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X-ray diffraction (XRD) is a widely used technique to evaluate residual stresses
in crystalline materials. Several XRD measurement methods are available. (i)
The sin2 method, a multiple-exposure technique, uses linear detectors to
capture intercepts of the Debye–Scherrer rings, losing the major portion of the
diffracting signal. (ii) The cos! method, thanks to the development of compact
2D detectors allowing the entire Debye–Scherrer ring to be captured in a single
exposure, is an alternative method for residual stress measurement. The present
article compares the two calculation methods in a new manner, by looking at the
possible measurement errors related to each method. To this end, sets of grains
in diffraction condition were first identified from electron backscatter diffraction
(EBSD) mapping of Inconel 718 samples for each XRD calculation method and
its associated detector, as each method provides different sets owing to the
detector geometry or to the method specificities (such as tilt-angle number or
Debye–Scherrer ring division). The X-ray elastic constant (XEC) 1

2S2, calculated
from EBSD maps for the {311} lattice planes, was determined and compared for
the different sets of diffracting grains. It was observed that the 2D detector
captures 1.5 times more grains in a single exposure (one tilt angle) than the
linear detectors for nine tilt angles. Different XEC mean values were found for
the sets of grains from the two XRD techniques/detectors. Grain-size effects
were simulated, as well as detector oscillations to overcome them. A bimodal
grain-size distribution effect and ‘artificial’ textures introduced by XRD
measurement techniques are also discussed.

1. Introduction

Residual stresses play a major role in the fatigue-life behavior
of mechanical components (Webster & Ezeilo, 2001; Klotz,
Delbergue et al., 2018). Residual stress states resulting from
manufacturing or surface treatments are now accounted for in
fatigue-life prediction models (Klotz, Miao et al., 2018).
Accurate and reliable experimentally measured residual stress
profiles are also required for validating predictive models of
manufacturing-induced residual stresses (Guagliano, 2001;
Frija et al., 2006; Gariépy et al., 2013; Heydari Astaraee et al.,
2017; Tu et al., 2017, 2018).

A large number of residual stress measurement techniques
exist (Schajer, 2013). The X-ray diffraction (XRD) technique
is one of them and has been used for decades, to the extent
that some diffractometers are specifically designed for residual
stress measurement purposes (Ruud, 2002) and have become



relatively easy to operate. Industry relies intensively on XRD
for quality control of fatigue-critical components.

X-rays are electromagnetic radiation whose wavelength is
close to crystal lattice spacing. This specific feature can be
exploited to measure lattice spacings (Cullity, 1956), d, and a
constitutive theory can then be used to compute residual
stresses, under the assumption of an elastic crystal lattice
distortion (Prevéy, 1986). The technique relies on Bragg’s
condition, or the condition for diffraction, defined as

n" ¼ 2d sin #; ð1Þ

where n is a positive integer usually taken as equal to 1, " is
the wavelength of the radiation and # is the Bragg angle. The
Bragg condition is satisfied when the incident and diffracted
X-ray beams are bisected by the normal to the (hkl) diffrac-
tion planes. For isotropic polycrystalline materials, the scat-
tered X-rays form a cone, called the Debye–Scherrer cone
(Howard, 1982). The Debye–Scherrer ring, also named Debye
ring, is formed when the diffraction cone intersects a planar
detector placed perpendicularly to the incoming X-ray beam
(Cullity, 1956; Hörz & Quaide, 1973). A diffraction peak is
formed along a given ring radius on the detector. The peak’s
relative position on the detector allows determination of the
Bragg angle value, and its width can be related to the cold
working degree within the irradiated volume (Prevéy, 2000).

Two methods are now mainly used for X-ray residual stress
calculation: the sin2  and the cos ! methods. The standar-
dized sin2  method (SAE International, 2003; ASTM Inter-
national, 2012) is traditionally employed in industry
(Fitzpatrick et al., 2005). This method uses part of the Debye
ring since the XRD is captured by two linear detectors, such as
position-sensitive scintillation detectors, having a fixed posi-
tion relative to the incident X-ray beam. Several measure-
ments have to be taken at different tilt angles (Noyan &
Cohen, 1987), thus sampling different sets of grains. The
residual stress associated with the measurements is obtained
by linear regression from the slope of the linear relationship
existing between the lattice spacings measured at different tilt
angles and sin2  values (calculated from the tilt angles).

Technology improvements led to 2D detectors (He, 2009),
such as image-plate (IP) detectors (He, 2009; Eatough et al.,
1997), facilitating the use of the cos ! method (Taira et al.,
1978; Sasaki et al., 1997). The cos !method relies on the whole
Debye ring, which is captured in a single exposure with an IP
detector (Hiratsuka et al., 2003) having the incident X-ray
beam emanating from its center. The ring’s radius is then used
to compute the lattice deformation and the corresponding
residual stress value.

The sin2  and cos! methods rely on different sets of
detected diffracting grains owing to the difference in detector
geometry, which may result in different residual stress
measurements. Peterson et al. (2017) and others (Sasaki, 2014;
Delbergue et al., 2016; Kohri et al., 2016; Ramirez-Rico et al.,
2016; Delbergue et al., 2017) have reported differences in
results when measuring residual stresses with the two
methods. However, Peterson et al. (2017) were able to reduce
the differences between the two methods in shot-peened

standard-sample residual stress measurements with the
generalized least-squares analysis proposed by Miyazaki &
Sasaki (2016). Miyazaki & Sasaki (2016) have shown, on the
basis of the fundamental equations, that the only differences
between the sin2  and cos ! methods lie in the fact that the
sets of diffracting grains are different for these two methods
and the crystalline grain aggregates exhibit local elastic
property variations (Kocks et al., 1998).

Authors who compared the residual stress measurements
resulting from the sin2  and cos! methods have mostly
focused on experimental observations (Delbergue et al., 2016;
Kohri et al., 2016; Ramirez-Rico et al., 2016; Peterson et al.,
2017) or on the fundamental equations (Ramirez-Rico et al.,
2016; Miyazaki & Sasaki, 2016), but none have numerically
compared the two methods using the coupling between the
stress calculation method and the inhomogeneous grain
response to elastic deformation. By relying on crystal plasti-
city, Erinosho et al. (2016) have simulated lattice strains by
considering grains that satisfy the diffraction condition and
compared their predictions against in situ synchrotron XRD
measurements.

The principal objective of this article is to compare the
sin2  and cos ! methods in terms of diffracting-grain number
and X-ray elastic constant (XEC) of the diffracting-grain set,
according to the detector specificities. The comparison was
made by identifying the diffracting grains for the two methods
from electron backscatter diffraction (EBSD) grain orienta-
tion maps and evaluating their average elastic properties. To
the best of our knowledge, the comparison of the two methods
has never been done using the XEC estimated for sets of
diffracting grains from EBSD maps. The article is organized as
follows: The fundamental equations for the sin2  and cos !
methods are presented in Section 2. In Section 3, the studied
material, its microstructure, the two XRD measurement
conditions, the grain conditions for diffraction and the XEC
calculation method are presented. Experimental and numer-
ical results such as EBSD maps, identified diffracting grains,
calculated XEC and ‘artificial’ textures of the XRD
measurement methods are set out in Section 4. The results are
then discussed in Section 5 before the conclusion of this work.

