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ABSTRACT. We address the interest of using Symbolic Monte Carlo to obtain a reduced model for
conduction-radiation coupling in complex geometries. Symbolic Monte Carlo was successfully used
for radiative transfer in a decoupled manner, but no attempt has yet been reported to extend its use
to radiation coupled with other modes. Here we show that from a unique Monte Carlo simulation
of radiation coupled with conduction in a semi-transparent solid surrounded by a convective flow, it
is possible to build a formulation of the local temperature as function of the convective heat trans-
fer coefficient, for instance, including the evaluation of uncertainty. This reduced model (a transfer
function) enables to decrease the computation time when the function needs to be evaluated plenty of
times for different values of the parameters as in optimization or control algorithms.

1. INTRODUCTION

Radiative transfer simulations may require the use of Monte Carlo method when handling large ge-
ometric models and when radiative properties have strong spectral, spatial and directional depen-
dencies. Numerous research efforts have been reported, nearly since the origin of the Monte Carlo
method, attempting to extend this handling of physically and geometrically highly refined objects
to other heat transfer modes [1,2]. Todays specifically, numerous theoretical developments are being
proposed along this line [3,4] trying to address the geometrical refinement of multiscale engineering
requirements. Among these theoretical attempts, Fournier et al. [5] proposed a statistical formulation
starting from Green formalism that allows the extension to combined heat transfer of the computer
graphics techniques used for rendering images of complex scenes. This thermal Monte Carlo method
(involving a linearization with temperature of radiative transfer) was applied and validated numer-
ically for combined heat-transfer in porous media by Caliot et al. [6] and Ibarrart et al. [7]. The
authors of the present article are also intensively using this approach for engineering applications in
contexts where the linearization of radiation is meaningful, e.g. thermal control of building, urban
climate, cooling of electronics, or cooling of electric motors. The objective of the present communi-
cation is to show that such calculations can produce not only a computation result but also a transfer
function, i.e. a fast reduced version of the model that can be used instead of the full Monte Carlo
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computation when numerous repetitions of the computation are required (command, optimization,
inversion).

We achieve this objective using the Symbolic Monte Carlo (SMC) approach [8]. Originally, the SMC
method was introduced as the ”Inverse Monte Carlo method” [9] and developed for inverse problems
applied to radiative transfer problems [10]. Lately, introducing null collisions to handle the nonlin-
earity of Beer extinction [11,12], the SMC method was developed to express radiative observables as
symbolic functions of absorption and scattering coefficients [13]. To the best of our knowledge, this
is here the first reported attempt to make use of SMC for combined heat transfer.

The present discussion is essentially theoretical and not applicative. We stick to simplified stationary
physics in order to help clarifying the formal developments. We leave aside spectral dependences and
heterogeneities that are already recognized strengths of Monte Carlo approaches and only concentrate
on proving that i) SMC can be extended to combined heat-transfer algorithms; ii) it preserves the fea-
tures of Monte Carlo approaches as far as handling large geometric models is concerned. We retain the
case of grey radiation coupled with conduction in a homogeneous semi-transparent solid surrounded
by a convective flow, using a uniform heat transfer coefficient h and a uniform fluid temperature
Tf . We formulate the local solid temperature as a function of h, together with its uncertainty, on a
parameter range that widely extends the validity range of first order Taylor extensions, i.e. proving
that SMC transfer functions accurately capture the physical nonlinear response to h variations. The
grey and homogeneity assumptions could easily be suppressed, but this is not the case for one major
assumption that todays limits the application potential to the above mentioned fields: the temperature
differences viewed by the transfer of radiation (between the emission and absorption locations for a
given path) must be small enough for the Planck function to be linearized as function of tempera-
ture. We discuss simulation results using reference examples of the Large Geometric Model Archive
(https://www.cc.gatech.edu/projects/large_models/) initiated by the computer
graphics community [14].

