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Abstract
Quality control is of key importance in the aerospace in-
dustry. This paper deals with the automatic inspection of
mechanical aeronautical assemblies. For that purpose, we
have developed a computer-vision-based system made of a
robot equipped with two 2D cameras and a 3D scanner. The
3D CAD model of the mechanical assembly is available. It
is used as a reference and it describes the assembly as it
should be. The objective is to verify that the mechanical as-
sembly conforms with the CAD model. Several types of in-
spection are required. For instance, we must check that the
needed elements of the assembly are present, and that they
have been mounted in the correct position. For this kind of
inspection we use the 2D cameras and we have developed
inspection solutions based on 2D image analysis. We have
found that some types of inspection cannot be performed
by using only 2D image analysis. A typical example of
such types is detecting the interference between elements.
It requires to check if two flexible elements (e.g. cables,
harnesses) or a flexible and a rigid element (e.g. pipe, sup-
port) are at a safe distance from each other. For this type
of situations, we use the 3D data provided by the 3D scan-
ner and we have developed an inspection solution based on
3D point cloud analysis. We have also developed a method
to compute the best viewpoints for the sensor held by the
robot, in order to obtain an optimal view of each compo-
nent to be inspected. The view-point selection is performed
off-line (before the on-line inspection) and it exploits the
CAD model of the mechanical assembly.

The proposed automatic computer-vision-based inspec-
tion system has been validated in a context of industrial ap-
plications. Our software solution for 2D image analysis has
been deployed on the robot platform as well as in a hand-
held tablet. Since it requires a 3D sensor, our approach
based on 3D point cloud has been tested in the robotic con-
text only.

1. Introduction
To automate the inspection process, improve its traceabil-
ity and repeatability, and to reduce the human error, many
aerospace companies aim to automate numerous and com-
plicated operations of quality control of aircraft’s mechani-
cal assemblies to address the various and growing security

requirements.
We address the problem of automatic inspection in two

parts: first, automatic selection of informative viewpoints
before the inspection process is started (offline preparation
of the inspection, section 2), and second, automatic pro-
cessing of the 2D images or 3D point clouds acquired from
said viewpoints (online inspection process, section 3 and
section 4).

Several types of verification can be carried out on a me-
chanical assembly. For instance, check that the elements of
the assembly are present and that they have been mounted
in the correct position (the CAD model is the reference),
check if two flexible elements (e.g. cables, harnesses) or a
flexible and a rigid element (e.g. pipe, support) are at a safe
distance from each other, and check that the bend radius of
cable complies with safety standards.

According to the type of verification to be performed,
one of the two following general strategies has been devel-
oped:

1. Model-based 2D image analysis (also called 2D in-
spection). This method is easy to deploy since it
only uses the two RGB cameras (camera with a wide
field of view and camera with a narrow field of view)
mounted on the robot (see Fig.1) and the CAD model
of the object to be inspected. This method is pre-
sented in our recent paper [1].

2. Model-based 3D point cloud analysis (also called
3D inspection). This method uses one RGB cam-
era (wide field of view camera) and the 3D scanner
mounted on the robot, and the CAD model.

First strategy is preferred whenever possible, for time
reasons (3D point cloud acquisition and analysis are more
time consuming than those in the case of 2D image).

Rest of the paper is organised as follows. In section 2
we present our scoring function for evaluating possible
viewpoints for our inspection tasks. In section 3 our ap-
proach based on 2D image analysis has been detailed and
in section 4 we explain our methodology based on 3D point
cloud analysis. Finally the paper is concluded in section 5.
State of the art in the field is summarized in our recent pa-
pers [1], [2] and [3] so will not be elaborated in the present
paper.



3.1.1 Robot-based inspection

Our robot-based inspection platform consists of a mobile robot equipped with three sensors (two

cameras and a 3D scanner) mounted on the robot arm end-effector (Fig. 4).

