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Abstract: Software effort estimation is a crucial task in the software project management. It
is the basis for subsequent planning, control, and decision-making. Reliable effort estimation
is difficult to achieve, especially because of the inherent uncertainty arising from the noise in
the dataset used for model elaboration and from the model limitations. This research paper
proposes a software effort estimation method that provides realistic effort estimates by taking
into account uncertainty in the effort estimation process. To this end, an approach to introducing
uncertainty in Neural Network based effort estimation model is presented. For this purpose,
bootstrap resampling technique is deployed. The proposed method generates a probability
distribution of effort estimates from which the Prediction Interval associated to a confidence level
can be computed. This is considered to be a reasonable representation of reality, thus helping
project managers to make well-founded decisions. The proposed method has been applied on
a dataset from International Software Benchmarking Standards Group and has shown better

results compared to traditional effort estimation based on linear regression.
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1. INTRODUCTION

Software effort estimation is the process of predicting the
amount of effort required to develop the software project.
It is an important activity in software project management
as it provides the basis for subsequent planning, control,
and decision making (Morgenshtern et al., 2007). Accurate
effort estimation is important because a low cost estimate
may result in financial loss or compromise the quality
of the software developed, while a high cost can lead
to misallocation of resources and a backlog of required
software (Lee et al., 1998). Several surveys have reported
that 60-80% of all software projects expend on average 30-
40% more effort than originally estimated (Molokken and
Jorgensen, 2003). This means that the average estimation
error is high and that the estimates are unrealistic.

In recent decades, various effort estimation methods have
been developed in order to improve the estimates accuracy
of the effort estimates. However, there is no single model
that completely satisfies the need for objective and realistic
estimates in all circumstances (Basha and Ponnurangam,
2010). The majority of existing methods are elaborated
from old historical data and for specific organizations, thus
it is difficult to adapt them to new project contexts and en-
vironments. Therefore, in order to accurately estimate the
effort, an organization requires estimation methods that
are based on its own performance, working practices and
software experience (Kitchenham and Linkman, 1997).

Estimates are guesses regarding future performance, based
on available knowledge and estimation methods (Morgen-
shtern et al., 2007). Obviously, these guesses do not exactly
mirror the actual outcome, due to the uncertainty present
in the effort estimation process, especially in the early
stages of software development. Uncertainty is inherently
present in (1) the dataset, used in the elaboration of the
estimation model, that can contain noisy and imprecise
information, (2) the model that can not present the exact
relationship between the effort and the influent variables.
It is important to take account of uncertainty in the
estimation process. Associating an uncertainty to effort es-
timates may provide the user with a sense of how accurate
the estimates are likely to be and thus help him in making
the right decisions (Jorgensen and Sjoeberg, 2003). Taking
account of these observations, our study aims to elaborate
an effort estimation method based on NN that can take
into account the inherent uncertainty present in the effort
estimation process. The provided effort estimates should
be realistic and reflect the reality.

The remainder of this paper is structured as follows: Sec-
tion 2 provides an insight into software effort estimation
and uncertainty. Section 3 proposes an effort estimation
method that takes account of uncertainty. Section 4 eval-
uates the proposed method on a dataset and discusses the
results. The final section draws a conclusion summarizing
the present study and outlining perspectives and future
works.



2. LITERATURE REVIEW
2.1 Effort estimation methods

In the last decades, various effort estimation approaches
have been developed. They can be classified in four main
categories. (1) Expert judgment-based methods that draw
upon the expert intuition and experience gained from
previously executed projects, such as Delphi (Jorgensen,
2004). (2) Analogy based-methods that consist in iden-
tifying one or more historical projects that are similar
to the project being developed and in using their known
effort values to generate the estimated effort (Shepperd
et al., 1996). (3) Parametric model-based methods, which
rely mainly on equations elaborated using historical data
and expressing the effort as a function of discriminant
parameters influencing that effort, called effort drivers.
Examples include COCOMO (Boehm, 2000). (4) Machine
learning-based methods, which model the complex rela-
tionship between the effort and the effort drivers using
artificial intelligence techniques like Neural Networks (NN)
and fuzzy logic (Srinivasan and Fisher, 1995).

Most parametric effort estimation methods, such as CO-
COMO, have their difficulties and limitations. First, as
they are elaborated from old historical data and for specific
organizations, it is difficult to adapt them to new project
contexts and environments. Moreover, they are not able to
provide an effective model for the complex relationships
between effort and effort drivers (Ahmed and Muzaffar,
2009). Effort estimation methods based on artificial intel-
ligence techniques, especially NN, overcome most of these
problems. NN effort estimation models are able to learn
from previous data, to be adapted for any organization
and project context, to be updated over time and to model
complex relationships (Park and Baek, 2008; Idri et al.,
2010; Setiono et al., 2010).