2. THE SYMBOLIC MONTE CARLO MODEL

The heat transfer model The studied configuration (Figure 2) is composed of a semi-transparent
solid domainDS and a transparent fluid domainDF . Coupled conduction and radiation are considered
in the solid, convection at the solid/fluid interface ∂DS and radiation in the fluid. Let us name ~x a
location inside the solid, ~y a location at the solid/fluid interface and ~n ≡ ~n(~y) the unit normal to
the interface at ~y, heading toward the fluid. The solid temperature at ~x is noted T ≡ T (~x) . The
solid properties are homogeneous and independent of temperature: λ is the thermal conductivity, ka
the absorption coefficient and ks the scattering coefficient. The fluid is assumed perfectly mixed at
a known temperature Tf : the boundary layer is only represented using a convective heat transfer
coefficient h at the solid/fluid interface (equation (3)). Incoming radiation at the boundary of this
system is fixed by assuming a black bounding box (∂Ω) at temperature T∞. We use the following
simple heat-transfer model (linear in temperature):





λ ∆T + ζ(TR − T ) = 0 ∀~x ∈ DS

TR =

∫

DΓ

pΓ(γ)dγ T (~xγ) ∀~x ∈ DS

− λ~∇T.~n = h(T − Tf ) ∀~x ≡ ~y ∈ ∂DS

T = Tf ∀~x ∈ DF

(1)

(2)

(3)
(4)
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In this model, radiative heat transfer is steady and linearized around a reference temperature Tref ,
using a volumic heat transfer coefficient ζ = 16kaσT

3
ref in which σ is the Stefan-Boltzmann con-

stant. TR(~x) is defined using the space DΓ of all the radiative-paths γ, of probability density pΓ(γ),
corresponding to the statistics of photons emitted at ~x until their absorption at ~xγ: this radiative tem-
perature is simply the mean temperature at absorption locations, TR(~x) =< TR(~x)γ >DΓ

.

The equivalent statistical model The heat transfer equation (1) and the solid/fluid boundary con-
dition (3) are reformulated to get a statistical interpretation allowing a Monte Carlo approach. The
application of Monte Carlo Methods to evaluate solutions of heat equation received much early atten-
tion [15,16]. But even today, work continues on developing new Monte Carlo algorithms for specific
applications [17,18]. Along this line, if we consider the term in TR as a source for equation (1), we
can recognize the classical Helmholtz equation. As shown by Mikhailov [18], this equation can be
solved with an exact scheme inside the domain by the walking-on-spheres algorithm. However, the
implementation can be tricky in the general case. For practical reasons, we choose here an approx-
imate scheme built from the assumption that the radiative term ζ(TR − T ) is quasi-constant inside
spheres of small radius δ, which gives the classical solution resulting from reformulating the Poisson
equation with constant source [1,8]:

T (~x) ≈ 1

4π

∫

4π

T (~x + δ~u) d~u + Q(δ) (5)

with ~u integrated over the unit sphere, Q(δ) = q0
δ2

6 and q0 = ζ
λ
(TR − T (~x)). The first term comes

from the classical result of harmonics functions theory (i.e. without sources, the average value of T
over the surface of a sphere of any radius δ, equals the value of T at the center of the sphere). The
boundary condition of equation (3) is also discretized with a backward difference scheme to get (6):

~∇T.~n ≈ T (~y)− T (~y − δ~n)

δ
(6)

In equations (5) and (6), δ is a numerical parameters: the walking step for conduction in the solid. In
equation (5), when ~x is in the vicinity of the boundary, δ inside the angular integral must be adjusted
and numerous strategies are available in the literature [16]. Here we replace δ with δc ≡ δc(~x, ~u)
defined the following way. If the segment [~x − δ~u, ~x + δ~u] does not intersect the boundary, then δc
is kept equal to δ. Otherwise, ~y is defined as the intersection the closest to ~x and δc = ||~x − ~y||.
Similarly, δ is also adjusted in equation (6) in order to avoid that ~y − δ~n be outside the solid for
high-frequency boundary structures. δ is replaced with δb ≡ δb(~y, ~n) defined the following way. If
the segment [~y, ~y − δ~n] does not intersect the boundary, then δb is kept equal to δ. Otherwise, ~y′ is
defined as the intersection the closest to ~y and δb = 1

2 ||~y − ~y′||.
By using these δ adjustments and introducing expressions (5) and (6) into equations (1) and (3) , the
temperature in the solid T (~x) and at the boundary T (~y) can be formulated as:





T (~x) =
6λ

6λ+ ζδ2
︸ ︷︷ ︸

1−PR

1

4π

∫

4π

T (~x + δc~u) d~u

︸ ︷︷ ︸∫
4π

p(~u)d~u T (~x+δc~u)

+
ζδ2

6λ+ ζδ2
︸ ︷︷ ︸
PR

TR ∀~x ∈ DS

T (~y) =
h

h + λ
δb︸ ︷︷ ︸

PC(h)

Tf +
λ
δb

h + λ
δb︸ ︷︷ ︸

1−PC(h)

