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This work investigates the ultrasound propagation within a liquid-solid fluidized bed. The acoustic mapping of
the reactor is achieved by means of a hydrophone. A spectral analysis is carried out on the measured signals to
quantify the cavitation activity. The effects of several parameters on the spectral power distribution is appraised
– including emitted ultrasound power, liquid superficial velocity and solid hold-up. Results show that increasing
US power promotes a higher energy transfer from the driving frequency toward the broad-band noise – which is
the signature of transient cavitation – and yields a stronger acoustic shielding. The presence of a flow opposite to
the acoustic streaming may affect the sonoreactor behavior by sweeping the cavitation bubbles away from the
ultrasonic horn. Finally the presence of millimeter sized particles significantly increases wave attenuation,
presumably due to viscous losses on the one hand, and through the contribution of their surface defects to bubble
nucleation on the other hand. Moreover, the influence of the solid hold-up appears to depend upon the particle
material (glass or polyamide).

1. Introduction

The use of power ultrasound (US) has raised a growing interest in
chemistry and chemical engineering since the 90’s and sonochemistry
now covers a large range of applications [1,2]. However, the involved
phenomena are of great complexity and make the efficient design of
sonoreactors into a hard task. For instance several authors reported a
levelling off or even a decrease of US efficiency when increasing the
acoustic power [3–5]. This effect, known as “acoustic shielding”, is
explained by the reduction of active cavitation zones inside the reactor.
When the acoustic power is increased, the bubble cloud densifies,
which increases the attenuation of the acoustic wave, thus restricting
the active zones at the very vicinity of the ultrasonic horn. Knowledge
about cavitation zone distribution is paramount to understand the
performance of sonoreactors, provides rational designs and extrapolate
sono-processes at the industrial scale.

Characterization of sonochemical reactors can be achieved through
different techniques, and an exhaustive list can be found in several
reviews and books [6–8]. The most common and classic technique is
calorimetry, due to its simplicity in use [9,10]. This method quantifies
the acoustic power dissipated in the liquid by measuring the time-
evolution of temperature in the medium. It is a global method and does
not give any information about spatial distribution or level of acoustic

cavitation. Dosimetry techniques – using for instance Fricke solution,
potassium iodide, nitrophenol or terephthalate – quantify the chemical
activity inside the sonoreactor, based on the oxidative activity of %OH
radicals formed during the collapses of cavitation bubbles [6–8,11–13].
Again they do not in general provide information about their location.

Some techniques are more focused on the spatial mapping of the
sonoreactors. Aluminum foil erosion gives a direct visualization of the
local intensity of cavitation [14,15], but it is difficult to define a
quantitative criterion from it. Sonoluminescence, or light emission by
cavitation bubbles, is a well-known phenomenon that can be utilized
for characterization purpose. Yasui et al. [16] describe the state of
knowledge about the underlying mechanisms. With an adequate setup
it is possible to observe the zones of active cavitation and to quantify
their intensity via photo-multipliers [17]. Another linked technique is
based on sonochemiluminescence, where acoustic cavitation bubbles
produce light by the reaction between the radicals produced during
their collapse and luminol added beforehand to the solution [18,19]. A
third optical method is laser tomography [12]. By illuminating the re-
actor with a laser sheet, bubble clouds can be visualized. This technique
is easier to set-up than the two previous ones, but it doesn’t make any
difference between the active bubbles and those which are not. Finally
acoustic measurements by a hydrophone can efficiently probe sonor-
eactors [20]. It usually uses piezo-electric materials (ceramics or
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2. Experimental setup

In order to investigate the behavior of power ultrasound in the
presence of a solid suspension, an acoustic mapping of a fluidized bed is
achieved. A fluidized bed consists in an upward fluid flow (here water)
that keeps solid particles into suspension by applying a drag force able
to counteract the apparent particle weight. It results into a solid sus-
pension whose concentration is rather uniform in the case of a liquid-
solid system, without the need of a mechanical stirrer which could
modify the ultrasound propagation. Solid hold-up can be then varied in
a wide range by modifying the liquid superficial velocity (i.e. the ratio
of the volumetric flow rate QL to the cross-sectional area of the reactor
Sbed). In the present work, two types of particles are used, whose
characteristics are given in Table 1.