2. Residual stress measurement theory

For crystalline or polycrystalline materials, the measurement
of residual stresses using X-ray diffraction techniques is based
on the change of lattice spacing, d, and each grain is basically
used as a local strain gauge. For instance, the presence of
tensile residual stresses within the irradiated volume increases
the d spacing in a given direction, resulting in a diffraction
peak shift towards lower # values. The shift yields a Bragg
angle value, #, which differs from the #0 value obtained for a
stress-free sample of the same material (usually measured on
powder).

In XRD measurements, the strain, "fhklg
’ , is measured along

the diffraction vector Vhkl defined in the sample coordinate
system as
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where ’ and  are the azimuthal and tilt angles, respectively
(the angles are defined in Fig. 1). The measured strain, "fhklg

’ ,
can be computed from the measured Bragg angle, #, or the
planes’ lattice spacing, dfhklg

’ , and can be obtained by

"fhklg
’ ¼

dfhklg
’ $ dfhklg

0

dfhklg
0

¼ $!# cot #0; ð3Þ

where !# = # $ #0 and d0 is the d spacing corresponding to the
#0 value, measured for a stress-free sample. The strain
measured along the diffraction vector Vhkl can then be
expressed in terms of the strain components "ij in sample
coordinates with respect to the Einstein summation conven-
tion by

"fhklg
’ ¼

dfhklg
’ $ dfhklg

0

dfhklg
0

¼ vivj"ij; ð4Þ

where vi and vj are the Vhkl components defined in equation
(2). If the measured material is isotropic and homogeneous,
Hooke’s law can be used to relate the macroscopic stress, $, to
the strain as

"ij ¼
1þ %

E
$ij $ &ij

%

E
$kk; ð5Þ

where E and % are the material’s macroscopic Young modulus
and Poisson ratio values, respectively, and & is the Kronecker
delta. Assuming that the material is macroscopically not
textured and composed of fine grains, and if the stress in the
irradiated layer is assumed to be biaxial (i.e. $33 = $23 = $13 =
0), the measured strain can be related to the macroscopic
stress through

"fhklg
’ ¼

dfhklg
’ $ dfhklg

0

dfhklg
0

¼ 1þ %fhklg

Efhklg $’ sin2  $ %
fhklg

Efhklg ð$11 þ $22Þ;

ð6Þ

where E{hkl} and %{hkl} are the equivalent Young modulus and
Poisson ratio determined for the {hkl} planes, respectively.
$’ ¼ $11 cos2 ’þ $12 sin 2’þ $22 sin2 ’ is the macroscopic
stress along the direction ’ defined by the linear detector
plane (see Fig. 1). The use of E{hkl} and %{hkl} allows the crystal
anisotropy to be taken into consideration to relate the strain
measured on crystallographic planes to the macroscopic stress.

We define Sfhklg
1 and 1

2 Sfhklg
2 as the XECs for the {hkl} planes

as

Sfhklg
1 ¼ $%

fhklg

Efhklg ; ð7aÞ

1
2S
fhklg
2 ¼ 1þ %fhklg

Efhklg : ð7bÞ

The stress $’ can be obtained by differentiating equation (6)
with respect to sin2  as

$’ ¼
Efhklg

1þ %fhklg

@"fhklg
’ 

@ sin2 ¼ 1
1
2 Sfhklg

2

@"fhklg
’ 

@ sin2 ; ð8Þ

which shows that only 1
2 Sfhklg

2 has to be known to determine $’ .
When plotting the measured strain "fhklg

’ as a function of sin2  ,
and on the basis of the assumptions listed previously, one can
determine the stress $’, in the measurement direction ’, if a
linear regression between "fhklg

’ and sin2  is performed.
Therefore, several  angles have to be used to obtain the
relationship between "fhklg

’ and sin2  when the diffracted
X-rays are captured with two linear detectors. In practice, the
several  angles needed, which correspond to different Vhkl

vectors, are obtained when changing the incident X-ray beam
angle, ' =  & ( (2( = ) $ 2# being the diffraction cone semi-
apex angle shown in Fig. 1).

The stress calculation can be done with a single X-ray
exposure when the whole Debye ring is measured. For a
stress-free material, such as a powder, the Debye ring is
perfectly circular, as the lattice spacings, dfhklg

0 , are the same in
every direction. A stressed surface will modify the ring radius
and its distortion can be described using the ! angle defined as
the polar angle along the Debye ring, as schematized in Fig. 1.
The strain is measured along Vhkl for different ! angles.
Therefore, when the measurement is made with a planar
detector, the diffraction vector Vhkl should be defined in the
sample coordinate system using the angle ! and the diffraction
cone’s semi-apex angle 2( as

Vhkl ¼
cos ( sin ' cos ’$ sin ( cos ' cos ’ cos!$ sin ( sin ’ sin !

cos ( sin ' sin ’$ sin ( cos ' sin ’ cos!þ sin ( cos ’ sin !

cos ( cos'þ sin ( sin ' cos!

0

B@

1

CA:

ð9Þ

Figure 1
Schematic representation of a sample, the diffraction cone resulting from
the diffraction of {hkl} planes, and the measurement planes related to the
linear and 2D detectors (sin2  and cos! methods, respectively). List of
the symbols: d{hkl}: lattice spacing of the {hkl} planes; Vhkl : diffraction
vector; S: sample coordinate system; 2#: Bragg angle; 2(: diffraction cone
semi-apex; ': incident X-ray beam angle;  : angle between the {hkl} plane
normal and sample normal (tilt angle); ’: azimuthal angle; r’: residual
stress measurement direction; !: 2D detector angle; R!: Debye ring radius
for a given !; "!: strain measured for a given !.



For a given !-angle position on the 2D detector, the measured
strain "fhklg

! can be obtained from the ring radius R! as

"fhklg
! ¼ $!# cot #0 ¼ 1

2 2#0 $ )þ tan$1ðR!=CLÞ
! "

cot #0;

ð10Þ
where CL is the sample-to-detector distance. Similarly to
equation (4), the measured strain "fhklg

! can be related to the
strain components "ij in sample coordinates with respect to the
Einstein summation convention as

"fhklg
! ¼ vivj"ij: ð11Þ

We define the parameter "fhklg
! as

"fhklg
! ¼ 1

2 ð"fhklg
! $ "fhklg

)þ! Þ þ ð"fhklg
$! $ "fhklg

)$! Þ
! "

; ð12Þ

where "fhklg
! , "fhklg

)þ! , "fhklg
$! and "fhklg

)$! are strains determined at four
points located at 90' on the Debye ring for a given ! angle
varying from 0 to 90' using equation (10). The cos ! method
yields the stress $’ thanks to some trigonometric simplifica-
tions. When a biaxial stress state is assumed in the irradiated
layer and if the material’s microstructure is composed of fine
grains with a macroscopically isotropic elastic behavior, the
parameter "fhklg

! can be expressed in terms of stresses by
combining equations (5), (11), (9) and (12) as

"fhklg
! ¼ $ 1þ %fhklg

Efhklg sin 2( sin 2' cos ! $’; ð13Þ

where $’ = 1=2½$11ð1þ cos 2’Þ þ $22ð1$ cos 2’Þ þ 2$12 sin 2’).
Differentiating equation (13) with respect to cos! and isolating
$’ yields

$’ ¼ $
Efhklg

1þ vfhklg
1

sin 2( sin 2'

@ "fhklg
!