Fig 4: Our inspection system: robot with its vision-based sensory system

This setup allows to perform a certain range of actions: (1) localization: a wide field tracking

camera allows to precisely localize the effector with respect to the part it controls; (2) inspection:

a high-resolution camera with a reduced field of view allows to capture the details and to observe

the elements very finely with 7 degrees of freedom; (3) 3D scan: a structured light stereo sensor

complements the sensor’s capabilities by digitizing the areas observed; (4) controlling: the whole

10

Vision-based sensory
system

Robot arm with 7 DOF

Mobile platform

Figure 1: Our inspection system: robot with its vision-
based sensory system

2. Viewpoints selection: offline process

The initial setup of camera viewpoints cannot be done man-
ually, because a human operator cannot define with suffi-
cient accuracy the camera position that will allow him to get
the best viewpoint of the element to be inspected. There-
fore, we need a (semi-)automatic offline configuration pro-
cess that is used to compute the best viewpoints which can
help to improve the quality and the efficiency of inspection.
Later, during the online inspection process, the camera will
be placed at those calculated viewpoints.

The strategy proposed to find the best viewpoint (com-
puting the 6D location – position and orientation – of the
camera with respect to the scene to be observed), based on
the 3D model of the assembly is illustrated in Fig. 2. For
each of two types of inspection, a scoring function is con-
structed. These functions are designed in a way to maxi-
mize observability of the element to be inspected. Finally,
the best viewpoint can be selected from all of candidate
viewpoints according to the scoring function.

Candidate viewpoints are generated by sampling a fixed
radius virtual sphere around the element to be inspected.
This radius is chosen in such a manner to comply with in-
dustrial security standards for ensuring security of the in-
spected element as well as of the inspecting robot.

The candidate viewpoints are evenly distributed on the
sphere surface according the range of longitude θ and colat-
itude ϕ (Fig. 3). The best viewpoint is selected according
to the value of the scoring function.
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Figure 18. The Overview of Viewpoint Selection Scheme
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Figure 19. A viewpoint on the visibility sphere

The sphere (Fig. 20) is defined as a set of viewpoints and the candidate viewpoints are evenly349

distributed on the sphere surface according the range of longitude θ and colatitude ϕ.350

Figure 2: The Overview of viewpoint Selection Scheme
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Figure 3: A viewpoint on the visibility sphere

2.1. Scoring function for 2D inspection

Our scoring function for 2D inspection combines three cri-
teria:

• Visibility of the information (fvisibility)

• Ambiguity of observed shape due to parasite edges
(fparasite)

• Similarity of observed shape to expected shape
(fshape)

fvisibility - each viewpoint yields a render of our el-
ement of interest with a certain number of pixels. The
fvisibility function takes into account this value and fa-
vorizes those viewpoints with higher number of pixels (area
in the image). It should be noted that the occlusion is taken
into account in the rendering pipeline (see Fig. 6 for ex.).

fparasite - this function favorizes the viewpoints with
less rejected edgelets due to parasite edges in their vicinity.
For more details about parasitic edges see section 3.4.1.

fshape - finally, each candidate viewpoint is also evalu-
ated by computing the similarity between the shape of fil-
tered projected edgelets of the inspection element (obtained



by rejecting those prone to parasitic edges and occlusion)
and the unfiltered projected edgelets.

The three criteria presented before for evaluating each
viewpoint are combined using a scoring function fscore:

fscore = wv × fvisibility + wp × fparasite + ws × fshape

wv + wp + ws = 1

wi’s are weights that assign importances to the different
viewpoint evaluation criteria, and they can be adjusted by
the user depending on the importance of the criteria for
a specific inspection application. fvisibility, fparasite and
fshape are normalized.

2.2. Scoring function for 3D inspection

For 3D inspection, the scoring function is based on the visi-
bility criteria only. This criteria is explained in the previous
section and represented by a function fvisibility. Hence in
the case of 3D inspection the following holds:

fscore = fvisibility

3. Inspection by 2D image analysis
In this section we will detail our main contribution when
relying on 2D images and CAD model of the assembly. The
goal of this inspection task is to verify that a rigid element
of the assembly is present and well mounted. Examples of
the CAD models of the assemblies we have been inspecting
can be seen in Fig. 4.

  

Figure 4: Some of our CAD models: (1st column) aircraft
engine, (2nd column) two testing plates with several ele-
ments

Our inspection process for the defect detection illus-
trated in Fig. 5 consists of four main steps. First, from
the CAD model of the observed object, 3D contour points
(edgelets) are extracted. Further, the edgelets with their di-
rection vectors are projected onto the real image using a
pinhole camera model (extrinsic and intrinsic parameters).

