
HAL Id: hal-02334205
https://imt-mines-albi.hal.science/hal-02334205v1

Submitted on 2 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sensor-based algorithm for collision-free avoidance of
mobile robots in complex dynamic environments

Dimitri Leca, Viviane Cadenat, Thierry Sentenac

To cite this version:
Dimitri Leca, Viviane Cadenat, Thierry Sentenac. Sensor-based algorithm for collision-free avoidance
of mobile robots in complex dynamic environments. 2019 European Conference on Mobile Robots
(ECMR), Sep 2019, Prague, Czech Republic. p.1-6, �10.1109/ECMR.2019.8870344�. �hal-02334205�

https://imt-mines-albi.hal.science/hal-02334205v1
https://hal.archives-ouvertes.fr

Sensor-based algorithm for collision-free avoidance of mobile robots in
complex dynamic environments

D. Leca1,2, V. Cadenat1,2, T. Sentenac1,3

Abstract— This paper deals with the problem of navigation of
unmanned vehicles through poorly known environments clut-
tered with static and dynamic obstacles. The robot is equipped
with a LiDAR able to provide a scan of the surroundings and
with classical dedicated localization sensors (odometry, IMU).
The proposed navigation strategy relies on: (i) a new concept
called Enhanced Laser Scan (ELS), which is built from the
current laser scan by adding virtual points along the predicted
trajectory of the obstacles ; (ii) two sensor-based controllers
allowing respectively to reach the goal and to avoid obstacles.
These controllers relying on the richer information provided by
the ESL, they will be able to anticipate and safely avoid both
static and moving obstacles ; (iii) a high-level decision process
allowing a better choice of the sense-of-motion (SOM) around
the obstacle and its reassessment if needed.

I. INTRODUCTION

In mobile robotics, one of the key feature is the ability
for the robot to safely and smoothly navigate through an
unknown environment. In this environment, the robot will
encounter static as well as dynamic obstacles. If an extensive
amount of papers has been published about how to deal with
static obstacles [1], the case of dynamic obstacles is still a
discussed issue [2]. Indeed, in an unknown environment, few
assumptions can be made about the obstacles lying in the
robot vicinity. These obstacles can be rigid or with changing
shapes. Their trajectory and velocity can be subject to un-
predictible changes with time. In these cases, global planners
are limited [1], since they require a previous knowledge of
the environment. Because of this minimal representation,
local approaches appear to be more suitable, since they
will allow the robot to reactively adapt to any change in
its environment. They can be split in two categories: local
planners, that use the local information provided by the
sensors to compute a short-horizon trajectory, and reactive
controllers, that directly generate the current control using
the current provided information.

Among local planners that take into account dynamic ob-
stacles, the well-known Dynamic Window Approach (DWA)
has been generalized in [3] and [4] to handle moving
obtacles. The concept of Velocity Obstacles (VO) chooses
among all possible velocities the one that guarantees non-
collision. This method has been extended to handle dynamic
obstacles, with the Acceleration-Velocity Obstacles [5] or
the Non-Linear Velocity Obstacles [6], [7]. However, all of

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, UPS, LAAS, F-31400, Toulouse, France
3 Institut Clément Ader (ICA), Université de Toulouse, CNRS, Mines

Albi, UPS, INSA, ISAE-SUPAERO, Campus Jarlard, F-81013 Albi CT
Cedex 09, France

these methods assume that the encountered obstacles are
small and cylindrical to take into account their velocities.
The methods based on Artificial Potential Fields have also
been widely investigated to deal with mobile obstacles. They
suffer from well-known drawbacks, such as local minima [8].
As local planners, their adaptation to dynamic environments
are often performed under strong assumptions, such as: the
precise knowledge of the velocity and the acceleration of
each obstacle, their size and shape, or the number to be
avoided simultaneously [9], [10], [11], [12]. Another class
of methods, called bug methods, consists in the following
reasoning: moving toward the goal following a straight
line, switching to an avoidance method if a collision threat
occurs, and resuming to a straight line toward the goal
once the obstacle is avoided. These methods require few
assumptions and knowledge about the environment. They
have been successfully applied to different kinds of robots
in [13], [14], [15], and have dealt with complex scenes
involving numerous obstacles whose shapes and movements
have evolved during the mission.

