs in the ith SA at tth time step in integers 
Sg

t;b;i Number of ground shipment of type g from the bth MEP to the ith SA 
Sg

t;b;p Number of ground shipment of type g from the bth MEP to the pth POD (layer 1) 
Sg

t;i;p Number of ground shipment of type g from the ith SA to the pth POD (layer 1) 
Sg

t;i;j Number of ground shipment of type g from the ith SA to the jth POD (layer 2) 
Qa

t;i;j Number of air shipment tours of type a from the ith SA to the jth POD (layer 2) 
Qa

t;i;h Number of air shipment tours of type a from the ith SA to the hth POD (layer 3) 

Objective functions 

Minimize total logistics costs ¼ Ground transportation cost
þ Air transportation cost
þ recurring cost

þ Human resource cost  

where 

Ground transportation costs ¼
XG

g¼1
αg
�XT

t¼1

XB

b¼1

XI

i¼1
Sg

t;b;idb;iþ

XT

t¼1

XB

b¼1

XP

p¼1
Sg

t;b;pdb;pþ

XT

t¼1

XI

i¼1

XP

p¼1
Sg

t;i;pdi;pþ

XT

t¼1

XI

i¼1

XJ

j¼1
Sg

t;i;jdi;j

�

(A.1) 
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Air transportation costs ¼
XA

a¼1
αa
�XT

t¼1

XI

i¼1

XJ

j¼1
Qa

t;i;jþ

XT

t¼1

XI

i¼1

XH

h¼1
Qa

t;i;h

�
(A.2)  

Recurring cost ¼ϕ
XT

t¼1

XI

i¼1
Nt;i (A.3)  

Human resource costs ¼ υ
XI

i¼1
LOCi (A.4)  

Minimize total response time ¼ MSU setup time þ Operation time  

where 

MSU setup time ¼ γ
XT

t¼1
Et (A.5)  

Operation time ¼
XT

t¼1
Lt (A.6)  

Minimise total uncovered demand ¼ Total demands � Total shipped items  

where 

Total demands ¼
XC

c¼1

�XP

p¼1
mc

pþ
XJ

j¼1
mc

j þ
XH

h¼1
mc

h

�
(A.7)  

Total shipped items ¼ kc
�XT

t¼1

XI

i¼1

XP

p¼1
Oc

t;i;p þ
XT

t¼1

XB

b¼1

XP

p¼1
Fc

t;b;p þ
XT

t¼1

XI

i¼1

XJ

j¼1
Oc

t;i;j

þ
XT

t¼1

XI

i¼1

XJ

j¼1
Rc

t;i;j þ
XT

t¼1

XI

i¼1

XH

h¼1
Rc

t;i;h

�
(A.8)  

Subject to constraints 

Fc
t;b;p �UXb;p 8t 2 T; c 2 C; b 2 B; p 2 P (A.9)  

Mc
t;b;i �UXb;i 8t 2 T; c 2 C; b 2 B; i 2 I (A.10)  

Xb;i� LOCi 8b 2 B; i 2 I (A.11) 

Constraints (A.9) and (A.10) ensure that relief items can be transferred from MEPs to PODs (first layer) and SAs only if MEP is connected to these 
locations respectively. Similarly, Constraint (A.11) makes sure that the MEP can be connected to a SA only if the SA is located there. 

XC

c¼1

XP

p¼1
Oc

t;i;p þ
XC

c¼1

XJ

j¼1
Oc

t;i;j þ
XC

c¼1

XJ

j¼1
Rc

t;i;j þ
XC

c¼1

XH

h¼1
Rc

t;i;h � Wt;i 8t 2 T; i 2 I (A.12) 

Constraint (A.12) shows that the amount of relief items transferred from established SAs is less than or equal to the maximum inventory available at 
given SA during that time step. 

Oc
t;i;p �UYi;p 8t 2 T; c 2 C; i 2 I; p 2 P (A.13)  

Oc
t;i;j �UYi;j 8t 2 T; c 2 C; i 2 I; j 2 J (A.14)  

Rc
t;i;j �UZi;j 8t 2 T; c 2 C; i 2 I; j 2 J (A.15)  

Rc
t;i;h �UZi;h 8t 2 T; c 2 C; i 2 I; h 2 H (A.16) 

Constraints (A.13)–(A.15) and (A.16) imply that relief items can be shipped from SAs to PODs only if they are connected. 