Used image is acquired by the camera with narrow field
of view. It should be noted that the pose of the effector
is known thanks to the calibration process but also thanks
to an in-house developed localisation module which per-
forms pose refinement. This module is processing images
acquired by the wide field of view camera. Finally, we per-
form the matching between the set of projected edgelets and
the set of real edges extracted in the image.

We explain each building block of our strategy in the
following sections.

Edgelets 3D

Pose refinement

Poses and images Projection 3D/2D Processing

Decision

Inspection report

2D Image

2D Image

CAO Model 3D

3D

Supervisor
ROS

PC vision

Figure 5: Overview of our online robot-based inspection
pipeline

3.1. Step 1 (edgelet generation)

An edgelet Ei is defined as a 3D point pi = (xi, yi, zi)

and a normalized direction vector ~di of the edgelet. These
points pi represent the 3D contour points of an object (see
Fig. 6). The edgelets are extracted offline by rendering a
CAD model as explained in [4].

The output of this step is a set of edgelets that are evenly
distributed.
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(a)

 

(b)
Figure 8. Edgelets extraction: (a) example of CAD part, (b) edgelets extracted from this CAD part

4.2. Step 2 (camera pose estimation)205

Advantage of our use case is that we dispose of the CAD model of the assembly. Hence, we206

rely on the work of [22] which combines the edgelet extraction process (described in step 1) with a207

CAD-constrained SLAM algorithm proposed in [26] which is based mainly on [27], the camera being208

then considered as moving in a partially known environment. The constrained SLAM algorithm209

accurately estimates the camera’s pose with respect to the object by including the geometric constraints210

of its CAD model in the SLAM optimization process. In other words, the object is tracked in real time.211

Our strong pre-assumption is that a moving camera is localized with respect to a complex212

mechanical assembly. The CAD-based tracking algorithm has been implemented by Diota c© and it is213

used in our work as a black-box that provides us with the required camera pose. More details about214

this solution will be given in the paper [22].215

4.3. Step 3 (3D/2D projection)216

In this phase, we project 3D points of edgelets onto the image using known extrinsic and intrinsic217

camera parameters (see Fig. 9). The input of this step are an image, the camera pose with respect to the218

assembly (CAD) and a set of evenly distributed edgelets of the element to be inspected.219

In order to get the camera intrinsic parameters we have used an offline calibration method based220

on the observation of a classical pattern. Based on various observations of the pattern under different221

arm configurations we obtained the intrinsic parameters of all the cameras used on the system along222

with the extrinsic parameters (relative localization) and their absolute localization relatively to the arm223

Figure 6: Edgelets extraction: (left) example of CAD part,
(right) edgelets extracted from this CAD part



3.2. Step 2 (camera pose estimation)

Our strong pre-assumption is that the moving camera is lo-
calized with respect to the complex mechanical assembly
being inspected. Namely, we rely on an in-house devel-
oped system for initial pose estimation based on 2D-3D
alignment, our inspection camera being then considered as
moving in a partially known environment. The mentioned
algorithm accurately estimates the camera’s pose with re-
spect to the object by including the geometric constraints
of its CAD model in an optimization process.

3.3. Step 3 (3D/2D projection)

In this phase, we project 3D points of edgelets onto the im-
age using known extrinsic and intrinsic camera parameters
(see Fig. 7). The input of this step are an image, the cam-
era pose with respect to the assembly (CAD) and a set of
evenly distributed edgelets of the element to be inspected.

Figure 7: (Left) projection of edgelets (3D points pi),
(right) inward-pointing normals n+i and outward-pointing
normals n−i , generation of search line li

3.4. Step 4 (matching projected edgelets with real
edges)

The goal of this step is the matching between the set of
projected edgelets and the set of real edges according to the
direction of the normal vectors calculated in step 3 (section
3.3). If at least one real edge is found on the search line, the
edgelet is considered matched. Otherwise, it is considered
not matched.

Initially we employed the well known and widely used
Canny edge detector for extracting meaningful real edges
in the real image. The results reported in our recent paper
[1] are obtained by this algorithm.

Nevertheless, we have identified more recent edge de-
tection approaches such as [5] based on neural networks.
Fig. 8 illustrates a quantitative comparison of Canny edge
detector and the edge detector proposed in [5]. In our anal-
ysis conducted by this moment, we have noticed that the
latter one outperforms Canny, notably in treating highly re-
flective as well as highly textured areas. Moreover, by us-
ing machine learning based detectors we avoid the sensi-
tive phase of parameters tuning unavoidable in the case of
Canny approach. In the present paper, the inspection re-
sults have been obtained based on 2D edges extracted by
the machine learning technique.