In this work, we assume that the environment is poorly
known: no map is provided prior to the navigation and no
information about the position, shape or motions of the possi-
bly encountered obstacles is available. The robot is equipped
with a LiDAR able to provide a scan of the surroundings.
In such a case, following our previous study [16], local
reactive methods have been shown to be more adapted. It
is proposed such a navigation strategy based on two sensor-
based controllers allowing respectively to reach the goal and
to avoid static obstacles. Here, the presented strategy extends
our previous works on that topic [17], [18], [16]. In this set
of works, the avoidance technique relies on the definition of
a spiral [19] as first proposed in [20] and [21] for UAV
(Unmanned Aerial Vehicles). If our most recent strategy
developed in [16] allows to safely and efficiently navigate
through a static environment cluttered with various shaped
obstacles, it is still impossible to deal with dynamic ones.
This paper allows to overcome this limitation by proposing
an enhanced navigation strategy able to avoid both static
and dynamic objects whose both motion and shape are not
a priori known. Three main improvements have been made
with respect to [16]. At low level, the points provided by
the LIDAR have been treated so that: (i) static and dynamic
objects can be separated ; (ii) a prediction of the moving
objects velocity is performed; (iii) this prediction is used
to add to the current LIDAR scan a set of virtual points
representing each obstacle predicted motion. This allows
to produce an ’enhanced laser scan’ (ELS) which will be

used to feed the avoidance controller designed in [16]. The
same control law is then applied to the robot but, thanks
to the richer information contained in the ELS, it becomes
possible to anticipate the motion of mobile obstacles. The
second improvement with respect to [16] is a high level
one. It concerns the choice of the sense of motion (SOM)
around the obstacle. The SOM decision takes into account
the motion of the obstacle and can be reassessed if this
latter happens to suddenly modify its trajectory. This allows
to avoid undesirable behaviors where the robot could be
dragged away by an object moving at the same speed.
Finally, a linear velocity profile has been designed to improve
the robot behavior in the obstacle vicinity.

The paper is organized as follows. Section II introduces the
spiral model, its parameters, and the control laws designed
to follow the spirals. Section III introduces the algorithms
designed to take into account dynamic parts of the envi-
ronment. Section IV deals with the implemented decision
process while section V presents simulation results showing
the interest of the approach.

II. PRELIMINARIES

This section deals with the preliminaries of the spiral
avoidance technique [16].

A. Spiral modelling

The section focuses on parameters used to define the
equiangular spiral. As shown in figure 1a, the spiral is
described by the point Op moving on a plane with respect
to a fixed point Os. This point is considered as the center
of the spiral.

−→
v∗ is the velocity vector applied to Op and its

norm is denoted v∗(t). Moreover
−→
d∗ is the vector connecting

Os to Op whose norm is d∗(t). Finally α∗(t) is defined as
the oriented angle between

−→
v∗ and

−→
d∗. In [19] it is shown

that if both v∗(t) and α∗(t) are constant then Op describes
a spiral whose center is Os. They are then respectively
denoted by v∗ and α∗ in the sequel. Moreover [19] states
that ḋ∗(t) = −v∗ cos(α∗). Thus the executed spiral only
depends on the value of α∗. Its sign allows to define the SOM
(clockwise if negative, anticlockwise if positive), while its
value fixes the type of spiral: inward if |α∗| < π/2, outward
if π/2 < |α∗| ≤ π, circle if α∗ = ±π/2. From this analysis,
it follows that this concept can be easily adapted to perform
an obstacle avoidance motion. Indeed, fixing the spiral center
point (SCP) on the obstacle surface and selecting a suitable
couple of α∗ and d∗ allows us first to choose the SOM for
the avoidance around the obstacle, and then to control the
desired distance d∗ and its evolution. This paper states how
to choose these parameters from the available sensory data
to perform an efficient and safe avoidance motion.