@ cos!

¼ $ 1
1
2 Sfhklg

2

1

sin 2( sin 2'

@ "fhklg
!

@ cos !
: ð14Þ

The stress $’ can be obtained when plotting the parameter
"fhklg
! as a function of cos! and if a linear regression between
"fhklg
! and cos ! is performed.

3. Material and experimental procedures

3.1. Material

This study focused on the nickel-base superalloy Inconel
718 (IN718), which was subjected to a solution and precipi-
tation heat treatment as per AMS 5663M (SAE International,
2009). The material’s chemical composition and macro-tensile
properties were determined in previous work (Klotz,
Delbergue et al., 2018) and are listed in Tables 1 and 2,
respectively. Two samples extracted in the rolling direction of
bars with initial diameters of 25.4 mm (1 in) and 76.2 mm
(3.5 in) were investigated. As they provide different micro-
structure, the bars’ initial diameters in inches will be used to
refer to the samples. The sample surfaces were carefully
prepared by grinding using SiC papers (down to grade 1200/
P4000), and a layer of 5 mm was then removed by electro-
polishing to obtain surfaces that were almost free of residual
stress and work hardening.

The nickel-base superalloy being a face-centered cubic
(f.c.c.) polycrystalline material, the {311} family of atom planes
is used since they diffract for high 2# Bragg angles, reducing
the sensitivity of the strain to the precision of the Bragg angle
measurement. In this condition, 24 planes of symmetry are
available, meaning that 24 planes can possibly contribute to
the diffraction of X-rays.

3.2. Diffractometers for XRD measurements

We consider two dedicated diffractometers, one for each
stress calculation method, that could be used for residual
stress measurements. A Proto iXRD apparatus equipped with
two linear detectors (position-sensitive scintillation detectors)
and an Mn tube could be used to investigate the sin2  
method, and a Pulstec m-X360n apparatus equipped with a 2D
detector (IP detector) and a Cr tube could be used when
capturing the whole Debye ring for the cos! method. The
Proto iXRD Mn tube allows measurement of the deformation
of the IN718 {311} planes from filtered K! lines, whereas use
of the Pulstec m-X360n Cr tube implies measuring it from the
K' line. The K! and K' lines are explained in standard
reference books (Cullity, 1956; Noyan & Cohen, 1987). Typical
diffraction conditions for IN718 and for both apparatuses are
listed in Table 3.

3.3. Microstructural characterization method

EBSD scans were performed to characterize the grain-size
distribution, quantify the degree of crystallographic texture
and investigate the effect of the set of grains participating in

Table 1
Inconel 718 chemical composition obtained by optical spectrometry
(wt%).

Elements Ni Fe Cr Nb Mo Ti Al Co Mn Si

Composition Balance 19.53 17.84 5.02 3.07 1.16 0.64 0.35 0.16 0.06

Table 2
Inconel 718 macrotensile properties.

E: Young’s modulus; $y0.2%: 0.2% offset yield strength; $u: ultimate strength;
El.: elongation at failure.

E (GPa) $y0.2% (MPa) $u (MPa) El. (%)

Table 3
Typical X-ray diffraction conditions for Proto iXRD (sin2 method) and
Pulstec m-X360n (cos! method) apparatuses.

Proto
iXRD

Pulstec
m-X360n

Tube (X-ray lines) Mn K! Cr K'
Wavelength (Å) 2.291 2.085
Bragg angle 2#0 (') 151.8 148.2
Diffraction planes/dfhklg

0 {311}/df311g
0 = 1.08 Å

Collimator (mm) 1 1
Voltage (kV)/current (mA) 23/2.5 30/1.0
Total measurement time (min) 8 1.5
No. of inclinations 9 1
' inclinations (') [&25 &19.01 &14.06 &7.27 0] 30
Sample-to-detector distance (mm) 39.5 38.55



the XRD measurements on the XEC values. The scans were
carried out on areas having sizes similar to the irradiated areas
during XRD measurements (*2 mm2). A conventional
Hitachi SU-70 scanning electron microscope equipped with a
Bruker camera and HKL Channel 5 software from Oxford
Instruments were used for the EBSD scans. Table 4
summarizes the subset and total map areas measured with a
step size of 0.5 mm.

Grain-size distributions and the crystallographic texture
were determined by post-treatment using MATLAB (The
MathWorks Inc., Natick, MA, USA) and the MTEX open-
source package (Bachmann et al., 2011). Grains were identi-
fied using a grain-detection angle of 10'. Twins were consid-
ered as unique grains to limit the artifacts arising from the
determination of the grain’s mean orientation, thus increasing
the total number of indexed grains. The orientation distribu-
tion functions (ODFs) were calculated using the de la Vallée
Poussin kernel (Hielscher, 2013) and all measurement points
to account for grain-size effects from surface observation.
Sample texture analyses are presented as inverse pole figure
plots with respect to the rolling direction. Texture analyses
associated with XRD measurements are also presented using
pole figures.

3.4. Identification of diffracting grains

A MATLAB script using the MTEX open-source package
has been developed to identify the grains meeting the Bragg
condition for the two types of detector. Under this condition
and for an unstressed sample, the diffracting planes have to
make an angle #0 with the incoming X-rays to scatter the
incoming X-ray beam for the particular planes under consid-
eration, i.e. {311}, as shown in Fig. 2. In this figure, VIXR, VDXR

and Vhkl are unit vectors representing the incident X-rays, the
diffracted X-rays and the vector normal to the {hkl} planes,
respectively. To meet the conditions of Bragg’s law, Vhkl has to
be the bisector vector of VIXR and VDXR, providing a
geometrical condition for selecting the diffracting grains. The
MTEX package was used for calculating each grain’s mean
orientation. The Vhkl vector can thus be determined for any (h,
k, l) Miller indices and the condition for diffraction can be
expressed by the dot product of VIXR and Vhkl . Each grain can
be associated with an angle #x defined as

#x ¼ cos$1 VIXR + Vhkl

kVIXRkkVhklk

# $
; ð15Þ

and diffraction can take place when #x = (90$ #0). A tolerance
of 2' was used to replicate the XRD line-broadening effect,
allowing some deviation from the exact Bragg condition. The
2' tolerance is close to half the diffraction-peak widths
experimentally obtained for both techniques in previous work
(Delbergue et al., 2017; Klotz, Delbergue et al., 2018), focusing
the investigation on the diffraction information coming from
the highest intensities of potential diffraction peaks.

3.5. XEC calculation

The XEC 1
2 Sfhklg

2 of the diffracting grains was determined for
comparison purposes using the MTEX package (Mainprice et
al., 2011) as follows:

(i) An IN718 single-crystal stiffness tensor, CIN718, was
assigned to all the grains of the EBSD map: C11 = 251.0 GPa,
C12 = 135.5 GPa and C44 = 98.0 GPa. The coefficients have
been chosen from among the experimental values reported in
the literature (Ledbetter & Reed, 1973; Margetan et al., 2005;
Haldipur, 2006; Aba-Perea et al., 2016) at room temperature
for a certain range of grain sizes and compositions.