The reactor is made of PMMA and consists of a cm30 high and cm5
diameter wide column, comprising a liquid distributor (made of a cm5
high fixed bed of mm4 diameter glass particles) at its bottom to
homogenize the incoming flow and an enlargement at the top to reduce
the fluid velocity. The upward liquid stream is provided by a centrifugal
pump and its flowrate (QL up to −L h750 . 1) is controlled by rotameters,
the fluid circulating in a closed circuit. The temperature of the feeding
tank is kept at 20 °C ± 0.5 °C. A differential manometer enables the
measurement of the pressure drop between the base and the top of the
fluidized bed with a precision of Pa10 . Power ultrasound is emitted
from an ultrasonic horn placed at the top of the column and powered by
a generator. The horn/generator couple is provided by Sinaptec to get a
driving frequency of kHz20 . The built-in servo control prevents from
working below cavitation, and frequency is tuned in a narrow range to
maximize the power input in the liquid, resulting in an average value of

± kHz19.7 0.01 . The yield of this equipment, measured by calorimetry,
is around 80%. The hydrophone is introduced on the side of the column
via inserts placed every centimeter to allow spatial mapping along the
axis. It is not moved when varying the acoustic power or the liquid flow
rate (without particles). The emitting surface of the ultrasonic horn lies

cm2.5 above the first measurement point. A scheme of the experimental
setup is illustrated in Fig. 1.

The acoustic signal is measured by a hydrophone designed by the
University of Santiago in Chile. The design of this hydrophone is de-
tailed in the paper of Gaete-Garretón et al. [33]. In brief, it consists of a
piezoelectric sensor encapsulated at the tip of a mm2 diameter rod. The
hydrophone also includes a built-in electronic providing it with a stable
sensitivity over 10–150 kHz range. It should be noticed that the sensi-
tivity provided by the authors [33] was measured without the built-in
amplifier, hence dB20 must be added to the values given in Fig. 2 to
obtain the actual sensitivity. The signals measured by the hydrophone
are digitized by a numerical oscilloscope (PicoScope model from Pico
Technology). They are then processed by a Matlab script in order to get
useful information as described in the following part.

3. Acoustic signal processing

3.1. Signal processing steps

The hydrophone output-voltage U, is sampled at 18MHz by the
numerical oscilloscope in order to obtain 32 successive sequences of

Table 1
Solid particle characteristics.

Material Glass Polyamide

Diameter (mm) 2 2
Density ( −kg m. 3) 2560 1180

Specific heat ( − −J kg K. .1 1) 753 1600

Thermal conductivity ( − −Wm K1 1) 1.05 0.25

Thermal expansion coefficient ( −K 1) −4.010 6 −8510 6

polymers), converting their deformation by the acoustic pressure into a 
measurable electric signal. This will be the technique used in this work, 
as it provides both quantitative and local information without the need 
of modifying the medium of interest or the reactor, and it is thus is a 
good candidate as standard characterization technique for industrial 
set-ups.

The main pitfall of this technique is to properly interpret the mea-
sured signals of acoustic pressure. Indeed the acoustic spectrum under 
ultrasonic cavitation displays a very rich and complex pattern. Many 
authors agree on the fact that the spectrum measured in a sonoreactor
working at a driving frequency f0 will show lines corresponding to the 
fundamental frequency ( f0), but also its harmonics (kf0), sub-harmonics 
( f0 /n) and ultra-harmonics (kf0/n), as well as a broad-band noise be-
tween those frequency lines [20–24]. Previous works give different 
explanations about the genesis of those spectrum characteristics, but all 
agree on two points. First, if the source is strictly monochromatic, the 
spectrum will not show other characteristics than fundamental fre-
quency unless there are bubbles in the system. Second, the spectrum 
lines apart from the fundamental frequency are the signature of stable 
(or long lifetime) cavitation bubbles. The origin of the broad-band 
spectrum remains an open issue. Most of the authors consider that it is 
directly produced by the fast collapsing or transient cavitation bubbles. 
Yasui et al. [25] show by numerical simulations that this broad-band 
spectrum is due to the fluctuation of the number of bubbles rather than 
to their chaotic pulsation. Yet in their conclusion, the authors state that 
this broad-band noise, although not directly produced by shock-waves, 
is strongly linked with the presence of transient cavitation, as these 
bubbles can disintegrate into daughter bubbles during their collapse 
causing the temporal fluctuation of the number of bubbles. Hence many 
authors define a transient cavitation index based on the quantification 
of this broad-band noise. One measurement method of this noise con-
siders only the high frequency zone of the spectrum where no more 
harmonics appear. For example, Hodnett et al. [26,27] apply a band 
pass filter between 1, 5  MHz and 8  MHzto the signal and then define 
their cavitation index as the root mean square value of the resulting 
signal. Similarly, Uchida et al. [28,29] define the cavitation index as the 
integral of the spectrum over a band located in the high frequency re-
gion (here between 1 MHz and 5 MHz). An alternative method is to 
integrate the spectrum on a wider band, after eliminating the lines 
corresponding to the (sub/ultra) harmonics and/or the fundamental 
[30]. This last method is more complex to apply as it needs to detect 
and eliminate specific parts of the spectrum, but it is more rigorous.