B. Robot modelling

The robot has four-wheel skid steering drive, which allows
the robot to turn on itself. Its model is presented in figure 1b.
Fw = (Ow,

−→xw,−→yw,−→zw) is the frame linked to the world,
while Fr = (Or,

−→xr,−→yr ,−→zr) is the frame attached to the
robot. χ(t) = [x(t), y(t), θ(t)]T represents the pose of the

α∗

α∗

α∗

α∗

−→
v∗−→

d∗ −→
d∗

−→
d∗

−→
d∗

−→
v∗

−→
v∗

−→
v∗

OS

OP

OP

OP

OP

(a) Spiral model (b) Robot model

Fig. 1: Spiral and robot modelling

robot in the world frame, where x(t) and y(t) are the
coordinates of Or in Fw and θ(t) is the angle between −→xw
and −→xr. Os is the center of the spiral to be followed, while−→
d represents the vector connecting Os to Or and α(t) is
the angle between −→xr and

−→
d . β(t) is the angle between −→xw

and
−→
d . Knowing that α(t) = π − θ(t) + β(t), it should be

noticed that:

α̇(t) = −θ̇(t) + β̇(t) = −ω(t) + v(t)

d(t)
sin(α(t)) (1)

Consequently, d(t) represents the distance between Os and
Or. Following [19] : ḋ(t) = −v(t) cos(α(t)).

C. Obstacle avoidance controllers design

To perform the avoidance, the robot must first reach the
desired spiral, and then follow it around the obstacle. Two
controllers have been proposed in [16].

1) Definition of the errors: The two following errors must
be vanished: eα = α(t)−α∗ and ed = d(t)− d∗(t). In [18],
in order to track a spiral defined by its SCP together with
v∗ and α∗, it is proposed to impose v(t) = v∗ 6= 0.

2) First controller design: The following control law ωA
allows to make the errors eα and ed converge toward zero
asymptotically thanks to an exact input to state linearization
method [22]:

ωA(t) =
λ1 ed(t) + λ2 ėd(t)

v? sin(eα(t) + α?)
+
v? sin(eα(t) + α?)

ed(t) + d?(t)
(2)

This controller maintains the robot along the desired spiral,
with λ1, λ2 > 0, but suffers from singularities when eα(t)+
α∗ = α(t) = kπ, k ∈ Z.

3) Second controller design: This controller is intended
to avoid this latter problem. Following [18], an hybrid error
is introduced: eS(t) = eα(t) − ε(t)αD, where ε(t) is the
normalized error between d∗(t) and d(t), saturated to ±1:

ε(t) = sign(d∗(t)− d(t))min(||d∗(t)− d(t)||, n)
n

(3)

where n ∈ N∗. Additionally, αD is defined as sign(α∗)∗π−
α∗ if d∗(0) > d(0), or α∗ if d∗(0) < d(0). To make eS(t)
vanish, the following controller ωB is proposed in [18].

ωB(t) = λSeS(t) +
v(t)

d(t)
sin(α(t))− α̇S(t, d) (4)

where λS > 0. As shown in [18], this controller is locally
asymptotically stable, once α(t) overpasses α∗(t).

4) Switching strategy: To overcome the singularity prob-
lem which occurs when α(t) vanishes, it is proposed to
switch between ωA and ωB . When the error eα(t) drops
below a threshold eswitchα , the ωA(t) controller is sent to
the robot. Else, ωB(t) is sent. To obtain the final control
law ω(t), a sliding-window smoothening is applied to avoid
discontinuities in the control inputs when switching between
ωA and ωB .

D. Spiral-based navigation strategy for static environments

1) Choice of α∗ and d∗: In [16], an angle of α∗ = ±π/2
is imposed. Its sign depending on the SOM around the
obstacle. Consequently, d∗ is constant.

2) Choice of the SCP: After a LiDAR acquisition around
the robot, the closest point Oc from the robot is computed.
Then, all the LiDAR points within a 2d∗ meters radius circle
centered on Oc are used to compute their barycenter Ob.
Finally, Oc and Ob are compared, and the closest one to the
robot is chosen as the spiral center point Os .