Yi;p�LOCi 8i 2 I; p 2 P (A.17)  

Yi;j� LOCi 8i 2 I; j 2 J (A.18) 
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Zi;j� LOCi 8i 2 I; j 2 J (A.19)  

Zi;h�LOCi 8i 2 I; h 2 H (A.20) 

Constraints (A.17)–(A.19) and (A.20) ensure that a SA can be assigned to a POD only if the SA is established. 

Wt� 1;iþ
XC

c¼1

XB

b¼1
Mc

t;b;i � ζNt;i 8t 2 T; i 2 I (A.21)  

Wt� 1;i þ
XC

c¼1

XB

b¼1
Mc

t;b;i �
XC

c¼1

XP

p¼1
Oc

t;i;p �
XC

c¼1

XJ

j¼1
Oc

t;i;j

�
XC

c¼1

XJ

j¼1
Rc

t;i;j �
XC

c¼1

XH

h¼1
Rc

t;i;h � Wt;i 8t 2 T; i 2 I

(A.22) 

Constraints (A.21) and (A.22) make sure that inventory at SA does not exceed the storing capacity. 

kc
�XT

t¼1

XI

i¼1
Oc

t;i;p þ
XT

t¼1

XB

b¼1
Fc

t;b;p

�
�M�mc

p 8c2C; p 2 P (A.23)  

kc
�XT

t¼1

XI

i¼1
Oc

t;i;j þ
XT

t¼1

XI

i¼1
Rc

t;i;j

�
�M�mc

j 8c2C; j 2 J (A.24)  

kc
�XT

t¼1

XI

i¼1
Rc

t;i;h

�
�M�mc

h 8c2C; h 2 H (A.25) 

Constraints (A.23)–(A.25) ensure that the demands in each layer are M% met. The constraint for addressing 100% of estimated demands is driven 
from our interviews with practitioners regarding what objectives they often target in the immediate response. 

XT

t¼1

XP

p¼1
Oc

t;i;p þ
XT

t¼1

XJ

j¼1
Oc

t;i;j þ
XT

t¼1

XJ

j¼1
Rc

t;i;j

þ
XT

t¼1

XH

h¼1
Rc

t;i;h �
X

t;b
Mc

t;b;i 8c 2 C; i 2 I

(A.26) 

Constraint (A.26) guarantees the balance between the items delivered to the demand points and items supplied to the SAs. 

XI

i¼1
Yi;pþ

XB

b¼1
Xb;p � 1 8p 2 P (A.27)  

XI

i¼1
Yi;jþ

XI

i¼1
Zi;j � 1 8j 2 J (A.28)  

XI

i¼1
Zi;h� 1 8h 2 H (A.29) 

Constraints (A.27)–(A.29) ensure that the demand points in layers 1–3 are covered by at least one SA. 

Xb;itb;i� δ 8b 2 B; i 2 I (A.30) 

Constraint (A.30) ensures that MEPs support only those SAs that can be accessed within a certain driving time, δ. 

Yi;pti;p� δ 8i 2 I; p 2 P (A.31)  

Xb;ptb;p� δ 8b 2 B; p 2 P (A.32) 

Constraints (A.31) and (A.32) state which PODs in the layer 1 can be potentially supported by every SA and MEP by truck, respectively. 

Yi;jti;j � δ 8i 2 I; j 2 J (A.33) 

Constraint (A.33) ensures the travel time between potential SAs and allocated PODs to them in layer 2 for ground transportation are less than δ. 

Zi;jdi;j �ω 8i 2 I; j 2 J (A.34) 

Constraint (A.34) guarantees that air transportation (e.g., helicopters) are only allocated for transporting items to PODs within a certain distance. 