(a) (b) (c)

(d) (e) (f)

Figure 8: Quantitative analysis of Canny edge detector and
edge detector based on neural network (a,d) input images,
(b,e) results by Canny edge detector, (c,f) result by neural
network edge detector

3.4.1. Parasitic edges handling

In this section, we describe our principal contribution, in-
troduced in order to remove as much as possible irrelevant
edges. Namely, by using CAD render, we anticipate the
existence of some portion of parasitic edges coming from
other elements mounted in the vicinity of the inspected ele-
ment. Indeed, often there are edges very close to the exter-
nal boundary of the element to be inspected. We call them
parasitic edges or unwanted (irrelevant) edges. To solve
this kind of problem, we introduce a new notion called con-
text image of an element to be inspected. From the CAD
data and the particular camera position, we form a synthetic
view (context image), which has exactly the same perspec-
tive as the real image, only that the inspected element is
excluded from the assembly (see Fig. 9).

Figure 9: (Left) example of CAD model - inspected element
(dark blue) is in the red circle, (right) context image of the
inspected element

The process of decreasing number of parasitic edges is
illustrated in Fig. 10. First, we project the edgelets of the
element of interest onto the context image, as explained in
step 3 (section 3.3).

Further, we form search lines (see Fig. 10d) and look
for the intensity change in this virtual context image. In-
tensity changes are shown in Fig. 10d. If such a change in
context image is found, it is very probable that this edge
will be present in the real image as well. Therefore, we will



not consider this edgelet for matching. These edgelets are
shown in red in Fig. 10d. Other edgelets, shown in green in
Fig. 10d, are considered in the matching phase.

 

(a)

 

(b)

 

(c) (d)

Figure 10: Illustration of the parasitic edges handling: (a)
input image, (b) projection of the element to be inspected,
(c) context image of the element to be inspected, (d) gra-
dient changes in the context image and considered edgelets
(green) and rejected edgelets (red)

3.4.2. Edges weighting

For each edgelet in the 3D CAD that is projected onto the
image plane, we are interested in finding an image loca-
tion that contains a real change in image intensity (edge).
For this, we first produce an edge image and search for
candidate locations along a search line li that is obtained
as described in section 3.3. Each edge location along the
search line that is within a pre-specified distance from the
location of the projected edgelet is weighted according to a
Gaussian function of the distance of the edge point from
the location of the projected edgelet. Instead of simply
counting matched edgelets, these weights will be added
up in the final score. We do this in order to favorize the
edgelets matched with very close real edges and penalize
those which are matched with real edges that are far away.

3.4.3. Gradient orientations

When we search for an edge in the image, we may en-
counter edges due to image noise or geometric features that
arise from the parts different from the inspection element.
To reject such candidates, at each encountered edge loca-
tion, we compute the gradient of the edge and find the an-
gle it makes with the search line θi (see Fig. 11). If this
angle is greater than a threshold (θi > θth) , we reject the
candidate and continue our search. If no edges are found
within the search limits that satisfy the orientation criteria,
we decide that no edge corresponding to the inspection ele-

ment of interest is present. In our experiments, we have set
θth = 20◦.

Inspection à partir d’images 2D
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Figure 1.1 – Critère de similarité d’orientation. (1è𝑟𝑒 colonne) projection des
edgelets de l’élément à inspecter sur l’image 2D, (2è𝑚𝑒 colonne) une zone de l’image
agrandie 3200 fois. (a) Un exemple de point de contour 𝑐𝑖 apparié avec un edgelet
𝑒𝑖 ayant une orientation différente (𝜃𝑖 = 120∘), (b) Un exemple de point de contour
𝑐𝑖 apparié avec un edgelet 𝑒𝑖 ayant une orientation similaire (𝜃𝑖 = 0∘)
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(b)

Figure 11: Criteria of orientation similarity. (1st column)
projection of edgelets corresponding to the inspecting ele-
ment onto the 2D image, (2nd column) a zone of the image
zoomed in 3200 times. (a) Contour point ci and edgelet ei
have too different orientations (θi = 120◦), (b) Contour ci
and edgelet ei have similar orientations (θi = 0◦)