3) Go-to-Goal controller and switching conditions:
The Go-To-Goal (GTG) controller can be defined by any
controller allowing to reach the goal. Here, we have chosen
a basic proportional controller correcting the heading of the
robot to reach Og . As explained in [16], the switch between
the avoidance controller and the GTG controller occurs
if an obstacle lies within a half-circle heading toward the
goal, whose radius is between d∗ and 2d∗ depending on
the relative orientation between the robot and the obstacle.
Thus, if an obstacle lays in front of the robot, the avoidance
will be triggered earlier.

This section has been devoted to a brief recalling of the
navigation strategy described in [16]. This method has been
proven to be efficient for static environments but cannot deal
with mobile obstacles. This paper extends these works by
proposing three improvements: (i) the design of an enhanced
laser scan (ELS) containing the current laser points and the
virtual points modelling the mobile obstacle motion; (ii) the
possible reassessment of the SOM to react adequately with
respect to obstacle motion; and (iii) the design of a safer
linear velocity profile. Thanks to these improvements, the
same control law can be used for both static and dynamic
environments, generalizing our previous works.

III. ENHANCED LASER SCAN

This section focuses on our first contribution, the compu-
tation of the dynamics of each point detected by the LiDARs,
and the generation of the artificial laser points. The aim of
these virtual points is to model the expected evolution of the
dynamic parts of the environment. These virtual points will
be merged with the initial laser scan to provide an enhanced
laser scan (ELS) that will feed the algorithm presented in
part II. Using the ELS, the robot will anticipate the evolution
of each moving obstacle, taking safer decisions such as an
earlier avoidance trigger or a more suitable SOM.

A. Detection of the moving points

We denote by Rp and Rc the frames attached to the robot
at time tp and tc, with tp < tc. We also introduce PRc(t) and
PRp(t) the arrays of laser point coordinates taken at time t,
given in the robot frames Rp and Rc. The algorithm works
by comparing the points from the current laser scan PRc

(tc)
taken at time tc with the points from a previous laser scan
PRp(tp). The transformation matrix RcTRp between Rp and
Rc can be obtained using local localization methods. Thus,
the coordinates of the points from the previous acquisition
in the current robot frame Rc can be computed such as:

PRc
(tp) =

RcTRp
. PRp

(tp) (5)

Algorithm 1 finds for each point in PRc
(tc) its closest

point in PRc
(tc). If this distance is over a threshold D, the

point is considered as moving. Else, it is not. The algorithm
produces two output matrices, P̃Rc(tc) and P̃Rc(tp). These
matrices respectively contains the subset of points from
PRc

(tc) and PRc
(tp) that are seen to be moving, and will

be used to characterize the robot environment.

Algorithm 1 Detection of the moving points

P̃Rc(tc), P̃Rc(tp)← []
for all Point P1 in PRc(tc) do
Dmin ← +∞
for all Point P2 in PRc

(tp) do
Dmin ← min(Dmin, distance(P1, P2))

end for
if Dmin > D then
P̃Rc

(tc)← [P̃Rc
(tc);P1]

P̃Rc
(tp)← [P̃Rc

(tp);P2]
end if

end for

B. Characterization of the obstacles

1) Obstacle clustering: A spatial clustering is operated
on the points contained in P̃Rc(tc). Since the obstacles are
well-separated, any well-known clustering technique, such as
hierarchical clustering [23] can be used. This allows to be
able to handle any number of obstacles.

2) Obstacle velocity vector computation: After the clus-
tering, the velocity vector of each obstacle is estimated. For
each cluster, the barycenters BRc

(tc) and BRc
(tp) of their

corresponding points in P̃Rc
(tc) and P̃Rc

(tp) are computed.
The velocity vector for this cluster is obtained as follows:

~VRc
(tc) =

(
vx(tc)
vy(tc)

)
Rc

=
BRc

(tc)−BRc
(tp)

tc − tp
(6)

C. Projection of the virtual points

Using the velocity vector, the points that will be added to
the ELS are computed.