Nt;i �LOCiπi 8t 2 T; i 2 I (A.35)  

XI

i¼1
ðNt;i � Nt� 1;iÞ� βtEt 8t 2 T (A.36)  

Nt� 1;i�Nt;i 8t 2 T; i 2 I (A.37) 

Constraint (A.35) limits the number of MSUs in each SA to the space constraint. Sometimes it would not be possible to erect as many MSUs as we 
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want in an SA. Constraint (A.36) ensures that only β number of MSUs can be erected simultaneously in the SAs. For the simplicity of computation, 
Constraint (A.37) guarantees that the number of MSUs in each SA can only remain the same or increase in each time step. 

XI

i¼1
Nt;i � σ 8t 2 T (A.38) 

Constraint (A.38) ensures that the total number of proposed MSUs is less than available MSUs for the operation. 

XC

c¼1
Mc

t;b;i
kc

1000
�
XG

g¼1
Sg

t;b;icapg 8t 2 T; b 2 B; i 2 I (A.39)  

XC

c¼1
Fc

t;b;p
kc

1000
�
XG

g¼1
Sg

t;b;pcapg 8t 2 T; b 2 B; p 2 P (A.40)  

XC

c¼1
Oc

t;i;p
kc

1000
�
XG

g¼1
Sg

t;i;pcapg 8t 2 T; i 2 I; p 2 P (A.41)  

XC

c¼1
Oc

t;i;j
kc

1000
�
XG

g¼1
Sg

t;i;jcapg 8t 2 T; i 2 I; j 2 J (A.42) 

Constraints (A.39)–(A.42) guarantee that the shipped items do not exceed the capacity of ground transportation with respect to the weight 
limitation. 

XC

c¼1
Rc

t;i;j
kc

1000
�
XA

a¼1
Qa

t;i;jcapa 8t 2 T; i 2 I; j 2 J (A.43)  

XC

c¼1
Rc

t;i;h
kc

1000
�
XA

a¼1
Qa

t;i;hcapa 8t 2 T; i 2 I; h 2 H (A.44) 

Using a similar approach as for ground transportation for air fleets, constraints (A.43) and (A.44) state the weight capacity limitation for air 
transportation systems. 

XI

i¼1
Sg

t;b;i þ
XP

p¼1
Sg

t;b;p � τg
bLt 8t 2 T; b 2 B; p 2 P; i 2 I; g 2 G (A.45)  

XP

p¼1
Sg

t;i;p þ
Xj

j¼1
Sg

t;i;j � τg
i Lt 8t 2 T; i 2 I; p 2 P; j 2 J; g 2 G (A.46)  

XJ

j¼1
Qa

t;i;j þ
XH

h¼1
Qa

t;i;h � τa
i Lt 8t 2 T; i 2 I; j 2 J; h 2 H; g 2 G (A.47) 

Constraints (A.45)–(A.47) guarantee that number of transportation between nodes in each time step do not exceed the number of available 
transportation means. These constraints also ensure that whenever a shipment is taken place in the network at time step t, the counter Lt will consider 
the time step as an operation day. 

Sg
t;b;p �UXb;p 8t 2 T; b 2 B; p 2 P; g 2 G (A.48)  

Sg
t;b;i �UXb;i 8t 2 T; b 2 B; i 2 I; g 2 G (A.49)  

Sg
t;i;p �UYi;p 8t 2 T; i 2 I; p 2 P; g 2 G (A.50)  

Sg
t;i;j �UYi;j 8t 2 T; i 2 I; j 2 J; g 2 G (A.51)  

Qa
t;i;j �UZi;j 8t 2 T; a 2 A; i 2 I; j 2 J (A.52)  

Qa
t;i;h �UZi;h 8t 2 T; a 2 A; i 2 I; h 2 H (A.53) 

Constraints (A.48)–(A.53) ensure that transportation takes place only if the two locations are connected. 

LOCi �
XB

b¼1
Xb;i þ

XP

p¼1
Yi;p þ

XJ

j¼1
Yi;j þ

XJ

j¼1
Zi;j þ

XH

h¼1
Zi;h 8i 2 I (A.54)  

LOCi;Xb;p;Xb;i; Yi;p;Yi;j;Zi;j;Zi;h 2 0; 1 8i 2 I; b 2 B; p 2 P; j 2 J; h 2 H (A.55) 

Constraints (A.54) and (A.55) ensure that the values for the binary variables are determined accordingly. 