(ii) An ODF, f, was calculated for the set of diffracting
grains to account for the possibility of some anisotropy
introduced by the XRD measurement.

(iii) The ODF was then used to determine the average
stiffness tensor of the set of diffracting grains computed for
the Voigt and Reuss bounds (assuming a constant elastic strain
and stress, respectively, in all crystallites) as (Mainprice et al.,
2011)

hCiSVoigt ¼
PM

m¼1

CIN718ðgmÞ!m f ðgmÞ; ð16aÞ

hCiSReuss ¼
PM

m¼1

C$1
IN718ðgmÞ!m f ðgmÞ

% &$1

; ð16bÞ

where hCiSVoigt and hCiSReuss are the average stiffness tensors
expressed in the sample reference system, S, for the Voigt and
Reuss bounds, respectively, and are calculated for the selected
set of m diffracting grains having an orientation gm and a
weight !m. The angle brackets denote the average over the
grains that satisfy a particular diffraction condition.

(iv) The XEC 1
2 Sfhklg

2 was calculated with the quasi-isotropic
XEC equation used in the case of biaxial stress state (Van
Houtte & De Buyser, 1993):

Table 4
EBSD subset map size and total map area for 1 and 3.5 in samples.

Sample Subset map size (mm) Total map area (mm2)

1 in 317 , 237.5 1.414
3.5 in 635 , 476 1.154

Figure 2
Illustration of X-rays diffracted by {hkl} planes of an unstressed grain in
the Bragg condition. In this condition, the diffraction vector Vhkl bisects
the incident X-rays VIXR and the diffracted X-rays VDXR, such that they
make an angle #0 with the {hkl} planes having a lattice spacing dfhklg

0 . List
of symbols: ': incident X-ray beam angle;  : angle between the {hkl}
plane normal and sample normal (tilt angle); ": X-ray wavelength.



1
2 Sfhklg

2 ¼ hS3333iL $ hS3311iL; ð17Þ

where hS3333iL and hS3311iL are the fourth-
rank compliance tensor coefficients of
hSijkliL ¼ aimajnakoalphSmnopiS expressed in the
laboratory system, L, with
hSijkliS ¼ ðhCijkliSÞ

$1. The laboratory system is
defined as having the z axis coincident with
the diffraction vector, and aij is the rotation
matrix from the S system to the L system.
1
2 Sfhklg

2 was computed for the Voigt and Reuss
bounds.

(v) Finally, as the experimentally measured
elastic constants are often close to the
average of the Voigt and Reuss bounds (Hill,
1952; Gnäupel-Herold et al., 1998; Murray, 2013), the Neer-
feld–Hill limit, which is the arithmetic mean of the Voigt and
Reuss bounds, was used during the study:

1
2 Sfhklg

2

' (Hill¼ 1
2

1
2 Sfhklg

2

' (Voigtþ 1
2 Sfhklg

2

' (Reuss
h i

: ð18Þ

Note that the hhkli crystallographic direction is taken into
consideration in the calculation of f(gm) as it is computed for
the identified diffracting grains. When computed for the {311}
planes, the XEC ð12 Sf311g

2 ÞHill is denoted in this article as 1
2 Sf311g

2

for convenience.
This procedure for the 1

2 Sf311g
2 computation was carried out

for each of the different ' tilts and linear detectors for the
sin2  method and for each combination of ' tilt and !-angle
position for the cos! method.

4. Results

4.1. Microstructure analyses

The grain microstructure was characterized by EBSD over
regions representative of the X-ray irradiated zones. Large
areas in the RD–TD plane were scanned for both 1 and 3.5 in
samples. The resulting maps were plotted for the RD using
inverse pole figures (IPFs) and are presented in Fig. 3 (RD:
rolling direction; TD: transverse direction; ND: normal
direction). Each color corresponds to a crystal orientation.
The 1 in sample has a fine and homogeneous grain-size
distribution, while the 3.5 in sample exhibits a bimodal
microstructure composed of small grains and a few large
grains. The grains’ equivalent diameter distributions are
presented as a function of the area they occupy in Fig. 4. A
6 mm average grain size was calculated for the 35 805 detected
grains for the 1 in sample, whereas the average grain size was
8 mm for the 3.5 in sample and 10 610 grains were detected
[corresponding to an ASTM grain-size number of 12 and 11
(ASTM International, 2013), respectively]. Table 5
summarizes the grain distribution for the two specimens. The
3.5 in sample’s bimodal microstructure is documented in
Fig. 4(b) (inset), where the grains are divided into two
families: the ‘large grains’ were defined as the grains larger
than the average grain size plus four times the equivalent
diameter standard deviation (SD), i.e. an equivalent diameter

higher than 42 mm [the equivalent diameter, ;, is calculated as
; = 2(A/))1/2, where A is the grain area]. Ninety-three large
grains (0.87% of the grain population) were found, occupying
26% of the map area.

The crystallographic textures are presented in Fig. 5 as IPF
plots with respect to the RD, for both samples. No preferred

Figure 3
Orientation distribution maps for the 1 and 3.5 in samples, represented as inverse pole figure
maps with respect to the rolling direction.

Figure 4
Grain-size distribution in percent of area ratio for (a) the 1 in sample and
(b) the 3.5 in sample. The equivalent diameter, ;, is calculated as ; = 2(A/
))1/2, where A is the grain area. In the inset, ‘large grains’ describes the
grains having a diameter of at least the average diameter plus four times
the diameter standard deviation (; > 42 mm).



orientation is observed for the 1 in sample with a texture index
of 1.15, whereas for the 3.5 in sample, a slightly higher
occurrence of the h001i crystallographic orientations is found
in the RD, but with a low index of around 1.9. Such a texture is
often observed after recrystallization of a rolled f.c.c. material
(Etter & Baudin, 2013). Nevertheless, neither sample can be
considered as highly textured. The crystallographic directions
of interest h311i are also shown in Fig. 5.

4.2. Diffracting grains

4.2.1. Identification of the diffracting grains. The grains in
the diffraction condition were first identified using the devel-
oped MATLAB script on the 1 in sample, as it represents the

ideal case of a homogeneous microstructure. The XRD
conditions and diffractometer parameters used in the script
are listed in Table 3. The maximum effective penetration
depth, when computed for the two radiations and detector
types, as described in the work of Noyan & Cohen (1987) and
Tanaka (2018) for the sin2  and cos! methods, respectively,
was found to be 5 mm, which is less than the smaller average
grain size (6 mm). Therefore, it is assumed that only the layer
of grains obtained by EBSD could diffract.