As said before, cavitation zone locations are very dependent on how 
the power ultrasound propagates inside the reactor. The main com-
plexity comes from the sound attenuation due to the very presence of 
the cavitation bubbles (acoustic shielding). But the medium in a so-
noreactor can include more than two phases (solution + bubbles), as 
many applications use a solid phase (lixiviation, catalytic reactions …). 
This added solid phase can have an impact on power ultrasound pro-
pagation and thus on the location and size of active cavitation zones. 
The effect of solid suspension on ultrasound propagation is well known 
in the case of diagnostic ultrasound. There are well-established models 
[31,32] able to measure the features of solid suspensions (particle size 
distribution and hold-up) through the measurement of sound propa-
gation. But this area of acoustic, known as acoustic spectroscopy, is 
limited to low intensity ultrasound. The behavior of power ultrasound 
in a solid suspension and the respective contributions of bubbles and 
solid to its attenuation remain mostly unknown.

To answer these issues, this work aims at investigating the propa-
gation of ultrasound in a solid – liquid fluidized bed, made of milli-
meter-sized particles. This is achieved through an acoustic mapping of 
the sonoreactor with a hydrophone and an adequate processing of the 
measured signals. Several operating parameters are explored such as 
solid concentration, liquid flow rate, emitted power and nature of the 
solid particles.



=T ms50 duration. These parameters have been found adequate from
a sensitivity study (see below). Each sequence is then windowed and
zero-padded before computing the fast Fourier transform. Windowing is
used to reduce the amplitude of the side lobes around the peaks of the
spectra, which could affect the quantification of the broad-band noise.
A Hanning window is applied, which makes a good compromise be-
tween the reduction of the side lobes and the increase in width of the
main lobe. On the other hand, zero padding is used to enhance the
spectral definition. These two steps are shown in Fig. 3.
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Note that the spectra are cut above 150 kHz because the sensitivity
of the hydrophone is known only up to that frequency. The FFT is a
complex number and only its module (| | operator) is of interest in this
work. Its argument (the phase of each sinusoidal component) could not
be exploited because ultrasound emission and hydrophone acquisition
were not synchronized. Then the Power Spectral Density of the acoustic
pressure (PSD f( )p in −Pa Hz2 1) is given by the following expression [34]:
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In this expression, Nsig is the number of signal samples before zero
padding, FS is the sampling frequency, W is the window function, here
of Hanning type, and 〈 〉W 2 the period-average of its squared value
(0.375 for Hanning window). The multiplicative “2” factor arises from
the symmetry property of the FFT (the considered spectra being re-
stricted to the positive frequency range).

Finally the PSD is averaged over the 32 acquisitions according to:
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Peaks corresponding to the (sub/ultra) harmonics and the funda-
mental are extracted with the Matlab built-in peak detection algorithm.
The extracted peaks are those corresponding to the driving frequency f0
and the (sub/ultra) harmonics multiple of f0 and f ,1

2 0 up to f7 0 which is
the last harmonics below =f kHz150max . The width of each peak is
taken as twice the full width at half maximum ( fΔ ) and their (Ppeak) is
calculated by integrating the PSD spectrum over the respective peak-
width:
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The total power (Ptot) is obtained from integration of the full spec-
trum up to kHz150 , and the power relative to the broad-band noise
(Pnoise) is deduced by subtracting that of all the peaks from the total
power:

= ∫ 〈 〉P PSD f df( )tot
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p
0
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(5)
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Fig. 1. Experimental setup.