Appendix B. Model input data 

We use the following data sources to estimate the input data for our models: number of households in PODs (estimated from the 2011 Nepal census 
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report), UN WFP selected locations for setting up SAs (as shown in Fig. 5), box sizes for delivered food (UN WFP handbook and interviews), travel 
times/travel distances (acquired from one Nepalese logistics service provider), and specifications of MSUs established during the Nepal response (UN 
WFP reports). 

The parameters related to logistics costs are elicited from UN WFP’s business experts. We ensured that the used parameter values are the ‘best 
guess’, as depicted in Table B4. During the calculations, monthly costs are adapted to the estimated timeline of the operation. A summary of other 
input data for our model is presented in Table B5 and Table B6.  

Table B4 
Costs parameters for the Nepal case.  

Name Description Value 

Recurring costs Includes estimates for rental, equipment, utilities, supplies, and preparations in Nepal per day $850 
Trucks costs Estimating the driving cost for Nepalese drivers per kilometer $10 
Helicopter costs An estimation of costs for using helicopters per tour $12000 
HR salary Includes estimates for having both international and national resources in the team per month $17500 
Operation timeline Maximum estimated days for carrying out the operation 60 days   

Table B5 
Definition of decision variables.  

Parameter description Input data Source 

Candidate locations for establishing staging 
areas (and their capacity to erect MSUs) 

13 nodes: Chautara (6); DhadingBesi (6); Dhunche (6); Bidur (6); Charikot (6); Deurali (6); 
Bharatpur (6); Dhulikhel (6) 

UN WFP reports 

Demand information 2,169,087 people and 370 VDCs in seven districts require 10 days food ratio. 2011 GoN census report and 
UN WFP project plan 

Available transportation means in nodes 25 trucks and 25 tractors with 25 mT and 3 mT weight capacity respectively and 3 helicopters 
with 2.5 mT weight capacity (maximum 4 tours) which can be dispatched every day. 

Logistics Officer at UN WFP 

Commodity characteristics Each person’s 0.5 kg food portion per day including rice or High Energy Biscuits (HEBs) for ten 
days (5 kg each for the duration of 10 days). 1 mT rice occupies 1.5m3 volume and 0.4m2 surface 
space while 1 mT HEC occupies 2.5m3 volume and 0.67m2 surface space. 

Logistics Officer at UN WFP 

Available MSU type (total available number) 32  m � 10  m (32); 20% of each MSU’s surface should be left empty for indoor movements 
(layout design). Setup days ¼ 2 

Logistics Officer at UN WFP   

Table B6 
Travel distance (time) between nodes in the network  

No. Candidate location HSA Gorkha Dhading Rasuwa Nuwakot Sindhup. Dolkha Ramechhap 

1 Deurali 110 (190) 104 (170) 173 (280) 235 (422) 190 (300) 286 (495) 395 (650) 343 (550) 
2 Bharatpur 155 (300) 77 (175) 125 (250) 202 (420) 145 (270) 249 (497) 350 (630) 321 (420) 
3 Chautara 82 (143) 217 (375) 191 (355) 233 (440) 165 (310) 55 (90) 144 (270) 155 (224) 
4 Dhulikhel 31 (70) 170 (305) 143 (285) 166 (310) 120 (240) 68 (127) 156 (310) 124 (185) 
5 Charikot 133 (260) 273 (490) 246 (475) 269 (560) 220 (430) 72 (150) 54 (120) 83 (145) 
6 Dhunche 118 (280) 171 (290) 114 (212) 45 (120) 117 (265) 187 (372) 330 (590) 244 (430) 
7 Bidur 65 (157) 118 (190) 92 (167) 68 (165) 20 (40) 165 (147) 274 (485) 222 (385) 
8 DhadingBesi 89 (175) 77 (140) 32 (60) 130 (280) 81 (150) 179 (349) 290 (505) 236 (406)  

Appendix C. Pairwise questionnaire 

Dear Participant, 
Thank you for accepting to take part in our research. In this questionnaire, the following three criteria are considered. 