Figs. 6(a) and 6(b) present in IPF coloring the diffracting
grains if X-ray diffraction was captured by the two linear
detectors of the Proto iXRD and the 2D detector of the
Pulstec m-X360n, respectively. Fig. 6(a) is the superimposition
of the diffracting grains captured by the two linear detectors
for nine acquisition positions (the nine ' angles listed in
Table 3). Fig. 6(b) shows the diffracting grains seen by the 2D
detector for a single exposure at ' = 30'. The number of
diffracting grains was calculated in the two situations and is
reported in Table 6. The grains contributing to the diffraction
data represent 15.0 and 22.4% of the EBSD map area for the
sin2  and cos ! methods, respectively. The 2D detector thus
samples 32% more unique diffracting grains than the linear
detectors swept along nine ' angles. Only 1129 unique grains
are identified both by the two linear detectors (5540 identified
diffracting grains) and by the 2D detector (8183 identified
diffracting grains), corresponding to 20 and 14%, respectively.
Some of these shared diffracting grains can be observed in
Fig. 6.
4.2.2. Simulation of detector windows. The intersections of

the diffraction cone with the linear
and 2D detectors were simulated, to
better understand how the 2D
detector can see 32% more diffracting
grains in a single exposure than the
two linear detectors in nine exposures.
Figs. 7(a) and 7(b) present the simu-
lated images seen by the two linear
detectors at ' = 25' and by the 2D
detector at ' = 30', respectively, for a
single exposure. Each circular symbol
represents the localization of X-rays
scattered by a diffracting grain inter-
secting the detector plane (as illu-
strated in Fig. 1). The diffracting
grains’ mean orientations are
presented using IPF coloring with
respect to the RD. The X axis is
parallel to the RD while the Y axis is

Table 6
Number of grains contributing to the XRD when data are captured by
two linear detectors or a 2D detector for the 1 in sample.

Proto iXRD Pulstec m-X360n

Detector type Linear detectors 2D detector
No. of diffracting grains 5540 8183
Grain percentage (%) 15.5 22.9
Area percentage (%) 15.0 22.4

Table 5
Grain size and grain density for 1 and 3.5 in samples.

Grain equivalent diameter (mm)

Sample Mean SD Minimum Maximum Grain density (grains mm$2)

1 in 6 4 1 31 25316
3.5 in 8 8 1 140 9200

Figure 6
Orientation distribution maps of the 1 in sample presenting the diffracting grains detected by (a) the
two linear detectors for nine inclinations (Proto iXRD) and (b) the 2D detector for a single exposure
(Pulstec m-X360n). The IPF representation with respect to the RD has been kept.

Figure 5
Inverse pole figures for the texture analysis of the (a) 1 in and (b) 3.5 in
samples with respect to the rolling direction. The h311i directions are also
shown.



parallel to the TD, and the incoming X-rays (not represented
here) would be at the coordinates (0, 0). The two linear
detectors can be observed in Fig. 7(a) with the presence of two
distinct regions. The full Debye ring is captured by the 2D
detector as shown in Fig. 7(b). Note that the Y width of the
regions in Fig. 7(a) is related to the width of the linear
detectors, whereas the X width is linked to the 2' tolerance
angle used for the identification of the diffracting grains, which
also corresponds to the ring width in Fig. 7(b).

4.3. Angle variations

4.3.1. Linear detectors: number of used b angles. Three to
21 ' angles have been simulated for the same range of
maximum angles: &25'. Increasing the number of ' angles
would increase not only the number of diffracting grains but
also the measurement time. Fig. 8 presents the number of
unique diffracting grains versus the number of ' angles. The
values are compared with the number of unique diffracting
grains seen by the 2D detector for a measurement at ' = 30'

[the grains highlighted in Fig. 6(b)]. The case of nine ' angles
corresponds to the number of measurements at which the

number of additional diffracting grains starts to decrease with
increasing number of ' angles.

The total number of diffracting grains stays below the 8183
unique grains contributing to the diffraction captured by the
2D detector, even for a high number of linear-detector posi-
tions (e.g. 21 ' angles). Increasing the number of ' angles
further than 21 does not increase the number of unique
diffracting grains owing to the superimposition of the '
positions.

4.3.2. 2D detector: effect of b angle. The influence of the
X-ray incident angle on the number of diffracting grains has
been studied for the cos!method. ' angles ranging from 10 to
45' have been simulated. Fig. 9 presents the number of unique
diffracting grains for the different 2D detector inclinations.
The figure shows that the number of unique diffracting grains
remains almost constant, regardless of the ' angle. This
observation might result from the fact that the 1 in sample
exhibits an isotropic distribution of the grains’ mean orienta-
tions.

4.3.3. 2D detector: variation along the a values. The
parameter "fhklg

! is computed, for a given ! angle, from the
strains measured at four orthogonal positions on the Debye

Figure 7
Simulated images seen by (a) the two linear detectors (' = 25') and (b)
the 2D detector (' = 30') for the 1 in sample. Diffracting grains are
represented by circular symbols, and IPF coloring with respect to the RD
is used to show their mean orientations. Figure 9

Total number of unique diffracting grains seen by the 2D detector versus
the detector ' angle.

Figure 8
Total number of unique diffracting grains versus the number of ' angles
taken by the two linear detectors in a &25' range. The number of unique
diffracting grains contributing to the 2D detector data for a single
exposure at ' = 30' is plotted as a dash–dot line for comparison.

Figure 10
Simulated Debye ring on the 2D detector for ' = 30'. Each circle
represents a diffracting grain. The diffracting grains used for the
calculation of "fhklg

! at ! = 45.36' are plotted in red as an example.



ring. Consequently, the full scan of the
Debye ring is carried out for a varia-
tion of ! from 0 to 90'. Therefore, only
a small part of the collected data is
used for computing the strain for a
given !. Fig. 10 presents a simulated
Debye ring seen on a 2D detector for a
single exposure at ' = 30'. Each circle
corresponds to a given diffracting
grain. The grains used for the calcula-
tion of "fhklg

! at ! = 45.36' are high-
lighted in red as an example. The !-
step size being set to 0.72', 125 ! angles
are used to compute the 125 "fhklg

!

values. The "fhklg
! values may then be

plotted versus the corresponding cos!
values to determine the residual stress.
In the case where no diffracting grains
are detected for a given !, the !-step
size could be increased to allow "fhklg

!

values to be computed.

4.4. XRD texture measurement

Different sets of diffracting grains
are detected when using the two
diffraction techniques, and different
crystallographic textures may be obtained via the linear detec-
tors and the 2D detector during XRD measurements. Using
the developed script and the MTEX package, pole figures can
be plotted for the homogeneous microstructure of the 1 in bar,
showing the diffracting grains for the two different types of
detectors. The pole figures for the (100), (110), (111) and (311)
sets of planes are presented in Figs. 11(a), 11(b) and 11(c) for
all the grains of the 1 in sample, and only for the diffracting
grains detected by the two linear detectors and the 2D
detector, respectively. The (311) pole figure has been plotted
in addition to the traditional (100), (110) and (111) pole
figures to present the textures introduced by XRD measure-
ments of the planes used for strain measurements.

Like Fig. 6(a), Fig. 11(b) is the superimposition of the
different positions taken by the linear detectors. However,
Figs. 12(a), 12(b) and 12(c) show the pole figures for three
specific ' angles taken by the linear detectors: '=$25', '= 0'

and ' = 25', respectively. For each pole figure, two hot spots
representing the localization of the two linear detectors can be
observed. They are the centers of concentric circles. The
detector motion during the residual stress measurements can
be observed as a straight line at the center of the (311) pole
figure in Fig. 11(b), which results from the displacement of the
concentric circles, illustrated in Fig. 12. On the other hand, the
2D detector, by its geometry, allows the Debye ring to be
captured in its entirety, which results in the circle of high index
visible in the (311) pole figure of Fig. 11(c). The concentric
circles are not centered because of the incident angle of the
X-ray beam (' = 30'). Nonetheless, the cos ! method implies
dividing the Debye ring for the "fhklg

! calculation, as shown in

Fig. 10, which results in the intermediate textures presented in
Fig. 13. The ! steps providing the highest and the lowest
texture indexes are presented in Figs. 13(a) and 13(b),

Figure 12
Pole figures of the (311) diffracting planes for the two linear detectors at
(a) ' = $25', (b) ' = 0' and (c) ' = 25'.