Fig. 2. Hydrophone sensitivity [33].

Fig. 3. Signal processing – (A) Oscilloscope signal – (B) Windowed signal – (C) Amplitude spectrum.

The Fast Fourier Transform of U is calculated by the dedicated 
Matlab function and is corrected by subtracting the signal measured in 
silent condition having undergone the same processing. Only the po-
sitive frequency domain of the FFT is considered (FFTU f( )) Using the 
sensitivity values (S f( )) provided by Gaete-Garretón et al. [33] (cf. 
Fig. 2), the signal spectrum is then converted into pressure unit giving
FFTp f( ), the fast Fourier transform of the acoustic pressure in Pa:



∑= −P P Pnoise tot peak (6)

The respective contributions of all components (fundamental, har-
monics and broad-band noise) is obtained by dividing each power value
by the total power of the spectrum.

The RMS pressure for each component is finally given as the square
root of the corresponding power value. Following Parseval’s identity,
the total power obtained from the PSD integration over the whole
frequency range should coincide with that calculated from the temporal
signal. We found that the former actually accounts for about 70% of the
latter, due to the spectrum cut above kHz150 .

The amplitude spectrum (ASp, in Pa), giving the pressure amplitude
of each frequency component of the signal, is also calculated as follows:
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The average value of the window 〈 〉W equals 0.5 in the case of a
Hanning window. It should be emphasized that the mean amplitude of a
given peak calculated over the 32 signals is obtained from averaging the
separate ASp values corresponding to a peak maximum around the
expected frequency (i.e. after locating the right peak in each spectrum).
Indeed since the driving frequency of the US emitter (continuously
adjusted by the servo-control system) can slightly shift from one ac-
quisition to another, simply averaging the 32 amplitude spectra would
artificially widen the peaks and hence lower their amplitude.

3.2. Sensitivity analysis on the sampling parameters

A sensitivity analysis has been first carried out regarding the effect
of the signal sampling parameters on the results.

First, the sampling frequency of the oscilloscope (18MHz) is suffi-
ciently high to fulfill Shannon’s condition, as the hydrophone has a
cutting frequency well below 9MHz, which excludes any significant
line spectrum beyond the latter frequency value.

Fig. 4A shows the effect of the signal duration on the FFT peak
magnitude at the driving frequency: the lower the signal duration the
wider the peak and the lower its maximum. For a signal duration of
2ms or less, the amplitude of the peaks is so small that they can’t be
detected; as a result, the signal appears as exclusively composed of
noise (see Fig. 4B). Increasing the signal duration first leads to a
minimum in the noise contribution, as the detected peaks are so wide
that they cover a significant part of the broad-band noise leading to its
underestimation. Beyond 25ms, the noise contribution finally reaches a
plateau.

Averaging the power and amplitude results over several successive

acquisitions helps to reduce the randomness of the acoustic signal under
cavitation conditions, as illustrated in Fig. 5. The RMS pressure of the
total spectrum begins to stabilize with about 10 spectra average and a
plateau is almost reached after 32 acquisitions (standard deviation
equals 0.6% of the mean between 10 and 32 spectra). Since it represents
the maximum memory capacity of the numerical oscilloscope at the set
sampling rate and duration, this number of spectra has been used for
the further measurements.

3.3. Repeatability of the measurements

The obtained spectra are typically as illustrated in Fig. 3C. They
exhibit a vertical line around kHz20 corresponding to the driving
(fundamental) frequency and vertical lines around multiples of 10 kHz
corresponding to various (sub/ultra) harmonics. The broad-band noise
lies between those lines. The amplitude/RMS pressure profiles obtained
from the processing of the signals measured along the reactor axis are
composed of 24 points, spaced of cm1 and beginning cm2.5 below the
surface of the ultrasonic horn.

Repeated tests have been done without solid and without flow for an
emitted power of W150 . Corresponding spatial evolution curves of the
RMS pressure, depicted in Fig. 6, are found almost superimposed, no
matter which part of the spectrum is considered. Some points located in

Fig. 4. Effect of the signal duration – (A) on the fundamental peak magnitude – (B) on the broadband noise contribution to the signal power.