1) Horizon: It has been seen that the avoidance can be
triggered at a maximal distance of 2d∗. Depending on its
velocity v(t), the robot could reach this distance in 2d∗/v(t)
seconds. We then define th = 2d∗/vmax. At any time when
the avoidance could be triggered, it is necessary to take into
account where any moving obstacles might be in th seconds.
Consequently, depending on its cluster, each moving point
will be projected along the vector ~dh = ~VRc(tc).th.

2) Projection: For each moving obstacle, virtual points
are added to the initial laser scan to model the future
trajectory of this obstacle. The method consists in translating,
for each cluster, the points from a given distance along the
velocity vector, and to add a hull linking the initial points
and the translated points. Furthermore, in order to prevent the
angular control law to unexpectedly reach too high values,
no virtual point should be added within a d∗ perimeter
around the robot. Figure 2 shows how the virtual points are

A

B

Fig. 2: Computation process of the dynamic of the obstacles
and the virtual points.

computed. The environment is cluttered with two obstacles.
One rectangular static obstacle (A), and one circular dynamic
obstacle (B). The solid lines represent both obstacles at
t = tc. The solid blue points are the points PRc

(tc) currently
detected by the LiDAR. The dotted circle represents the (B)
obstacle as it was at time t = tp, while the grey star points are
the points PRc(tp), that were detected at the previous time
tp, projected in the current robot frame Rc. At the beginning
of the algorithm, each point from PRc

(tp) is matched with
its closest point in PRc

(tc), represented by the green arrows.
If the distance between these matched points is bigger than a
threshold, these points are considered to be moving. This is
the case of the points lying in the circle, but not the case of
those belonging to the static obstacle (A). At the end of this
process, P̃Rc

(tp) contains the five grey star points, P̃Rc
(tc)

the five blue points lying in the circle. Then, the clustering
is performed, and the barycenters BRc(tc) and BRc(tp) are
computed, represented respectively by the red circle point
and the red star point. ~VRc

(tc) is then calculated, represented
by the black arrow between the red points. This process
being done, the virtual points can be computed and added
to the final scan. The five blue round points are translated
along their respective vector ~dh, generating the five squared
blue points. The hull is then created, producing the blue star
points.

IV. NAVIGATION STRATEGY

A. Sense of motion computation

For static obstacles, the condition is based on the sign
of αc: if αc ≤ 0, select a clockwise SOM. Else, select a
counter-clockwise SOM. For a dynamic environment, the
future position of the obstacle must be taken into account
at the decision instant. Typically, if the obstacle is at the
right of the robot, and moving from the right to the left,
the previous computation would produce a clockwise SOM.
Such a SOM would make the robot trajectory to cross
the obstacle expected path, leading to a collision threat.
The proposed algorithm anticipates the motion of dynamic
obstacle. When an obtacle is detected and the switch between
the GTG controller and the SA controller is triggered, the
SOM is determined using Oc and its associated velocity

vector ~VRc(t) =

(
vx(t)
vy(t)

)
Rc

.

• If vy = 0, apply the conditions for static obstacles.
• Else if vy > 0, select a counter-clockwise SOM. It

means that the obstacle is going from right to left.
• Else if vy < 0, select a clockwise SOM. It means that

the obstacle is going from left to right.

B. SOM reassessment

In complex cases (multiple obstacles, unpredictable ob-
stacle dynamics), it might happen that the SOM computed
when the avoidance process was first triggered makes the
robot be dragged away by an obstacle moving at the same
speed than the robot. Consequently, it is necessary to detect
these situations and reassess the SOM whenever needed.
These cases can be detected by checking if vx > 0 and
|vy| < v0y . If these conditions are fullfilled, the robot is
going in the same direction than the obstacle. If this case
occurs, the algorithm reassesses the SOM. Furthermore, at
each iteration, the distance between two successive SCP is
computed. If this distance is greater than a given threshold,
the new SCP belongs to a new obstacle. In this case, the
SOM is also reassessed.