Figure 13
Pole figures of the (311) diffracting planes for the 2D detector for the !
angles providing the maximum and minimum texture indexes at (a) ! =
0.72' and (b) ! = 25.2', respectively, as well as the ! = 45.36' example.

Figure 11
Pole figures of the (100), (110), (111) and (311) sets of planes for (a) the whole 1 in sample EBSD
map and for the diffracting grains detected by (b) the linear detectors and (c) the 2D detector. Note
that the (311) set of planes is the strain measurement set of planes used for residual stress
computation.



respectively. Fig. 13(c) corresponds to the pole figure of the
highlighted grains given as an example in Fig. 10. The four
strain measurements at !, ) + !, $! and ) $ ! imply four hot
spots [visible in Figs. 13(b) and 13(c)], the centers of four
concentric circles, but because of the low !-step size the circles
are not clearly defined. Furthermore, for ! values close to 0'

or to 90', only two hot spots can be distinguished, which
results in higher maximum texture indexes.

Fig. 11(a) confirms that the 1 in sample is not textured with
a maximum index of 1.65, while the pole figures of the
diffracting grains detected by the two types of detectors
[Figs. 11(b), 11(c), 12 and 13] exhibit two different types of
textures. These textures are related to the type of detector
used for XRD measurements. This ‘artificial’ texture may
affect the XEC value of the diffracting grains and therefore
the measured stress, as the stress is linearly dependent on the
XEC value in both calculation methods.

4.5. XEC values for the diffracting grains

The average XEC 1
2 Sfhklg

2 was determined for the {311}
planes of the diffracting grains in terms of the Hill limit. As
described in Section 3.5, ODFs were used for XEC calcula-
tions to take into account the ‘artificial’ texture created by
XRD conditions.

The 1
2 Sfhklg

2 Voigt and Reuss bounds can be computed as a
reference for the case of an isotropic polycrystal and for the
stiffness tensor given in Section 3.5 as (Van Houtte & De
Buyser, 1993)

1
2 Sfhklg

2

' (Voigt¼ 10S1212ðS1111 $ S1122Þ
3S1111 $ 3S1122 þ 4S1212

; ð19aÞ

1
2 Sfhklg

2

' (Reuss¼ S1111 $ S1122 $ 3S0"; ð19bÞ

where S1111, S1212 and S1122 are the coefficients of the single-
crystal compliance tensor [SIN718 ¼ ðCIN718Þ

$1], S0 = S1111 $
S1122 $ 2S1212, and " is the orientation parameter defined as

" ¼ h2k2 þ h2l2 þ k2l2

ðh2 þ k2 þ l2Þ2
: ð20Þ

Only the Reuss bound is hkl dependent. When computed for
the case of the {311} planes, the Voigt and Reuss bounds are
6.11 , 10$6 and 6.98 , 10$6 MPa$1, respectively. Finally, the
Hill limit computed using equation (18) is 6.54 , 10$6 MPa$1.

Fig. 14 presents the XEC values for the nine ' angles used
for residual stress measurements using the linear detectors as
well as the number of diffracting grains detected for each
position. The results are separately given for the two linear
detectors, namely the left and right detectors [they correspond
in Fig. 7(a) to the circles in negative and positive X values,
respectively, or to the left and right concentric circles in
Fig. 12]. The number of diffracting grains remains almost
constant, around 380 diffracting grains per detector and per
inclination. For the nine positions and the two linear detectors,
the XEC average and confidence interval, CI95%, are
6.33 , 10$6 and 0.23 , 10$6 MPa$1, respectively. The CI95%

value is computed from the lower bound of the 95%

Figure 15
(a) XEC 1

2 Sf311g
2 values calculated for the diffracting grains detected by the

2D detector at ' = 30' for 125 ! angles (from 0 to 90'). (b) Mean and
confidence interval (CI95%) of the XEC 1

2 Sf311g
2 values calculated for

different !-step sizes. The corresponding number of ! angles is presented
below or above the error bar. CI95% is the lower bound of the 95%
confidence interval on the standard deviation.

Figure 14
Number of diffracting grains detected by the two linear detectors for nine
' angles and their corresponding XEC 1

2 Sf311g
2 values calculated for the

{311} planes.



confidence interval on the standard deviation of an assumed
normal distribution, determined with a *2 test (Hines et al.,
2008). Thus, in this case, the XEC standard deviation is less
than 0.23 , 10$6 MPa$1 at the 95% level of confidence.

For the 2D detector, the 1
2 Sf311g

2 values were calculated for a
0.72' !-step size to characterize the ring geometry. The 125
XEC values determined for ' = 30' are presented in Fig. 15(a).
The values range from 5.89 , 10$6 to 6.92 , 10$6 MPa$1 and

a mean value of 6.36 , 10$6 MPa$1 is observed, yielding a
CI95% of 0.19 , 10$6 MPa$1. This low !-step size implies five
times fewer diffracting grains per ! value than for a given '
position with the two linear detectors, resulting in a larger
range of the computed values but a lower CI95% value (as the
confidence interval is also based on the population size).
Fig. 15(b) shows the mean and the confidence interval values
of the XEC calculated for different !-step sizes. It can be
observed that increasing the step size narrows the confidence
interval CI95%, while the mean value remains almost constant.
Indeed, decreasing the number of intervals increases the
number of orientations accounted for in one interval, which
results in better approximation of the XEC.

Different ' angles have also been simulated for the 2D
detector and 0.72' !-step size. The average XEC value and the
number of diffracting grains for the different ' angles are
shown in Fig. 16. A quasi-constant number of diffracting
grains can be observed throughout the entire range of simu-
lated ' angles. The average XEC value slightly decreases for
high ' angles (a 0' ' angle corresponds to a normal incident
X-ray beam).

For the linear detectors, the average XEC value of the
diffracting grains is higher than the random texture XEC
value, whereas for the 2D detector it is slightly lower. These
differences are most likely to be due to the fact that the XEC
is determined on sets of grains having a slight texture. The
XEC values computed for the two detector types are not

Figure 16
Number of diffracting grains detected by the 2D detector for different '
angles and corresponding XEC 1

2 Sf311g
2 values calculated for a 0.72' !-step

size (125 ! angles).

Figure 17
Orientation distribution maps of 1 in sample for the following reduction factors: (a) R = 1 (initial map), (b) R = 1/2, (c) R = 1/5, (d) R = 1/10, (e) R = 1/15
and ( f ) R = 1/20. Information on map maximum texture index and grain density (in grains mm$2) is also provided.



statistically different and seem not to be highly affected by the
detector’s position, i.e. ' angle, in the case of homogeneous
microstructure.