T (~y − δb~n) ∀~x ≡ ~y ∈ ∂DS

(7)

(8)

Equations (7) and (8) can be given a statistical interpretation by introducing the probability PR =
ζδ2

6λ+ζδ2 , the probability PC(h) = h
h+ λ

δb

, and the probability density p(~u) = 1
4π , and can be gathered
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using the Heaviside functionH (taking the value 1 if the condition is satisfied and 0 otherwise),

T (~x) = H(~x ∈ DS)×
{

(1− PR)×
∫

4π
p(~u)d~u T (~x + δc~u) + PR × TR

}

+ H(~x ≡ ~y ∈ ∂DS)× {PC × Tf + (1− PC)× T (~y − δb~n)} (9)

in order to justify theoretically the Monte Carlo algorithm of Figure 1. This allows indeed to look at
T (~x) as the expectation of a random variable W (the Monte Carlo weight) associated to a conducto-
radiative path and taking either the value Tf if the path ends with a convective exchange at the
solid/fluid interface, or the value T∞ if the path ends with radiation at the bounding box [5,19]. N
paths are sampled, providing N realisations w1, w2...wN of W , and T (~x) is estimated as T (~x) ≈
1
N

∑N
i=1 wi. The heart of the path-sampling of Figure 1 is the following. The path starts at ~x within

the solid by first choosing between a conductive or a radiative step. If a radiative step is chosen, then
the algorithm is a very standard Monte Carlo algorithm for radiation in multiple scattering media and
ends at location ~z either with an absorption inside the solid, or with absorption at the bounding box.
If absorption occurs at the bounding box, the path stops and the Monte Carlo weight is ω = T∞.
If absorption occurs inside the solid, this defines a new ~x location and the path sampling algorithm
loops at its start. When a conductive step is chosen, the step direction ~u is sampled isotropically and
δc is computed by testing the intersections with the boundary when travelling from ~x in direction
~u and direction −~u. Once the conductive step has been made, it ends either within the solid or at
the solid/fluid interface. If the conductive step ends within the solid, this defines a new ~x location
and the path sampling algorithm loops at its start. If the conductive step ends at a location ~y at the
solid/fluid interface, δb is computed by testing the intersections with the boundary when travelling
from ~y in direction −~n. Once δb has been computed, a Bernoulli test is made to decide wether the
path continues from the interface with conduction or with convection. If convection is chosen, the
path stops and the Monte Carlo weight is ω = Tf . If conduction is chosen, ~x is set to the location
~y − δb~n and the path sampling algorithm loops at its start.

The corresponding Symbolic model Now that we have defined the Monte Carlo algorithm eval-
uating T (~x, h) for a given value of h (let say h = href ), we can address the true objective of the
present paper and implement a symbolic Monte Carlo approach in order to produce a reduced model
of how T (~x, h) varies with h. This could be achieved partially by computing the sensitivity ∂T

∂h

∣∣
h=href

[20,21] and using a first order Taylor expansion, but then the ability to predict T (~x) as a function of
h would be limited to its linearity range around href . The whole interest of the symbolic approach is
that it extends this limit and captures nonlinear responses.

The starting point is to rewrite the solid/fluid boundary equation (8) using an importance sampling
approach, i.e. introducing a new arbitrary probability P̃ =

href

href+ λ
δb

and correcting the Monte Carlo

weights accordingly:

T (~y, h) = P̃
{PC(h)

P̃
Tf

}
+ (1− P̃)

{
1− PC(h)

1− P̃
T (~y − δb~n)

}
(10)

Let us first consider the simple case of a sphere (Figure 2): as there is no risk of intersection with
the geometry during re-injection, δb has the same value at each location ~y on the boundary. This
means that the Monte Carlo algorithm built from Equation (10) instead of Equation (8) is strictly
identical to that of Figure 1, except that when reaching the boundary the uniformly random variable
R is compared to P̃ instead of PC(h), and the Monte Carlo weight w is multiplied by PC(h)

P̃ or by
(1−PC(h))

1−P̃ , depending on the comparison. As a result of this quite simple transformation, the path
statistics do not depend on h anymore: the same sampled paths can be used to evaluate T (~x, h)
for any value of h because h appears in the Monte Carlo weight only. The symbolic formulation
is then constructed by simply storing these weights in their h dependance. For the i-th path, let us
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Start at ~x ∈ DS