2.2 Neural Networks (NN)

NN is a massively-parallel adaptive network of simple
nonlinear computing elements called neurons, which are
intended to abstract and model some of the functionality
of the human nervous system in an attempt to partially
capture some of its computational strengths (Haykin,
1999).

There are a multitude of NN architecture and structure;
the most used one is called Multilayer Perceptron (MLP)
(see figure 1). It consists of different layers where the
information ows only from one layer to the next layer. It
has three layers: Input layer, Hidden Layer and Output
Layer. Input layer has as much number of neurons as
number of input parameters to the NN model, e.g. for
the effort estimation task, inputs are size of the software.
Hidden Layer, which gets inputs from input layer neurons,
it is fully or partially connected to the input layer and fully
connected with the Output Layer. Output Layer has one
or more output neurons depending on the output of the
model. For the effort estimation, output layer contains only
single neuron which gives the result of the model in terms
of effort (man months or man-hours) (Dave and Dutta,
2012). Each node in one layer is connected with a certain
weight wij to every node in the following layer. Input nodes
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Fig. 1. Architecture of a Multilayer Perceptron (MLP)

distribute the signals to the nodes of the first hidden layer
without processing it while nodes of hidden layers are
neurons (or processing elements) with a nonlinear activa-
tion function (Trenn, 2008; Rosenblatt, 1962). Activation
function is used to transform and squash the amplitude of
the output signal of a neuron to some finite value. Some of
the most commonly used activation functions are sigmoid,
Tanh, and Gaussian (Karlik and Olgac, 2011). Weights
are determined in the NN training process. This consists
on initializing NN with random weights and gradually
training the NN to capture the relationship between inputs
and outputs by adjusting the weights based on the training
dataset. Several training algorithms can be used namely
the Resilient Back Propagation algorithm (RPROP).

2.8 Uncertainty in effort estimates

NN based effort estimation model suffers uncertainty from
two sources: (1) The training data used in the elaboration
of the NN that is typically noisy and incomplete. Project
information collected by the companies can be evaluated
subjectively and thus can be imprecise and noisy. Also,
the dataset can not cover all possible software project
input-output examples as it is just a sample from a large
population of software projects. (2) The limitation of the
model arising from the structure of the neural network
that can be inappropriate, the training algorithm that may
get stuck in a local rather than a global minimum of the
error function, and that find solution that is valid only
for regions sufficiently represented by the training data
(Tiwari and Chatterjee, 2010; Papadopoulos et al., 2001).

To introduce uncertainty in NN based effort estimation,
bootstrap procedure is employed which is based on resam-
pling technique. The bootstrap is a computational proce-
dure that uses intensive resampling with replacement, in
order to reduce uncertainty (Efron and Tibshirani, 1994).
Bootstrap technique has been used successfully with anal-
ogy based cost estimation (Angelis and Stamelos, 2000)
and with semi-parametric software cost estimation model
(LSEDbA) (Mittas and Angelis, 2009). These works present
methods of constructing Prediction Intervals (PIs) in order
to describe the inherent uncertainty. PI consists of an
upper and a lower effort value between which the future
effort is expected to lie with a prescribed probability.
Bootstrap technique has also been used in artificial neural
network model development in many fields namely rainfall
runoff modeling and hydrological modeling (Tiwari and
Chatterjee, 2010).

To the best of our knowledge no studies have been reported
in the software effort estimation literature that have used
bootstrap based NN to take account of uncertainty and to
make probabilistic estimates with PI.



3. BOOTSTRAPPING NEURAL NETWORK TO
INTEGRATE UNCERTAINTY

The framework involved in our proposed method to take
into account uncertainty present in dataset and NN effort
estimation model, is shown in figure 2. This includes
three processes: (1) Dataset preparation, (2) NN model
structure determination and (3) NN bootstrapping.

3.1 Dataset preparation

The quality of a model depends on the quality of the
dataset used in its elaboration. Thus, the processing of
the dataset is an important task. This includes three
steps: cleaning and features selection, transformation and
division.

Dataset cleaning consists on discarding dataset related
project attributes that are irrelevant for estimation, such
as the project manager’s name. Features or effort drivers
are selected and determined using statistical tests such as
Pearson correlation and one-way ANOVA (Lagrichi et al.,
2013). Attributes that are rarely provided (for just 40% of
projects) and projects with missing values in effort driver
fields are discarded.