4.6. Effect of grain size

XRD measurement quality may suffer when a relatively
small number of orientations are diffracting, leading to
anisotropy inherent to the used XRD method. The grain size
or grain density can therefore affect the XRD measurement.
The effect of grain size on the XEC was studied by ‘artificially’
reducing the grain density. The initial EBSD map size was
reduced while keeping the same irradiated zone area,
decreasing the grain density. Five resized EBSD maps, using
reduction ratios of R = 1/2, 1/5, 1/10, 1/15 and 1/20, were thus

investigated, providing grain densities ranging from 12 526 to
1232 grains mm$2. Note that the initial EBSD map grain
density is 25 316 grains mm$2 (Table 5), corresponding to an
average grain size of 6 mm (ASTM grain size number 12).
A 1/20 reduction ratio corresponds to a 20 times increase of
the grain size, giving a 120 mm average equivalent diameter
(ASTM grain size number 3) or a grain density of
1232 grains mm$2.

Fig. 17 presents the different reduced maps as orientation
distribution maps with respect to the RD. The map reduction
was set to start from the upper-left corner of the initial EBSD
map, shown in Fig. 17(a). The grain size was artificially
increased by focusing the area of interest on a smaller portion
of the initial map and by keeping the same scale. The IPFs

have also been determined for each
map and maximum texture indexes are
reported in Fig. 17. It can be observed
that increasing the average grain size
slightly increases the maximum texture
index without creating a specific
texture. Fig. 18 presents, for the six
cases, the total number of grains
and the total number of unique
diffracting grains for both detectors.
The number of grains is reduced from
35 805 (25 316 grains mm$2) to 1743
(1232 grains mm$2). Constant percen-
tages of diffracting grains were found
for the linear detectors and the 2D
detector, of 15 and 23%, respectively.

The calculated XEC was only
affected by the change in grain density,
owing to the homogeneous grain
orientation and grain-size distributions.
For the five resized maps, XEC 1

2 Sf311g
2

mean and confidence interval values
were calculated for both diffractometer
types and were compared with the
results of the initial EBSD map (R = 1).
The results are presented in Fig. 19. The
1
2 Sf311g

2 values increase by up to 2.1% as
the grain density decreases, whereas
the confidence interval significantly
broadens. For the 2D detector,
increasing the !-step size increases the
number of grains taken into considera-
tion for each XEC computation,
broadening the confidence interval
CI95%. When the number of diffracting
grains decreases significantly, the !-step
size for analyzing the Debye ring has to
be increased to 1.2' to ensure the
presence of diffraction data for all !
intervals. For instance, in the case of
R = 1/20, the 1

2 Sf311g
2 values can only

be computed for an !-step size of 1.2'

or higher. The values vary from

Figure 18
Histogram of the number of grains for the different reduced maps and the corresponding diffracting-
grain number for the linear and 2D detectors. The percentage of diffracting grains is also plotted for
both detector geometries.

Figure 19
Mean values and confidence interval on the standard deviation (CI95%) of the XEC 1

2 Sf311g
2

determined for the {311} planes of the diffracting grains detected by the linear and 2D detectors in
the case of five resized maps. Results for the 2D detector are presented for 0.72 and 1.2' !-step sizes.
The CI95% values are computed from the lower bounds of the 95% confidence interval on the
standard deviation.



5.16 , 10$6 to 8.40 , 10$6 MPa$1, yielding a 0.58 ,
10$6 MPa$1 confidence interval. The high CI95% values can
still be explained by the very low number of diffracting grains
contributing to each XEC estimation. Therefore, a high !-step
size should be used when large grains (or low grain density)
are found in the material.

4.7. Effect of diffractometer oscillation

Experimentally, the number of diffracting grains can be
increased by oscillating the X-ray beam in the ’ plane.
Different oscillation values have been simulated around the '
position for both diffractometers using 1' oscillation steps,
meaning that for a ' = 25' position and a 2' oscillation the
X-ray beam and the detectors were oscillating from 23 to 27'.
The simulations were realized for the reduction ratios R = 1/15
and R = 1/20, corresponding to 90 and 120 mm average grain
sizes, respectively. The low grain density allows only a small
number of diffracting grains, yielding a broader XEC confi-
dence interval. The results are presented in Fig. 20, and the
values for the steady positions (presented in Figs. 18 and 19)
are included as 0' oscillations. For both diffractometers, the
oscillations increase the number of diffracting grains detected
by the detectors. A 2' oscillation captures up to 55% more
diffracting grains for the 2D detector, whereas the linear
detectors only capture up to 36% more grains. Increasing the

oscillation angle for the linear detectors does not significantly
increase the total number of diffracting grains because the
oscillation for a ' position ends up superimposing the oscil-
lations of the other ' positions, hence the asymptotic curves.
The XEC values tend to decrease with the oscillations for the
2D detector, while increasing for the two linear detectors.
With oscillations, the confidence interval on the standard
deviation is found to be narrower by up to 43 and 36% for the
linear detectors and the 2D detector, respectively. For the two
reduction ratios, the narrowest confidence intervals are found
for 3 and 4' oscillations for the linear detectors and the 2D
detector, respectively.

4.8. Effect of inhomogeneous microstructure

A bimodal microstructure composed of a large number of
grains having a 6 mm average grain size and very few grains
with a grain size higher than 100 mm was found in the 3.5 in
sample, as depicted in Figs. 3 and 4(b). The XEC calculations
for both microstructures are presented in Fig. 21(a) for the two
linear detectors using nine ' angles. The average XEC and
confidence interval values of the nine ' angles are 6.41 , 10$6

and 0.33 , 10$6 MPa$1, respectively, for the 3.5 in sample.

Figure 20
Total number of unique diffracting grains and XEC 1

2 Sf311g
2 mean values

calculated for two different reduction factors (R = 1/15 and R = 1/20) and
for measurements with both techniques in the case of oscillations in the ’
plane. The calculations for the 2D detector were performed using 1.2'

!-step sizes. The error bars represent the confidence interval on the
standard deviation (CI95%).

Figure 21
Comparison of the XEC 1

2 Sf311g
2 calculated for the 1 and 3.5 in samples for

(a) nine ' angles in the case of measurements with two linear detectors
and (b) 125 ! angles for the 2D detector at ' = 30'.



The mean value is higher than that found for the 1 in sample
and, more importantly, the confidence interval has broadened
by 44%.

The XEC was also calculated for the 2D detector at ' = 30'

and for 125 ! angles. The XEC values computed for the 3.5 in
sample are compared with those obtained for the 1 in sample
in Fig. 21(b). The average value is also found to be higher than
that of the 1 in sample value, 6.47 , 10$6 MPa$1, whereas the
confidence interval of 0.36 , 10$6 MPa$1 has nearly doubled.
Fig. 22 shows the XEC mean values for different !-step sizes
for comparison with Fig. 15(b). As for the 1 in sample, the
confidence interval narrows when the step size increases, but
remains significantly higher.