3.5. Step 5 (making decision on state of the element)

Producing an inspection decision based on matching fil-
tered edgelets independently with edges in the real image
can lead to false positives since the matched edges in the
real image may as well arise from an element with not the
same shape as the inspected one. To take the global shape
of the element into account, we propose to characterize the
filtered edgelets and the edges detected in the real image
using the Shape Context framework [7]. The Shape Con-
text (represented by a set of points sampled from the edges
of the object) is a shape descriptor that captures the rela-
tive positions of points on the shape contours. This gives
a globally discriminative characterization of the shape and
not just a localized descriptor. These are then used to mea-
sure similarities between shape context representations of
the two sets of edge locations.

The workflow of the decision-making step is shown in
Fig. 12. The decision is taken using two indicators: the sim-
ilarity score (similarityscore) based on Shape Context and
the matched ratio (matchedratio) represented by the ratio be-
tween matched and not matched edgelets.

In Fig. 13, we show the CAD model, the RGB image
acquired by the inspection camera, and the final result on
two different cases (element OK and element NOK).
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Figure 15. The shapes used in the Shape Context approach

The workflow of the making decision step is shown in Fig. 16 The decision is taken using two313

indicators: the similarity score (similarityscore) and the matched ratio (matchedratio) represented by the314

relationship between matched and not matched edgelets.315
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Figure 16. Decision making

In Fig. 17, we show the matchedratio and matchedth computed on two different cases (element316

OK and element NOK).317

• If similarityscore < similarityth, the element is considered NOK (absent or incorrectly mounted).318

In our experiments we have set similarityth = 0.7, based on an extensive comparison between319

different shapes.320

• If similarityscore > similarityth, we compute the ratio between the number of matched edgelets321

and the number of not matched edgelets (matchedratio).322

Figure 12: Decision making
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Figure 13: (1st row) (a) CAD model, (b) 2D inspection
image, and (c) result of inspection with green OK (ele-
ment present) and red NOK (element absent or incorrectly
mounted), (2nd row) respectively the matchedratio (curve)
and threshold matchedth (red horizontal line) computed on
the three different cases 100 times: element A (present) in
green, element B (incorrectly mounted) in red, and element
C (absent) in red

3.6. Metrics used for evaluation

3.6.1. Accuracy, sensitivity, specificity

Table 1 outlines definitions of the true positive (TP), the
false positive (FP), the true negative (TN) and the false neg-
ative (FN) in defect detection.

Table 1: Definitions of TP, FP, TN, FN in defect detection

Actually
defective

Actually
non-defective

Detected as
defective TP FP

Detected as
non-defective FN TN

Based on these notations, the detection success rate (known
also as detection accuracy) is defined as the ratio of correct
assessments and number of all assessments. Sensitivity is
defined as the correct detection of defective samples. Sim-
ilarly, the specificity can be defined as the correct detection
of defect-free samples. Finally, the overall accuracy could

be calculated based on the metrics of sensitivity and speci-
ficity. The accuracy, sensitivity and specificity are defined
as:

accuracy =
TP + TN

TP + FN + TN + FP

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

3.6.2. Precision and Recall

Precision and recall metrics are used to validate the perfor-
mance of defect detection. Precision and Recall are defined
as:

precision =
TP

TP + FP

recall =
TP

TP + FN

Fscore = 2× precision× recall
precision + recall

The Fscore is calculated to measure the overall performance
of a defect detection method. The highest value of the Fscore
is 100% while the lowest value is 0%.

3.7. Evaluation

The approach was tested on a dataset acquired in a factory
with a total number of 43 inspected elements and 643 im-
ages. Elements are inspected one by one and decision on
each of them is based on one acquired image. The distance
between camera and inspected element has been set at 600
mm with a tolerance of ±6mm. Some examples of our
dataset used to evaluate our approach are shown in Fig. 14.
It can be noted that our dataset is acquired in a context of in-
dustrial robotized inspection in conditions of very cluttered
environment.

The overall performance of our method is represented
by Fscore = 91.61%. The values of specificity, accuracy,
sensitivity, precision and recall of our method are shown in
Tables 2 and 3.

Table 2: Result of the evaluation (TP, TN, FP, and FN)

Nbr of
elements

Nbr of
images TP TN FP FN

43 643 344 236 63 0

The experimental results show that our proposed ap-
proach is promising for industrial deployment.