R sampling

~U sampling ~U samplingR < ζδ2

6λ+ζδ2
YesNo

radiationconduction

[~x− δ~u; ~x+ δ~u]
⋂
∂DS 6= ∅

YesNo

δc ← δ δc ← ‖~x− ~y‖

~x← ~x+ δc~u

~x ∈ ∂DS
No

Yes

R sampling

R < h
h+ λ

δb

No

Yes

ω = Tf

~x← ~x+ δb~n

L sampling

~z ∈ DS
No

Yes

R sampling

R < ka
ka+ks

No Yes

absorptionscattering

ω = T∞

~x← ~z

Figure 1. The path-sampling algorithm. The random variable R is uniformly distributed on the unit interval.

note ji the number of times the path has reached the boundary and was re-injected in the solid. The
corresponding Monte Carlo weight wi(h) is therefore

ω(h)i =
(

1−PC(h)

1−P̃

)ji
T∞ if the path ends with a radiative path

ω(h)i =
(

1−PC(h)

1−P̃

)ji PC(h)

P̃ Tf if the path ends with a convective path
(11)

For generalization to any geometry, we need to deal with the fact that δb has different values at
each location ~y on the boundary. PC(h) is therefore not a unique function of h. We note PC,i,m(h)
the particular function for the m-th boundary encounter in the i-th path, i.e. PC,i,m(h) = h

h+ λ
δb,i,m

were δb,i,m is the re-injection distance at the corresponding boundary location. With this notation, the
Monte Carlo weights is

ω(h)i =
(∏ji

m=1
1−PC,i,m(h)

1−P̃

)
T∞ if the path ends with a radiative path

ω(h)i =
(∏ji

m=1
1−PC,i,m(h)

1−P̃

) PC,i,ji
(h)

P̃ Tf if the path ends with a convective path
(12)

The estimate of T (~x, h) and the estimate of its standard deviation are then constructed using the
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Monte Carlo weights as in any Monte Carlo approach:

T (~x, h) ' 1

N

N∑

i=1

ω(h)i (13)

σ(h) =
1√
N


 1

N

N∑

i=1

ω2(h)i −
(

1

N

N∑

i=1

ω(h)i

)2



1
2

(14)

Table 1 illustrates the typical storage procedure, using the path examples of Figure 2, for both the
sphere case and the generalized case. In Figure 3, full SMC results are presented and compared
with the reference Monte Carlo simulations. The statistical uncertainties, displayed as error bars (the
standard deviation of the estimator), confirm the theoretical predictions: whatever the value of h,
even far from href , the predicted accuracy of the SMC calculation can be trusted (provided that the
accuracy of the initial Monte Carlo could already be trusted, i.e. no pathological rare-events statistics
were encountered). Again, the SMC formulation preserves here the features of the initial Monte
Carlo. As expected, when h is far from href , the error bar increases. But the prediction remains quite
accurate way outside the linearity zone (the range of h for which T (~x) depends on h linearly). In
the present example, the SMC calculation can therefore be faithfully used instead of the complete
Monte Carlo run for all control, inversion or optimum-design procedures requiring large numbers of
iterative calls. It is very hard to predict how much this conclusion extends to other parameters than
h and other heat transfer configurations than the present conductive-radiative one, but the feasibility
is established. We have repeated the same simulations for other large geometric models, increasing
the number of triangles of two orders of magnitude and the conclusions are identical, with nearly
identical computation times (up to the limit of the available memory).

Table 1: Examples of the SMC storage requirements for the path examples of Figure 2
Realization Path MC w S MC w(h)

Sphere Generalization

i = 1 A→ B1 Tf

(
1−PC(h)

1−P̃

)2

× PC(h)

P̃ Tf

(
1−Pc1

(h)

1−P̃1

)
×
(

1−Pc2
(h)

1−P̃2

)
× Pc3

(h)

P̃3
Tf

i = 2 A→ B2 T∞
(

1−PC(h)

1−P̃

)2

× T∞
(

1−Pc1
(h)

1−P̃1

)
×
(

1−Pc2
(h)

1−P̃2

)
× Pc3

(h)

P̃3
T∞

i = N A→ BN Tf

(
1−PC(h)

1−P̃

)3

× PC(h)

P̃ Tf

(
1−Pc1(h)

1−P̃1

)
×
(

1−Pc2(h)

1−P̃2

)
×
(

1−Pc3(h)

1−P̃3

)
× Pc4(h)