Fig. 5. Effect of the number of averaged spectra on RMS pressure of the total
spectrum.
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Fig. 7. Fluidization of 2mm glass beads under silent conditions with increasing and decreasing flow – (A) Solid hold-up – (B) Pressure drop.
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the first cm5 exhibit however a stronger variation. This zone coincides
with the observed bubble cloud, which could explain the increased
deviation of the measurements. Overall, the measurements show 20%
deviation, which is small enough to derive reliable trends.

A strong spatial attenuation of all the signals (fundamental, har-
monics, and broad-band noise) is observed over the first cm10 , leading
to a total RMS pressure reduced by about a factor 5. In this condition of
high ultrasonic power, most of the signal consists into broad-band
noise.

4. Results

4.1. Behavior of the fluidized bed under ultrasound

The behavior of fluidization under ultrasound is first investigated.
The characterization of the fluidized bed is based on the measurement

of the solid hold-up and the pressure drop through the bed over a range
of liquid velocities. The pressure drop is measured by a differential
manometer and the solid hold-up φ (Eq. (8)) is deduced from the
measured bed height h m( )bed (the free surface of the expanded bed
being located visually):

=φ
m

ρ S h
p

p bed bed (8)

with mp the mass of the solid particles kg( ), their density −ρ kg m( . )p
3 and

Sbed the cross-sectional area of the column m( )2 .
The results obtained for the fluidization of mm2 glass beads in si-

lent conditions are gathered in Fig. 7. As a hysteresis behavior could be
expected [35,36], measurements have been performed with both an
increasing and a decreasing fluid velocity. All the curves exhibit two
distinct zones separated by a slope break; they correspond to the two
states of the bed: fixed and fluidized. Under silent conditions, the ex-
pansion and contraction curves are almost superimposed: the solid
hold-up of the fixed bed is only very slightly higher with a gradually
decreased flowrate, due to some rearrangement of the particles. The
experimental data are also consistent with the Ergun equation for
pressure drop in the fixed bed zone [37], and that of Wen and Yu for
solid hold-up in the fluidized bed zone [38]. The low increase of
pressure drop in the latter region, observed in Fig. 7B, is actually due to
the fact that the lowest insert is not at the very base of the column. Thus
the mass of solid present between the two pressure measurement points
increases with the bed expansion, so does the measured pressure drop.
It has been accounted for in the line curve shown in Fig. 7B (using Wen
and Yu’s expression for solid hold-up).

Power ultrasound emission has little effect on fluidization behavior,
as seen in Fig. 8, corresponding to the bed contraction. It further im-
proves the packing of the fixed bed (by about 10%) because of the vi-
brations, but excepting at the highest US power the bed expansion
under fluidization remains almost unchanged. Actually, at 160W, the

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30

RM
S 

pr
es

su
re

 (b
ar

)

Distance from emi er (cm)

A 60 W

75 W

150 W

200 W

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

RM
S 

pr
es

su
re

 (b
ar

)

Distance from emi er (cm)

B
60 W

75 W

150 W

200 W

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

RM
S 

pr
es

su
re

(b
ar

)

Distance from emi er (cm)

C 60 W

75 W

150 W

200 W

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

RM
S 

pr
es

su
re

 (b
ar

)

Distance from emi er (cm)

D
60 W

75 W

150 W

200 W

Fig. 10. Effect of emitted US power on the axial evolution of the RMS pressure calculated over different spectrum parts – case of non-flowing liquid – (A)
Fundamental frequency– (B) Total spectrum – (C) (sub/ultra) harmonics – (D) Broad-band noise.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Br
oa

d 
ba

nd
 n

oi
se

 c
on

tr
ib

u
on

 (%
) 

Distance from emi er (cm) 

60 W

75 W

150 W

200 W

Fig. 11. Effect of emitted US power on the axial evolution of the broad-band
noise contribution – case of non-flowing liquid.



intense acoustic streaming deforms the bed surface, thus making diffi-
cult and inaccurate the measurement of its position, and probably
leading to an overestimation of its height.

Our primary intention was to measure the pressure drop also under
ultrasound, but we observed that the presence of gas bubbles stuck in
the liquid line (due to cavitation) jeopardized the accuracy of the dif-
ferential pressure measurement.