The main challenge we faced lies in the fact that our
dataset is acquired in a factory, on a real and very com-
plex assembly at the very end of the production line (almost
all the elements are mounted). Therefore, the environment



   

   

   

   

Figure 14: Some examples of our dataset used to evaluate
our approach in a context of robotized inspection in condi-
tions of very cluttered environment: (1st and 3rd rows) real
images, (2nd and 4th rows) corresponding renders of CAD
models

Table 3: Performance measures

Accuracy Sensitivity Specificity Precision Fscore

90.20% 100% 78.93% 84.52% 91.6%

around inspected element is very cluttered and the matching
task becomes more difficult.

Please refer to our recent paper [1] for more detailed ex-
planation of the experiments and especially the comparison
of the evaluation of the hand-held tablet inspection system
and the robotic inspection platform.

4. Inspection by 3D point cloud analysis
The strategy based on 3D point cloud data is used when
2D image processing is not sufficient. Indeed, sometimes,
using 3D data is necessary, for example for checking if the
distance between two cables is conform to the security stan-
dards. These types of defects are undetectable with an RGB
camera because the cables have the same color. Moreover,
obtaining distance measurements is challenging in the ab-
sence of depth information.

More precisely, it is required to check if two flexible

elements (e.g. cables, harnesses) or a flexible and a rigid
element (e.g. pipe, support) are at a safe distance from each
other. Fig. 15 illustrates that 2D image analysis is not suffi-
cient to solve this type of inspection problem.

CAD image

2D image

Figure 15: Example of 3D inspection: (left) airplane en-
gine (right) the interference between some cables cannot be
determined by 2D image analysis

The online inspection process consists of several steps,
which are detailed in this section: (1) a 3D point cloud is
acquired using the pre-calibrated Ensenso N35 3D scanner
mounted on the robot arm (Fig. 16), (2) a two-step global-
to-local registration procedure that allows for alignment of
the 3D data with the 3D CAD model is performed, (3) the
cables are segmented from the 3D point cloud, (4) the dis-
tance between each cable and its surrounding environment
is computed in order to detect a possible interference prob-
lem, (5) the bending radius of each cable is computed.

Figure 16: Pre-calibrated Ensenso N35 3D scanner

4.1. 3D cable segmentation

Cables are designed to be flexible. The registration or
matching with 3D CAD model becomes problematic when
the target objects are non-rigid, or prone to change in shape
or appearance. Nevertheless, cable connection points,
where the cable meets connectors or clamp, are rigid.
These connection points are the most important elements
for aligning with CAD model. Indeed, these points make it
possible to guarantee a rigidity of a portion of cable.

After some preprocessing steps such as known noise
removal techniques as well as subsampling CAD model
mesh, we proceed to a global 3D/2D alignment phase. The
results of the global registration are refined by a local reg-
istration process that uses an iterative non-linear ICP pro-
posed by Besl and McKay [8] and Levenberg-Marquardt
algorithm [9].



We further perform segmentation of a cable by model-
ing it as a set of cylinders. We propose a search structure
that allows to find the cables present in the real point cloud
and to reconstruct them as collections of cylinders of vary-
ing radius, length, and orientation. Each cylinder, called
sub-cable is fitted, using the point-to-point ICP algorithm
[10], to the point cloud data corresponding to a cable. More
details about our method can be found in our recent papers
[2] [3].

The final result of the cable segmentation phase can be
seen in Fig. 17.

(a) (b)

Figure 17: (a) the final cylinder model (made of 12 sub-
cables) in green and, in blue, a detected hole in the cable
due to two overlapping cables (1 sub-cable) and (b) the seg-
mented point cloud

Fig. 18 and Table 4 illustrate the final cylinder model
shown in Fig. 17 made of 13 consecutive sub-cables la-
beled sc1 through sc13. Fig. 18 shows the details of the 13
sub-cables: their radius, the length, the angle between two
consecutive main axis and the direction of the propagation,
where ‘+’ denotes first direction and ‘-’ denotes second di-
rection. The angle between two consecutive main axis θi
can easily be computed by considering each main axis to
be a vector and by taking the dot product of the two vec-
tors:

v1 · v2 = |v1||v2| · cos(θi) (1)

4.2. Interference detection and bend radius computa-
tion

The global objective of the inspection process is to measure
(1) the minimum distance between each segmented cable
and the other elements in the mechanical assembly (in order
to check a possible interference problem), and (2) the bend
radius of each segmented cable (in order to check that it
complies with safety standards).