As NNs accept only numerical values (typically between
0 and 1), dataset transformation is required. Nominal
values must be transformed into ordinal variables called
dummies. Dummies are numeric variables that take the
value of either 0 or 1. They represent the categories of
an attribute (Garavaglia and Sharma, 1998). Moreover,
numerical values must be transformed into values in the
range of 0 to 1 to adapt them to the activation functions.
For this purpose, normalization is used, as defined in (1),
where a is one attribute value for a project, m and M are
respectively the min and the max of this attribute values
over the dataset projects.

a—m

— (1)
Division consists in splitting randomly the dataset into
two datasets one for training the NN and the others for
testing it. The purpose is to test the performance of model
on new data unused in the training stage. Generally, 80%
of the dataset is allocated for model elaboration and 20%
for model testing.

A;j —

3.2 Neural Network model structure determination

This consists in designing the structure of the NN. It is
one of the major task in elaborating a NN model. In this
study, different design factors were considered in order to
determine the appropriate NN structure. The defined NN
structure parameters are:

e The number of inputs is the number of effort drivers.

e The number of outputs is the number of variables to
estimate.

e The number of hidden layers is set to 1.

e The number of hidden nodes in each layer is gen-
erally between 1 and twice the number of inputs
(Boetticher, 2001) which leads to a variety of NN
structures.

e The activation functions considered are Identity in
input and output layers and Sigmoid in hidden layer.
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Fig. 3. Procedure to bootstrap NN

As there is no optimal and precise method to determine
the most appropriate NN structure prior to training, the
NN model structure is generally selected through a trial-
and-error procedure (Tiwari and Chatterjee, 2010). That
means each possible NN model structure is trained on the
training dataset, tested on test dataset and finally the NN
model structure giving the smallest error is selected. For
this purpose, the K-fold cross validation technique can be
used.

K-fold cross-Validation is a statistical method that can be
used in evaluating and comparing different NN structures.
The method of k-fold cross validation partitions the train-
ing set into k equally (or nearly equally) sized segments
or folds. For each structure, subsequently k iterations of
training and validation are performed, each time using one
of the folds as the validation set and the remaining folds as
the training set. The best NN model structure is then the
one that has the smallest average error on the validation
set (averaging over the k runs) (Refacilzadeh et al., 2009).

3.8 Bootstrapping Neural Networks

In the case of regression problems, it is obvious to associate
measures of confidence to the estimates. Pls are used
for this purpose and can easily by evaluated using some
defined formulas. However, for the NN estimation, there
is no defined and precise manner to compute PIs (Mittas
and Angelis, 2009). In this respect, we investigate the use
of a simulation technique called bootstrap. This techniques
is based on resampling with replacement of the available
dataset. That’s mean a project in the original dataset
may be repeated many times in a generated sample. The
purpose is to generate a large number of independent
samples (Tiwari and Chatterjee, 2010).

The procedure to apply bootstrap in the context of NN
effort estimation is shown in the figure 3 and the steps are
given in the algorithm below.

(1) Generate a number B of "samples” from the original
training dataset using resampling and replacement.
B depends on the size of training dataset and ranges
usually from 20 to 200 (Efron and Tibshirani, 1994).

(2) For each sample m, train a network with the same
architecture. B trained networks are obtained.

(3) For each software project i in the test set, compute
the set of estimates e; = {€;1,...€im,...;p} using the
B trained network.
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Fig. 2. Proposed method for integrating uncertainty in Neural Network effort estimation

The estimates produced by bootstrapped NN compose
a distribution that can be used to compute the PI cor-
responding to a confidence level a. The PI is given by
[€a/2,€1—a/2], With e,/2 and e;_, /o are efforts correspond-
ing respectively to the 100(a/2) -th and the 100(1—a/2)-th
percentiles of the distribution. The most commonly used
PI confidence levels in software estimation studies are 0.90
and 0.95 (Klas et al., 2011).

4. APPLICATION

The dataset used in our experimentation is from the
International Software Benchmarking Standards Group
(ISBSG R2011) considered as one of the largest and
the more recent dataset for software effort estimation. It
contains 5052 projects collected from companies worldwide
from 1992 until 2009.

The analysis performed by (Huang and Han, 2008) on the
ISBSG repository containing 1238 projects defines eight ef-
fort drivers that are: Adjusted Function Point (AFP), Max
Team Size (MTS), Development Type (DT), Development
Platform (DP), Language Type (LT), Used Methodol-
ogy (UM), Methodology Acquired (MA), and Application
Type (AT). The Person correlation test and the one-way
ANOVA were adopted to test the relevance of these effort
drivers based on the database of this study. As shown in
table 1, two of effort drivers display important influence:
AFP and MTS. For this experimentation, 252 projects
were selected after discarding projects with information
quality B and C, projects with missing values in effort
drivers and atypical projects or outliers. Training and test
dataset consist of respectively 202 and 50 projects.