C. Linear velocity

In [16], the robot was operating at the same constant linear
velocity v. For a safer behavior, the robot linear velocity v is
mapped with eα(t), to evolve between a maximum velocity
vmax and a minimum velocity vmin:

v(t) = vmax − (vmax − vmin)
|eα(t)|
π/2

(7)

This formula leads to a safer behavior. When an obstacle
lies in front of the robot (|eα(t)| ' π/2), the velocity will
be minimal. If it is on the side of the robot (|eα(t)| ' 0), a
maximal linear velocity will be produced.

V. SIMULATION AND RESULTS

A. Simulation description

We have evaluated our method using Matlab software.
Starting from its initial pose Or(0) = Ow, it has to reach
a goal Og whose coordinates in the initial robot frame are

0 10 20 30X(m)

-10

-5

0

5

10

Y
(m

)

O
g

O
w

O1

O2 O4

O3

O5

V2 = 1.5 m/s

V3 = 1 m/sV1 = 1.5 m/s

V5 = 0 m/s

V4 = 2 m/s

t1

t1

t1

t2

t2
t2

t3

t3

t3

Fig. 3: Positions and movements of the obstacles at three
key moments

[xg, yg] = [30, 0]. Between the robot and the goal lie several
obstacles. Figure 3 shows the position and the velocity of
the obstacles at t1 = 0s, t2 = 7.5s and t3 = 12s. O1,
O2 and O3 are three small convex obstacles, which could
represent humans walking. O2 changes its trajectory at t2.
O4 is a car-sized obstacle, and starts moving at t3. O5 is
a static obstacle. This environment aims at simulating a
typical human environment. The robot linear velocity v(t)
evolves between vmin = 0.5ms−1 and vmax = 1.5ms−1.
To ensure a safe avoidance motion, d∗ = 3m. For the
controllers, the gains are set as: λ1 = 0.2, λ2 = 0.2 and
λS = 0.5ms−1. eswitchα = π/12, n = 5, and v0y = 0.5ms−1.
An additive white gaussian noise with σ = 0.03 is applied to
the LiDAR distance output. The algorithm runs with a rate
time Ts = 0.02s. Furthermore, the interval between tc and tp
is chosen at 10 iterations, hence tc−tp = 0.2s. To smoothen
the control, an averaging sliding window of 5 iterations is
applied.

B. Results

The robot succeeds in reaching its goal in 28.2 seconds,
safely avoiding all the obstacles. Figure 4 displays the pose
of the robot and its trajectory at four key moments. Red
points represent virtual laser points added to the scan. They
can be compared with the real obstacle velocities shown on
figure 3 and represented by arrows. It can be seen that at each
iteration, the virtual laser points are added along the expected
future path of each obstacle. The black dots represent the
current SCP. Figure 5 displays the linear velocity v(t) and the
angular velocity ω(t) as well as the type of used controllers.
Figure 6 presents the evolution of ed(t) and eα(t), as well
as d(t) and dc(t), that represents the closest physical point
to the robot.

1) Avoidance of O1: From t = 0s to t = 1s, the robot
uses the GtG controller and goes toward the goal. O1 and
O2 are within LiDAR detection range. The algorithm detects
that these obstacles are moving, and adds virtual points along
their future predicted trajectories. The closest point Oc is
computed and belongs to the virtual points added from O1.
This point being within the avoidance trigger range, the robot
switches from the GtG controller to the SA controller. At this

point, thanks to the obstacle velocity vector, the algorithm
detects that the obstacle is going from right to left, and
decides a c.c.w. SOM, as it can be seen on figure 4a.

2) Avoidance of O2: At t = 6s, the SCP becomes the
closest point Oc which is a virtual point derivated from O2.
Such a jump in the SCP position triggers the reassessment
of the SOM. Because O2 goes from left to right, a c.w. sense
of motion is chosen (Figure 4b). As shown in figure 3, O2

suddenly changes its trajectory at t = 7.5s. Because of its
initial choice of SOM, the robot was trying to avoid it in
the same direction it is now going. The condition presented
in IV-B is met, and the SOM is reassesed, leading to a new
c.c.w. sense of motion, as shown on Figures 4c. and 4d. A
pike in the angular control output ω(t) can be observed on
Figure 5, corresponding to the SOM changing.