4.2.1. Inputs

After the segmentation process, we have two main point
clouds: the segmented point cloud, which we will call Ps,
and all the other points, excluding the segmented point
cloud, which we will call Ps (see Fig. 19). If we call P

sc5sc4sc3sc2

sc1

sc6
sc7

sc8

sc9

sc10

sc11

sc12

sc13

Figure 18: An illustration of the final cylinder model shown
in Fig. 17 made of 13 consecutive sub-cables labeled sc1
through sc13 (different colors denote the sub-cable models)

Table 4: The details of the 13 sub-cables: their radius, the
length, the angle between consecutive main axis and the
direction of propagation, where ‘+’ denotes first direction
and ‘-’ denotes second direction. It should be noted that
sc8 is a detected hole due to the overlapping cables (see
Fig. 17) and its radius is equal to the radius of previous
sub-cable sc7

Sub-cable Radius length Angle Direction
sc1 5.81 33.55 – +
sc2 5.93 22.09 8.51 +
sc3 5.89 17.83 2.12 +
sc4 5.97 17.97 11.4 +
sc5 5.91 19.26 3.7 +
sc6 5.90 16.43 4.12 -
sc7 5.91 10.01 2.02 -
sc8 – 13.20 3.22 -
sc9 5.93 22.01 1.7 -
sc10 5.98 10.66 1.1 -
sc11 5.92 19.44 4.3 -
sc12 5.79 11.81 12.3 -
sc13 5.80 18.02 11.2 -

the filtered input 3D point cloud provided by the 3D scan-
ner, we have P = Ps + Ps.

4.2.2. Interference detection

In this section we will focus on the detection of a possi-
ble interference between a cable and the other surrounding
elements (another cable, a support, etc.) present in the me-
chanical assembly.

The objective is to determine if the cables are at a safe
distance dT from the other surrounding elements present
in the mechanical assembly. The result of the interference



5.3.2 Interference detection

In this section we will focus on the detection of a possible interference between a cable and the

other surrounding elements (another cable, a support, etc.) present in the mechanical assembly.

Inputs: After the segmentation process, we have two main point clouds: the segmented point

cloud, which we will call Ps, and all the other points, excluding the segmented point cloud, which

we will call Ps (see Fig. 33). If we call P the filtered input 3D point cloud provided by the 3D

scanner, we have P = Ps + Ps.

Zoom

Fig 33: The segmented point cloud, which we will call Ps in green and all the other points, exclud-
ing the segmented point cloud, which we will call Ps in red

All input data are presented in Table 3.

Table 3: Inputs

Name Role
P Filtered input real point cloud
Ps Segmented point cloud (a cable)

Ps
All filtered input points, excluding

the segmented point cloud
dT Tolerance (interference distance)
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Figure 19: The segmented point cloud, which we will call
Ps in green and all the other points, which we will call Ps

in red

detection process is shown in Fig. 20.

(a) (b)

Figure 20: Result of interference detection process: (a) the
input point cloud, (b) segmented point cloud in green and
representative clusters which cause interference problem in
red

Our experiments have been detailed extensively in our
recent paper [3].

For one of the experiments we use the available CAD
model. We identified 4 cables and measured the distance
between each cable and its surrounding elements in the as-
sembly. We do this with a specialised modelling software
CATIA©. Further, we sampled the cables and the elements
and added noise to the sampled point cloud. This step sim-
ulates the noise introduced by the process of scanning. We
added three different levels of noise. Finally, we run our
algorithm on all generated clouds and obtain the minimal
distance between each segmented cable and the other ele-
ments. We compare this result with the measure obtained
with CATIA©. Table 5 shows that the obtained results are
satisfactory.

4.2.3. Bend radius calculation

The other objective of the inspection process is to measure
the bend radius of each segmented cable (in order to check
that it complies with safety standards).