� Effectiveness is to deliver the right items to the right people. We measure this criterion through the number of delivered relief items to benefi
ciaries, for instance water bottles in an earthquake affected area.  
� Cost efficiency is to do relief distribution with the lowest costs as possible. We measure this criterion through different costs of a relief operations 

such as transportation costs.  
� Time efficiency is to distribute relief items as timely as possible. We measure this criterion through the time required for delivering relief items to 

beneficiaries. 

Imagine a natural sudden-onset disaster has just happened and you are deployed to the affected area for a response mission. There, you are in 
charge of designing a relief distribution network to deliver relief items to beneficiaries. We would like to ask you to choose an appropriate weight 
(importance) for each of the above-mentioned criteria from your pint of view. Please fill in Table C8 by substituting your choice with question-marks. 
Detailed instructions can be found in the following. Instructions:Table C7 presents the scales. In this table, two (2) is the lowest importance scale while 
nine (9) represents the highest. Considering Table C7, if your judgement value is on the left side of 1 (more important than), put the actual judgement 
value in the corresponding cell of Table C8 (substitute the corresponding question-mark). If the judgement value is on the right side of 1, put the 
reciprocal value (i.e., 1

value) in Table C8. If the comparing criteria have equal importance, put 1 in the corresponding cell.  
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Table C7 
The nine point scale pairwise comparison for three criteriaa based on Saaty [93]’s approach  

Factor Factor weighting score Factor 

More important than Equal Less important than 

Criterion 1 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Criterion 2 
Criterion 2 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Criterion 3 
Criterion 3 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Criterion 1  
a This table is designed for the purpose of this questionnaire and it has to be modified if more criteria are considered.  

Table C8 
Pairwise matrix to be filled in  

Criteria Demand coverage Response time Logistics costs 

Demand coverage 1 ?a ?a 

Response time – 1 ?a 

Logistics costs – – 1  
a This has to be substituted according to the instructions. 

Appendix D. Sensitivity analysis on model parameters 

To check the sensitivity of objectives and results to changes of model parameters, we conduct a sensitivity analysis. According to our interviews 
with the logisticians, changes to the number of available ground transportation, number of available air transportation, ground transportation costs, 
air transportation costs, and weight of delivered relief packages are very common in the humanitarian response. In this section, we analyse the effects 
of varying corresponding parameters % � 60, % � 40, % � 20, %þ 20, %þ 40 and %þ 60 on the total logistics cost and total response time objectives 
while the minimum level of satisfied demand is kept more than %85. According to our field interviews, practitioners often aim at addressing more than 
%85 of demands in the targeted areas. 

Results of our analysis are shown in Figure D11a - e – Fig. 8e. The response time objective shows a few sensitivity to changes in ground and air 
transportation costs (the range of response time objective has not changed in corresponding variations). However, the response time objective is 
highly sensitive to variations in the weight of relief items and the number of ground transportation fleets. We also noted a rather high sensitivity of 
logistics costs objective to the changes of relief item weights. By every %20 variation in the weight parameter, we observed approximately %50 change 
in both logistics costs and response time objectives. However, changes in the number of air transportation fleets barely affected the values of 
objectives. 
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Fig. D11. The impacts of varying parameters on response time and logistics costs objective functions while demand coverage is � %85.  

Our investigations show that if access to more ground fleets could be provided in the Nepal case, then relief items could be delivered earlier and 
even with fewer logistics costs (cf. Fig. D11a). This highlights the importance of accessing to heterogeneous fleets in disasters response. With respect to 
air transportation fleets, the figures depict that when we decreased the availability of fleets, the model opens more SAs to enable further access to more 
ground fleets through multiple locations. This partly explains why drastic changes in the number of air fleets (e.g., %-60) only worsen the response 
time by less than %15. 

Appendix E. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijdrr.2019.101455. 
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DM: Decision-maker 
HL: Humanitarian logistics 
HO: Humanitarian organisation 
HSA: Humanitarian Staging Area 
MAVT: Multi attribute value theory 
MCDA: Multiple criteria decision analysis 
MEP: Main entry points 
MODA: Multiple objective decision analysis 
MSU: Mobile storage unit 
OR: Operations research 
POD: Point of demand 
RDC: Relief distribution centre 
SA: Staging area 
UN: United Nations 
WFP: World Food Programme 
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