Table 1. Results of Pearson correlation and
one-way ANOVA on ISBSG

Feature  Correlation
AFP 0.287
MTS 0.264

DT 0.002
DP 0.002
LT 0.03
MA 0.01
AT 0.001

Statistical analysis like testing the normality of AFP, MTS
and Effort showed that they are not normally distributed.
These variables are transformed to logarithmic scale in
order to respect some assumptions that are important in
the elaboration of the model.

NN model structures can be denoted by (i:j:k), where i is
the number of neurons in the input layer, j the number of
neurons in the hidden layer, and k the number of neurons
in the output layer. In this study, i and k are equal to 2 and
1 respectively and j ranges between 1 and 5. Each structure
is trained on the training dataset, then it is tested on
the test set and its Mean Magnitude of Relative Error
(MMRE) is computed (see table 2). MMRE is the mean
of estimation errors of projects of the test dataset. The
structure with 4 nodes in hidden layer is found to be the
best structure.

Table 2. MMRE for different NN model struc-

tures
NN structure  MMRE
2:1:1 0.46
2:2:1 0.39
2:3:1 0.36
2:4:1 0.35
2:5:1 0.37

The selected NN model structure is then bootstrapped
using 100 samples generated from the training dataset.
PIs corresponding to confidence level of 95% are then
computed.

To evaluate the uncertainty estimates provided by Pls,
some measures can be used namely the hit rate (HitR),
the Relative PI width (rWidth) and the Actual effort
Relative to PI (ARPI). The HitR provides the percentage
proportion of estimates that fall within the PI, The rWidth
expresses the precision of the PI and The ARPI inspects
how the actual effort values are distributed relative to the
PIs (Jorgensen et al., 2004).

The PIs provided by our method are compared with
classical PIs based on linear regression effort estimation
model (LR). From the measures presented in table 3, we
observe that the LR gives slightly higher value of Hit rate
than bootstrapped NN. Based only on this measure, it
may be deduced that Pls estimates using LR is better
than bootstrapped NN based Pls. However, the other
measures should be examined as well before concluding
on the performance of the two methods. In fact, the
median rWidth of the LR is nearly two times larger than
the bootstrapped NN. This mean that the LR provides
very wider PIs which is difficult to use and interpret to
make decision. Our proposed method achieves to provide
narrowest PIs. In addition, the median ARPI measures
show that the actual efforts is more close to the Pls
midpoints in the our proposed method than in the LR



based method. This makes the bootstrap NN based Pls
more reliable as the practitioners, in decision making,
do not solely consider PIs but also PIs midpoints in a
systematical and implicit way.

Taking account of these observations, our proposed method
provides better results than the classical method based
on LR. The bootstraped NN based PIs present well the
uncertainty present in the effort estimation process and
are realistic and reliable.

Table 3. Evaluating measures of effort Pls

LR  Boostrapped NN
Hit rate (%) 72 68
Median rWidth  0.41 0.24
Median ARPI 0.13 0.09

5. CONCLUSION

Realistic effort estimation is an ongoing challenge for
project managers, especially in an uncertain environment.
This paper presents a method for a software effort esti-
mation based on NN techniques. It allows uncertainty to
be taken into account in effort estimates. NN based effort
estimation model is used for its ability to model complex
relationships, to be adapted to any project context and
environment, and to be updated over time. Bootstrap
simulation is used to generate independent samples in
order to introduce uncertainty in NN based effort estima-
tion. This method is probabilistic as it provides an effort
estimation probability distribution from which a PI can be
computed. Thus, it provides a better representation of re-
ality, presents the uncertainty present in effort estimation
process and offers a decision support tool for realistic effort
estimation. The proposed method is applied on ISBSG
R2011 dataset. The results show that the PIs provided
by our method are realistic and reliable compared to LR
based PIs. However, our method has some shortcoming
as it uses the NN technique. First, NN model elaboration
requires a good background in the subject. Furthermore,
NN is a time consuming technique. Besides, it is considered
as a black box which makes the justification and interpre-
tation of estimates extremely difficult.

It is worth noting that there is another source of uncer-
tainty that should be taken into account in the stage of
utilization of the proposed bootstrapped NNs. It is related
to the lack and imprecision of the available knowledge
about the new software project being estimated. Monte
Carlo simulation can be used to handle this uncertainty in
future work (Mooney, 1997). For this purpose, the expert
should assess the uncertainty of effort drivers through
statistical distributions.

Another future step will be to evaluate and integrate
software project risk in the proposed method in order
to maximize its robustness. In fact, during the project
development, risk events can occur, which may impact the
progress of the project and lead to overruns. Hence, effort
estimation PI should also consider the risk inherent in a
software project, as well as uncertainty (Marmier et al.,
2013). Future works also include the use of diverse large
datasets to ensure the validity of the proposed method.
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