The minimum bend radius is the smallest allowed ra-
dius the cable is allowed to be bent around. The 3D seg-
mentation method presented in section 4.1 produces almost
immediately a cable model segmented from the measure-
ment data (see Fig. 21a). Using this model, we can carry

Table 5: Interference measurement results compared with
the CATIA© modelling software

Standard deviation
of added noise

Measure obtained
with CATIA

Measure obtained
by our algorithm

0 13.5 13.34
0.4 15.5 14.63
0.8 14 12.23
1.2 18.5 16.38

out a quantitative analysis of the bend radius of the cable.
In order to estimate the bend radius of a cable, we fit

a 3D plane to the set of start-points P k
s and end-points P k

e

for all the estimated sub-cables sck (see Fig. 21a). Further
we project all the points onto the fitted plane (see Fig. 21b).
Finally, the bend radius is estimated by fitting a circle to
the set of projected 2D points (see Fig. 21c). Therefore, the
accuracy of the measure is directly related to the robustness
of the segmentation algorithm, fitting plane algorithm and
fitting circle algorithm.

Since we do not have the needed instrumentation to
measure precisely the bend radius of the cables within the
mechanical assembly, we have decided to test our approach
on synthetic data generated from the CAD model. A few
examples of our dataset are shown in Fig. 22.

The minimum allowed bend radius is based on the di-
ameter and the type of cable. By industry standards, the rec-
ommended bend radius for harnesses should not be lower
than 10 times the diameter of the largest cable.

The results are evaluated on the basis of the difference
between the ground truth bend radius Rc and the estimated
bend radius R̃c:

MSEbend radius =
1

n

n∑
i=1

(Rci − R̃ci)
2 (2)

On a set of 3 different cables with different, radius, res-
olutions and different bend radius, we foundMSEbend radius
= 1.23 mm.

As expected, we have found that the results are better
when the number of sub-cables found is high. Indeed, the
fitting of plane or circle are more accurate when the set of
start-points Ps and end-points Pe contains more points.

5. Conclusion
We proposed an automated inspection system for mechan-
ical assemblies in an aeronautical context. We address the
problem of inspection in two parts: first, automatic selec-
tion of informative viewpoints before the inspection pro-
cess is started, and, second, automatic treatment of the ac-
quired images and 3D point clouds from said viewpoints by
matching them with information in the 3D CAD model.



(a)

(b) (c)

Figure 21: Steps for calculating the bend radius: (a)
segmentation modeling result, where each sub-cable sck
(green) has an initial point P k

s and a final point P k
e (both in

pink), (b) projection of all the points Ps and Pe onto the 3D
plane previously obtained by fitting a plane to those same
points with a least squares method, and (c) fitting a circle
by least squares method to these projected 2D points

Rc = 13.65 cm

(a)

Rc = 14 cm

(b)

Rc = 46.55 cm

(c)

Fig 48: A few examples of our dataset. Three different synthetic cables with different bend radius
(Rc)

The results are evaluated on the basis of the difference between the ground truth bend radius

Rc and the estimated bend radius R̃c:

MSEb. radius =
1

n

n∑
i=1

(Rci − R̃ci)
2 (11)

In order to estimate the bend radius of a cable, we fit a 3D plane to the set of start-points Ps

and end-points Pe for all the estimated sub-cables. Further we project all the points onto the fitted

plane. Finally, the bend radius is estimated by fitting a circle to the set of projected 2D points.

Therefore, the accuracy of the measure is directly related to the robustness of the segmentation

algorithm, fitting plane algorithm and fitting circle algorithm.

On a set of 3 different cables with different, radius, resolutions and different bend radius, we

found MSEb. radius = 1.23 mm.

As expected, in our experience we have found that the results are better when the number of

sub-cables found is high. Indeed, the fitting of plane or circle are more accurate when the set of

start-points Ps and end-points Pe contains more points.
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Figure 22: A few examples of our dataset. Three different
synthetic cables with different bend radius (Rc)

Depending on the inspection type and speed/accuracy
trade off, we propose two strategies: the first one is based
on 2D image analysis and the second one relies on 3D point
cloud analysis.

With our 2D strategy we are focusing on detecting miss-
ing and badly mounted rigid parts by comparing sensed in-
formation with the CAD model.

In the second part of the paper we give an overview
of our 3D based method for cable segmentation based on
cylinder fitting. Using the segmentation result and the CAD
model, we can carry out quantitative analysis of potential
interferences and the computation of the bend radius of
each cable.

The experimental results show that our method is highly
accurate in detecting defects on rigid parts of the assembly
as well as on aircraft’s Electrical Wiring Interconnection
System (EWIS).
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