4.2. Parameter study on ultrasound propagation

Different parameters related to the ultrasound emission, the liquid
flow conditions and the particle suspension were investigated, and their
effects on the spectral power distribution and the signal attenuation are
discussed below. For these measurements, the free surface of the ex-
panded bed was set cm1.5 below the US emitter (by adjusting the
amount of beads for a given solid hold-up).

4.3. Effect of the acoustic power

Measurements were first performed for the column filled with liquid
only and without flow. The signal amplitude at the fundamental fre-
quency vs. depth profile is shown on Fig. 9 for different values of the
emitted US power (accounting for the equipment yield measured by
calorimetry). The observed tendency could first appear as counter-
intuitive, as the profiles at low US power emissions are significantly
higher than those at high power. With similar measurements, Son et al.
[39] observed that the fundamental amplitude profile is not affected by
the emission power. However they worked at lower power (13–40W)
and seemed to be in a regime with very low broad-band noise. Con-
sidering the Blake threshold as the limit amplitude necessary to ex-
plosive growth of bubbles at low US frequency (and assuming for the
calculation a uniform radius of 5 µm [40–42]), the most active cavita-
tion zone lays above the first measurement point, so confined in the
immediate vicinity of the emitter. However, since the Blake threshold is
a model describing the behavior of an isolated bubble, using it to locate
cavitation zones might be inaccurate. Indeed some authors like Nguyen
et al. [30] measure a cavitation threshold around kPa20 for a frequency
of kHz20 .

To explain the effect of the acoustic power an exploration of the rest
of the spectral information is needed. If obviously the same decreasing
trend can be observed for the fundamental power (Fig. 10A showing
equivalent RMS pressure), the RMS pressure associated with the total
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Table 2
Attenuation coefficients of 2 mm diameter particles in a 50% vol./vol. aqueous
suspension.

Material Glass Polyamide

αth( −Np m. 1) [47] −2.7110 4 −3.1610 6

αvisc( −Np m. 1) [46] −48.810 3 −2.110 3



spectrum power (Fig. 10B) increases in accordance with the emitted
power. Such behavior is in fact due to an energy transfer from the
fundamental toward the broad-band noise when increasing the emitted
power, as shown in Fig. 10D. The contribution of the noise in the first

cm10 indeed increases from less than 40% at 60W to about 95% at
200W (Fig. 11), suggesting a higher cavitation level. According to
Yasui et al. [25], this comes with an increased numbers of bubbles,
hindering also the propagation of the driving wave in the medium and
leading to a faster decrease of the total power (acoustic shielding). On
the other hand, the power of the (sub/ultra) harmonics (Fig. 10C) does
not seem to be affected by the emitted power.

4.4. Effect of the liquid velocity

Over the explored range ( −− −cm s cm s3.8 . 9.1 .1 1), the liquid ve-
locity does not have any significant effect on the measured profiles.
However, there is a clear difference between the cases with and without
flow. The curves of Fig. 12B show a higher value of the RMS pressure
measured at the driving frequency when the liquid is flowing. A
probable explanation is that the bubbles are swept away by the upward
flow, hence reducing the acoustic shielding. This explanation seems
confirmed by Fig. 12C, which shows less broad-band noise in this case,
indicating less bubble activity. This thus lowers the contribution of the
broad-band noise in the first cm10 , from 85% in the quiescent liquid
sonicated at 150W to less than 60% when an upward flow is applied
(see Fig. 13).

4.5. Effect of the particles

As the particles are much smaller than the wavelength ( mm2 vs
cm7.5 ), their effect on the wave attenuation should be mainly due to

viscous losses, resulting from the oscillations of the particles in the
surrounding medium, or to thermal dissipation loss, due to thermal
gradients generated near the particle surface as the fluid undergoes
non-isentropic periodic expansion-compression producing an oscilla-
tory heat flow from/toward the particle [43,44]. Conversely, the effect
of wave scattering should be negligible [45]. Considering their much
higher relative density, larger attenuation would be expected for the
glass beads compared to the polyamide ones in accordance with the
measurements of Dukhin et al. on similar materials [46]. Table 2
gathers the attenuation coefficients corresponding to thermal losses
(αth) and viscous losses (αvisc). They have been estimated from the
theoretical expressions available in Dukhin et al. [47] and He and Ni
[48], respectively, and result in rather low values.