3) Avoidance of O3 and O4: At t = 16s, the obstacle O3,
which is moving from the right to the left with respect to the
robot. A c.c.w. SOM is fixed. Soon after, O4 becomes the
closest detected obstacle. This jump in the SCP leads to a
reassessment of the SOM, chosen as c.w., since the obstacle
is moving from left to right.

4) Avoidance of O5: At t = 20s, the mobile obstacle
O4 has been avoided, and the robot arrives in front of the
static objet O5. A c.c.w. SOM is chosen. At t = 28.2s, the
simulation ends with the robot reaching its goal.

This simulation highlights the advantages of our method.
Using the information about environment provided by the
enhanced laser scan, the robot is able to take better decisions
about the SOM, leading to a quicker and safer avoidance.
Moreover, it can also handle a sudden modification of the
obstacles direction by switching its SOM. It can be seen on
figure 6 that in spite of the numerous dynamic obstacles,
no collision occurs. The controls v(t) and ω(t) also remain
continuous and within acceptable ranges.

VI. CONCLUSION

This article has presented a novel strategy allowing a
mobile robot to navigate through a dynamic environment.
It extends previous works based on the spiral avoidance
method. It combines the control laws proposed in [16] with
a novel method called enhanced laser scan, where virtual
points are added to the laser scan. A new decision layer
has also been added to improve the choice of the sense-of-
motion. This complete navigation strategy has been tested
on Matlab software, and has been proven to be efficient.
Therefore, our next step is to implement it on the Air-Cobot
plateform in LAAS.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion, 2005.

[2] M. Hoy, A. S. Matveev, and A. Savkin, “Algorithms for collision-
free navigation of mobile robots in complex cluttered environments:
A survey,” Robotica, vol. 33, pp. 1–35, 03 2014.

[3] M. Seder and I. Petrovic, “Dynamic window based approach to
mobile robot motion control in the presence of moving obstacles,”
in Proceedings 2007 IEEE International Conference on Robotics and
Automation, April 2007, pp. 1986–1991.

1

2
3

4

5

1

2 3

4

5
3

54

b. t = 7s c. t = 9s d. t = 16s f. t = 27.5s

2
3

5

Fig. 4: Obstacle position and robot position and trajectory at different times

0 5 10 15 20 25 30

SA 1

SA 2

GtG

Fig. 5: Linear velocity (in ms−1), angular velocity (in
rad.s−1) and controller used (GtG, SA1, or SA2)

Fig. 6: Distance error ed(t), angular error eα(t), distance to
the SCP d(t) and distance to the closest physical point dc(t).

[4] B. Damas and J. Santos-Victor, “Avoiding moving obstacles: the
forbidden velocity map,” in 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Oct 2009, pp. 4393–4398.

[5] J. van den Berg, J. Snape, S. J. Guy, and D. Manocha, “Reciprocal
collision avoidance with acceleration-velocity obstacles,” in 2011
IEEE International Conference on Robotics and Automation, May
2011, pp. 3475–3482.

[6] Z. Shiller, F. Large, and S. Sekhavat, “Motion planning in dynamic
environments: obstacles moving along arbitrary trajectories,” in Pro-
ceedings 2001 ICRA. IEEE International Conference on Robotics and
Automation (Cat. No.01CH37164), vol. 4, 2001, pp. 3716–3721 vol.4.