5. Discussion

X-ray diffraction techniques for residual stress measurements
are based on the information coming from the distinct sets of
grains satisfying the conditions for diffraction. Each strain
used for the determination of the macro-stress is an average of
the grain deformation in the set of diffracting grains. Because
of the specific crystal elastic anisotropy of the grains in the
measurement direction, the elastic behavior of the diffracting
grains may differ from the macroscopic behavior (Noyan &
Cohen, 1987; Hauk, 1997). Consequently, the {hkl}-dependent
XECs Sfhklg

1 and 1
2 Sfhklg

2 have to be carefully measured or
computed. Sample texture is also known to play a major role
in stress measurements and must be taken into account when
computing the XEC (Hauk, 1997).

In the cases studied in this work, the two samples (homo-
geneous and bimodal microstructures) do not exhibit strong
textures (Fig. 5). Nonetheless, both types of detector create
some ‘artificial’ texture, which differs from one detector to the
other owing to the diffraction conditions, as shown in Fig. 11.
The ‘artificial’ textures determined for the homogeneous
sample can be significant when considering a measurement at
a given ' angle or ! angle, for the linear detectors and the 2D

detector, respectively (visible in Figs. 12 and 13). These
textures result in some variations in the estimated XEC 1

2 Sf311g
2 .

Variations of up to 10% of the XEC value have been observed
between the different sets of diffracting grains and the XEC
value of the {311} planes computed for the Hill bound in the
case of an isotropic material. This value reaches 18% for the
3.5 in sample and its bimodal microstructure, which also plays
a role in the diffraction measurement. Indeed, the lower
number of grains reduces the number of orientations taken
into consideration, resulting in a wider confidence interval on
the standard deviation of the estimated XEC for both tech-
niques.

It has been shown that increasing the grain size of a
homogeneous microstructure leads to a significant broadening
of the confidence interval on the standard deviation. None-
theless, the percentage of grains contributing to the diffraction
stays almost constant for both diffractometers (Fig. 18). For an
average grain size of 90 mm (R = 1/15) and above, the default
0.72' !-step size of the 2D detector is not sufficiently large to
gather diffraction data in all regions of the Debye ring.
Therefore the !-step size had to be increased to 1.2' to
compute the XEC for all ! steps.

The lack of diffraction data resulting from the diffraction
texture or grain size can be overcome by the oscillation of the
diffractometer around its ' position in the ’ plane (Fitzpatrick
et al., 2005). The simulations have shown that adding a 2'

oscillation to the measurement increases the number of
diffracting grains by up to 55% for the 2D detector and 36%
for the linear detectors. Further increase of the number of
diffracting grains is limited by the superimposition of the '
positions for the sin2  method and the linear detectors, as it is
a multi-angle-based method. Indeed, increasing the oscillation
angle to more than half the angle between two ' inclinations
(Table 3) would lead to diffracting grains contributing to the
diffraction data of two diffraction vector sets. This would mean
that the diffraction data of a grain could be used for the
measurement of two different strains, i.e. two different points
in the plot "fhklg

’ versus sin2  , which may lead to inaccuracy in
the linear regression between "fhklg

’ and sin2  , and therefore
an inaccurate stress determination. In both cases, the oscilla-
tions narrow the confidence interval on the standard deviation
of the estimated XEC, when compared with the intervals of
the non-oscillating cases.

The low number of shared diffracting grains between the
two methods (representing 20 and 14% of the total identified
diffracting grains for the sin2  and cos! methods, respec-
tively) implies that the strains are measured from different sets
of grains. These sets have different elastic behaviors, as
observed in this study by the XEC variations, and may lead to
the determination of different residual stresses.

Moreover, the residual stress measurement relies on the
existence of a linear relationship between "fhklg

’ or "fhklg
! and the

sin2  or the cos! values, respectively. Some authors (Hauk,
1997; Fitzpatrick et al., 2005) have shown that, when a low
number of exposures are considered in the sin2  method,
errors arise in the linear regression and the estimated residual
stress values may be wrong. Even if the cos ! method

Figure 22
Mean and confidence interval (CI95%) of the XEC 1

2 Sf311g
2 calculated for

different !-step sizes for the 3.5 in sample. The corresponding number of
! angles is presented below or above the error bar. CI95% is the lower
bound of the 95% confidence interval on the standard deviation.



generates more points for the linear regression, a compromise
between the number of diffracting grains for a given point and
the number of points considered for the linear regression (i.e.
the !-step size) should be found. In fact, for a small !-step size
and in the case of a large grain microstructure (low number of
diffracting grains), statistical effects will result in large varia-
tions of the data "fhklg

! used to estimate the residual stress
[equation (14)], leading to a significant error in the slope of the
regression line used to compute the residual stress. Increasing
the !-step size will reduce the statistical errors but also reduce
the number of points available for the linear regression. There
is then an opportunity to develop further the current approach
to better specify the optimum conditions that will minimize
the errors when estimating an actual residual stress field.
Moreover, the presence of some crystallographic texture in a
material could be taken into consideration as it is known to
result in additional difficulties in estimating the actual residual
stresses in a component.

6. Conclusions

The objective of this study was to compare the traditional
X-ray diffraction technique for residual stress measurement,
i.e. the sin2  method, and the recently implemented cos!
method through the elastic properties of the diffracting grains.
For this purpose, a MATLAB script has been developed to
identify the diffracting grains and two EBSD maps were used
to generate realistic distributions of orientation and grain size.
The specificities of the two XRD residual stress measurement
methods were taken into consideration and various para-
meters were varied to better illustrate their effect on the
quality of potential residual stress measurements. From the
sets of identified diffracting grains, the following results have
been observed:

(1) The 2D detector used by the cos ! method captures, in a
single exposure, diffraction data from 1.5 times more unique
diffracting grains than nine angular positions of the linear
detectors used in the sin2  method (acceptable number of
points allowing the determination of residual stresses via this
method). Increasing the number of ' angles in the sin2  
method does not allow the same number of unique diffracting
grains to be reached. Keeping a realistic time of X-ray expo-
sure for residual stress measurement purposes, nine exposures
are proposed with the consequence that about 50% fewer
unique grains are diffracting.

(2) The ‘artificial’ crystallographic texture effect related to
the two XRD methods has been calculated. It was shown that
the two methods yield two different types of textures.
Furthermore, the diffracting grains detected by the linear
detector method generate a higher texture index than for the
2D detector, even if the nine incident ' angles are used (about
45% higher). Nonetheless, when considering the stress calcu-
lation specificity of the cos! method – division of the Debye
ring into 125 ! angles – the highest texture index computed for
the different ! angles is similar to that found for the linear
detectors at a given tilt angle (' angle). Artifacts can arise

from the strong ‘artificial’ texture during residual stress
computations.

(3) The detrimental effect of large grain size was simulated.
It can be overcome by the oscillation of the diffractometer in
the ’ plane. For the sin2  method, the oscillation angle should
be carefully chosen so that it remains below half of the angle
between two ' positions, otherwise a superimposition of the '
positions may occur, limiting the beneficial effect of this
parameter. In addition to the oscillations, the cos ! method
can use different !-step sizes to overcome the grain-size
effects.

The variations in XEC could lead to a nonlinear regression
for the residual stress computation and therefore a large error
in the slope determination, resulting in an inaccurate residual
stress measurement.

Future work could include textured materials, such as rolled
aluminium alloy plates, to study the effect of material texture
on the ‘artificial’ XRD texture and on the XEC.
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