P̃4
Tf

3. CONCLUSION

The present discussion still remains far from realistic industrial configurations. But producing fast
transfer functions for large geometric models and evaluating their accuracy level is a deep industrial
concern and is worth a close theoretical exploration. We can conclude here that SMC can be an effi-
cient corresponding approach and that it is widely insensitive to the level of the geometric refinement.
The next step will be first to suppress the grey medium assumption and the homogeneity assumptions
for solid and convective properties. Part of this has already been tested and the remaining should not
introduce any specific difficulty: Monte Carlo has already been shown to deal with these physical
refinements in a quite straightforward manner. Planck function linearization is a much stronger as-
sumption, but Dauchet et al. have shown how Monte Carlo could address successfully some nonlinear
physics using branching processes [12]. The following major step will therefore be to evaluate the
potential of such branching statistics in front of the nonlinear temperature dependance of the Planck
function and how they fit in the SMC framework.

6



T∞

DS

∂DS

•~x

DF

Tf

h

h

h

h

•

•
•

• • • •
•

•
• ••

• ×
A

B1

~n(δb)

~n(δb)•

•

•

•
•

••
•

•

×
B2

~n(δb)

~n(δb)

• •

•

•
•

••

•

•
•

•

••

•

•
•

•
×

BN

~n(δb)

~n(δb)

~n(δb)

T∞

DS

∂DS

•~x

DF

Tf

h
h

h

h

• •
•

•

•

•

••
•

•
•

•

•

×

A

B1

~n(δb1)
~n(δb2)

•

•

•

•

•
•

•
•

•

×
B2

~n(δb1)

~n(δb2)

•

•
••

•

•
•

•
••

••
•

•

•

•

×
BN

~n(δb1)

~n(δb2)

~n(δb3)

Figure 2. Examples of random paths inside a sphere (left) or any geometry (right). Three paths start at the
same location A (the location where the temperature is to be estimated). Each path starts with a conductive
step and ends in B1, B2 and BN correspondingly to the 1st, 2nd and N th realization. Continuous lines rep-
resent conductive steps from one point (bullet) to the other, and dashed lines represent radiative steps, either
absorption or scattering.

5 10 15 20 25 30 35 40 45 50

329

330

331

332

333

334

h (W.m−2.K−1)

T
(~x

)
(K

)

Symbolic Monte Carlo
Direct Monte Carlo

Figure 3. Left - Comparison of the Symbolic Monte Carlo method (red marks, 1’ 39”) with the Direct Monte
Carlo method (black marks, the reference) for evaluation of local temperature as function of the convective
heat transfer coefficient (left). The test is made on the Stanford bunny geometry [14]. Its volume and surface
are noted V and S respectively and we retain L = 4V/S (L = 1m) as caracteristic size. The probe location
is ~x

L = (0; 0.1; 0) (in the middle of the solid). The reference temperature is Tref = 325K. The fixed physical
parameters are Tf−Tref

Tref
= −0.08 (Tf = 300K), T∞−Tref

Tref
= +0.08 (T∞ = 350K), kaL = 0.1 (leading

to ζ = 3.11 W.m−3.K−1), ksL = 0.1, λ
ζL2 = 0.1 (λ = 0.311 W.m−2.K−1), hrefL

λ
= 16.056 (href =

10 W.m−2.K−1), δ
L = 0.025m and N = 105. The computation of the temperature with the SMC is around

20 000 times faster than the computation by a direct MC. Right - One conducto-radiative path exemple.
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[10] S. Subramaniam and M. P. Mengüç, “Solution of the Inverse Radiation Problem for Inhomogeneous and Anisotrop-
ically Scattering Media Using a Monte Carlo Technique,” International journal of heat and mass transfer, vol. 34,
no. 1, pp. 253–266, 1991.

[11] M. Galtier, S. Blanco, C. Caliot, C. Coustet, J. Dauchet, M. El Hafi, V. Eymet, R. Fournier, J. Gautrais, A. Khuong,
B. Piaud, and G. Terrée, “Integral formulation of null-collision Monte Carlo algorithms,” Journal of Quantitative
Spectroscopy and Radiative Transfer, vol. 125, pp. 57–68, Apr., 2013.

[12] J. Dauchet, J.-J. Bezian, S. Blanco, C. Caliot, J. Charon, C. Coustet, M. El Hafi, V. Eymet, O. Farges, V. For-
est, R. Fournier, M. Galtier, J. Gautrais, A. Khuong, L. Pelissier, B. Piaud, M. Roger, G. Terrée, and S. Weitz,
“Addressing Nonlinearities in Monte Carlo,” Scientific Reports, vol. 8, no. 1, 2018.
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