[7] F. Large, C. Laugier, and Z. Shiller, “Navigation among moving
obstacles using the NLVO : Principles and applications to Intelligent
Vehicles,” Autonomous Robots, vol. 19, no. 2, pp. 159–171, Sep.
2005, voir basilic : http://emotion.inrialpes.fr/bibemotion/2005/LLS05/
optkey: large-AR05. [Online]. Available: https://hal.inria.fr/inria-
00182105

[8] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in Robotics and Automation,

1991. Proceedings., 1991 IEEE International Conference on, Apr
1991, pp. 1398–1404 vol.2.

[9] Y. Lu, Y. Yixin, and L. Cheng-Jian, “A new potential field method
for mobile robot path planning in the dynamic environments,” Asian
Journal of Control, vol. 11, no. 2, pp. 214–225, 2009. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.98

[10] J. Ren, K. A. McIsaac, and R. V. Patel, “Modified newton’s method
applied to potential field-based navigation for nonholonomic robots in
dynamic environments,” Robotica, vol. 26, no. 1, p. 117127, 2008.

[11] O. Montiel, U. Orozco-Rosas, and R. Seplveda, “Path planning
for mobile robots using bacterial potential field for avoiding
static and dynamic obstacles,” Expert Systems with Applications,
vol. 42, no. 12, pp. 5177 – 5191, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417415001402

[12] Q. Zhang, S.-g. Yue, Q.-j. Yin, and Y.-b. Zha, “Dynamic obstacle-
avoiding path planning for robots based on modified potential field
method,” in Intelligent Computing Theories and Technology, D.-S.
Huang, K.-H. Jo, Y.-Q. Zhou, and K. Han, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 332–342.

[13] A. S. Matveev, C. Wang, and A. V. Savkin, “Real-time
navigation of mobile robots in problems of border patrolling
and avoiding collisions,” Robotics and Autonomous Systems,
vol. 60, no. 6, pp. 769 – 788, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889012000346

[14] A. V. Savkin and C. Wang, “A simple biologically inspired algorithm
for collision-free navigation of a unicycle-like robot in dynamic
environments with moving obstacles,” Robotica, vol. 31, no. 6, p.
9931001, 2013.

[15] C. Wang, A. S. Matveev, A. V. Savkin, T. N. Nguyen, and H. T.
Nguyen, “A collision avoidance strategy for safe autonomous naviga-
tion of an intelligent electric-powered wheelchair in dynamic uncertain
environments with moving obstacles,” in 2013 European Control
Conference (ECC), July 2013, pp. 4382–4387.

[16] D. Leca, V. Cadenat, T. Sentenac, A. Durand-Petiteville, F. Gouaisbaut,
and E. L. Flecher, “Sensor-based obstacles avoidance using spiral con-
trollers for an aircraft maintenance inspection robot,” in (Forthcoming)
2019 European Control Conference (ECC), 2019.

[17] M. Futterlieb, V. Cadenat, and T. Sentenac, “A navigational framework
combining visual servoing and spiral obstacle avoidance techniques,”
in Informatics in Control, Automation and Robotics (ICINCO), 2014
11th International Conference on, vol. 02, Sept 2014, pp. 57–64.

[18] E. L. Flecher, A. Durand-Petiteville, V. Cadenat, T. Sentenac, and
S. Vougioukas, “Design of a sensor-based controller performing u-turn
to navigate in orchards,” in International Conference on Informatics
in Control, Automation and Robotics, Madrid, Spain, July 2017.

[19] K. N. Boyadzhiev, “Spirals and conchospirals in the flight of insects,”
The College Mathematics Journal, vol. 30, no. 1, pp. pp. 23–31,
1999. [Online]. Available: http://www.jstor.org/stable/2687199

[20] A. Mcfadyen, L. Mejias, and P. Corke, “Visual servoing approach to
collision avoidance for aircraft,” in 28th Congress of the International
Council of the Aeronautical Sciences 2012, Brisbane Convention
& Exhibition Centre, Brisbane, QLD, September 2012. [Online].
Available: http://eprints.qut.edu.au/54328/

[21] A. Mcfadyen, P. Corke, and L. Mejias, “Rotorcraft collision avoidance
using spherical image-based visual servoing and single point features,”
in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on, Oct 2012, pp. 1199–1205.

[22] A. Isidori, Nonlinear control systems. Springer Science & Business
Media, 2013.

[23] L. Rokach and O. Maimon, Data mining and knowledge discovery
handbook. Springer US, 2005, ch. Clustering methods, pp. 321–352.