On the other hand, the particles could provide supplementary nuclei
for cavitation or interact with the generated bubbles (according to their
more or less hydrophobic surface state), leading to more complex
trends. Fig. 14 shows the effect of glass particles on power attenuation
(for the fundamental and broad-band noise, respectively), while Fig. 15
treats the case of polyamide beads. On these figures are recalled the
profiles obtained without any solid at a liquid velocity of 6.1 cm/s
(value required to achieve 40% of solid hold-up in the case of glass
particles). It should be recalled that the surface of the expanded bed lies

cm1.5 away from the US emitter, and thus the solid particles should
directly affect US propagation only beyond this distance. A strong ad-
ditional wave damping is observed for the fundamental in the presence
of particles, especially with glass beads. In the investigated range of
solid hold-up (28–50%), its effect seems however lower for glass beads
than plastic ones. This might be explained by the nonlinear dependence
of the wave attenuation with respect to the solid hold-up above 10%
vol., as observed by previous authors in the case of particles with high
density contrast [46]. The effect on the broad-band noise (Figs. 14B and
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15B) is rather different whether glass or plastic particles are considered.
In the case of the glass particles, the corresponding profile is almost
unchanged with or without solid, while the fundamental amplitude is
fast below the abovementioned 20 kPa. This could indicate a lower
cavitation threshold due to the nucleation sites brought by the particles,
as concluded by Tuziuti et al. [49]. In the case of plastic particles, the
noise is however significantly lower, despite their higher hydro-
phobicity and rugosity (see MEB pictures in Fig. 16) would be expected
to enhance heterogeneous nucleation of bubbles. On the other hand,
Crum and Brosey [50] observed that the cavitation threshold was in-
creased by small amounts of polymer additive and explained this effect
by a reduced surface tension using a Harvey-type model of cavitation
nucleation. As seen on Fig. 16 plastic particles seem slightly eroded by
US, suggesting that partial dissolution of polyamide might have oc-
curred under US leading to a similar mechanism. The results with solid
particles would require further exploration to be fully elucidated, and in
particular to decorrelate their direct influence on wave attenuation
from their indirect one via cavitation threshold (due to surface defects
or partial dissolution). The fact remains that acoustic cavitation is in
itself an open problem and that the diversity of possible interactions
between particles and bubbles precludes a purely additive effect on
attenuation.

5. Conclusions

A methodology has been developed for the acoustical character-
ization of sonoreactors, based on FFT signal processing, allowing to
distinguish the different spectral components: driving frequency, (sub-/
ultra-)harmonics corresponding to the stable cavitation and broad-band
noise associated to the inertial one. The effect of increasing emitting
power on the ultrasound propagation has been studied and the results
indicate a higher energy transfer from the fundamental wave toward
the broad-band noise, as well as a shielding effect by the cavitation
bubbles leading to a fast decrease of the total signal power with the
distance from the emitter. Hence it shows that the emission power in
any sonochemistry process has to be carefully chosen as higher power
does not necessarily imply higher efficiency. A probable explanation of
the liquid flow effect is the sweeping of the cavitation bubbles away
from the zone in front of the horn. Technical restrictions indeed implied
to design this reactor with ultrasound emitted against the flow, but it
could be interesting to work in other configurations to check if this
trend would be then modified. The solid suspension brings additional
attenuation, but it is much more difficult to conclude about the causes
of the observed effects. In the light of the obtained results, this study
could benefit from the use of an emitting device able to generate ul-
trasound at an intensity low enough to keep the medium below cavi-
tation level (so as to uncouple for instance the respective effects of the

Fig. 16. MEB pictures of 2mm glass and plastic particles before and after exposure to ultrasound – (A) Glass before US – (B) Plastic before US – (C) Glass after US –
(D) Plastic after US.
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bubble cloud and of the solid particles on the wave attenuation).
This work will be followed by an experimental investigation of the 

local mass transfer coefficient (measured by electrochemical method) 
under the same conditions and in the same sonoreactor, so as to cor-
relate its enhancement to the cavitation intensity and power repartition 
in the acoustic spectrum.
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