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Abstract

A fracture prediction criterion for brittle materials has been introduced in the POLLUX finite-element code, in order to predict
the risk of rupture of ceramic tools during a forging operation. The POLLUX code, developed by INSA (Lyon) especially to
simulate forging operations, is presented. The fracture model is based on the weakest link theory and Weibull analysis. Two
different criteria were chosen in order to characterise the stress state, considering the tensile normal stresses. Comparison between
the simulation results and the analytical calculations, in a simple compression case, enables the validation of the numerical model.
Applications are presented, in which the design of ceramic forging tools is realized using the failure prediction software. A
run-strategy of the program is proposed in order to improve the design of the forging tools.
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1. Introduction

In the aircraft industry, the development of engines
with higher performance, has led to the introduction of
new titanium and nickel base materials, requiring form-
ing techniques that are quite different from those used
for more conventional products. The isothermal forging
of superplastic materials has appeared as the most
appropriate forming process of some titanium alloys
and nickel-base superalloys. This technique should al-
low the production of near-net-shape pieces directly
from simple-shape preforms. However, superplastics
properties are achieved only at high temperature and
low strain-rate for these alloys. For instance, in the case
of some nickel-base alloys, superplasticity is reached at
temperatures exceeding 1373 K, which means that the
material for the forging dies, which will be used at the
same temperature as the workpiece, must be heat resis-
tant.

The isothermal forging of advanced alloys has been
carried out using metal dies (Mo based), which requires
a controlled atmosphere system in order to limit the
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oxidation of the dies. The use of ceramic dies should be
a less expensive way, as the very good oxidation resis-
tance of these materials does not require a controlled
atmosphere. Advanced ceramics are also attractive for
their physical and mechanical properties, such as their
high-temperature strength, their light weight and excel-
lent erosion resistance. However, ceramics are inher-
ently brittle, and the lack of ductility leads to low
fracture toughness and large variations in observed
fracture strength. The usual design techniques are not
suited to ceramic components. The wide variation of
material strength is due to the nature and distribution
of intrinsic microscopic flaws, that are unavoidably
present as a result of material manufacturing opera-
tions. Failure in ceramics usually initiates at a single
weakest flaw when the local stress reaches a critical
value. Statistics and reliability analysis are therefore
necessary to predict the failure of brittle material com-
ponents as a function of service time.

Statistical fracture models, based on the weakest-link
theory, have been developed previously. This theory
assumes that the structure is analogous to a chain with
many links. Each link may have a different limiting
strength. When a load is applied to the structure such
that the weakest link fails, then the structure fails.



The first probabilistic approach used to account for
the scatter in fracture strength of brittle materials was
introduced by Weibull [1]. This model requires statisti-
cal parameters to phenomenologically describe the fail-
ure response of a material. These statistical parameters,
depending on the material characteristics, are usually
determined from uniaxially-loaded, simple-geometry
samples. In order to predict the material behaviour in
other stress states using statistical parameters from
uniaxial tests, Weibull proposed the calculation of the
risk of rupture considering the maximal tensile princi-
pal stress or averaging the tensile normal stress in all
directions. However, several investigators have shown
that these models could lead to unsafe estimates of
failure probability, and another model was introduced,
based on the assumption that the principal stresses act
independently [2]. In this method, the reliability of a
component under multi-axial stresses is the product of
the reliability of the individual principal stresses acting
independently.

In another model, Batdorf [3] combines the weakest-
link theory and linear elastic fracture mechanics. Con-
ventional fracture mechanics analysis assumes that both
the size of the critical crack and its orientation respec-
tive to the applied load determine the fracture stress.
The Batdorf theory includes the calculation of the
combined probability of the critical flaw being within a
particular size range and being located and oriented so
that it may cause fracture. In addition to the statistical
parameters determined, as for the Weibull model, by
simple uniaxial tests, other parameters characterising
the flaw orientation as a function of the stress direc-
tions must be calculated. These parameters can be
difficult to determine for complex shapes and stress
states.

Except in some simple cases, it is necessary, for
predicting the risk of failure of ceramics structures with
these different models, to use numerical simulation.
Some studies have been conducted previously in which
brittle fracture models were coupled to finite-element
simulations to calculate the failure probability of partic-
ular ceramic structures. Berdin [4] introduced both the
Weibull and Batdorf models in the post processor of
the Zebulon finite-element program, to predict the fail-
ure of particular disks under biaxial stresses. The statis-
tical parameters of both models were determined from
four point bending tests. In this study, results of the
Weibull analysis for fractured disks were in better
agreement with the experimental results than those of
the Batdorf analysis.

Lamon [5] has also developed a numerical model of
statistical fracture analysis of ceramic composites in the
FLAG post processor of a commercial finite-element
program named MARC. The simulation, based on the
Weibull approach and on the properties of different
composite constituents, has led to the computation of

the distribution of failure probabilities, and the global
failure probability of a unit cell, as a function of strain.

However, most of the research in this field has been
realised by the National Aeronautics and Space Admin-
istration [6—8]. In the late 1970s, NASA initiated the
development of the SCARE computerised design pro-
gram for the reliability evaluation of ceramic structures.
SCARE can be coupled to the commercial finite-ele-
ment programs ANSYS, ABAQUS, NASTRAN and
COSMOS, and use the output data from these pro-
grams. The Weibull and Batdorf fracture models are
present in the code, but simulation results show that the
selected criterion has no significant effect on fracture
prediction [9]. Nevertheless, the finite-element programs
quoted above are not convenient for the simulation of
the forging process, where large strains take place in the
workpiece.

The objective of this study is to develop a finite-cle-
ment model in order to be able to predict the failure of
ceramic forging dies as a function of the service condi-
tions, in order to improve the design of these compo-
nents. This numerical model has been introduced into
the POLLUX finite-element code, developed previously
by INSA Lyon [10]. The Weibull model has been
chosen to describe the fracture characteristics of ce-
ramic materials, because the statistical parameters of
this model are easy to determine experimentally. Both
the maximal principal stress and the principle of inde-
pendent actions criteria are available in the model. One
of the principal characteristics of the program is that
the fracture probability of the tools is calculated at each
increment. This calculation is run at the same time
increment as the stress tensor evaluation. The limit
fracture probability, which is chosen by the user, con-
trols the end of the simulation.

2. Software description

The finite-element code POLLUX has been devel-
oped in order to predict the stress state in the work-
piece and the tools during a forging process. The
thermo-elasto—visco-plastic formulation is based on a
displacement approach. The model uses a separated
implicit integration scheme of the constitutive law [10]
and is presented in the following sections.

2.1. Displacement formulation

2.1.1. Thermo-elasto—plastic constitutive law

The Cauchy stress tensor ¢ can be deduced from the
elastic strain tensor ¢°, itself deduced from the differ-
ence between the total strain &', the plastic strain &P,
and the thermal strain &', and the elastic behaviour of
the material represented by the fourth-order tensor C,
which can be temperature dependant:



o=Cic®= Ci(c' — e® — &™) (1)

2.1.2. Equilibrium equation for a displacement approach

Consider a continuum media ¥V, with an equilibrium
stress field ¢ at time ¢, subjected to a loading step for
time dz. The displacement field occurring during d¢ is
the solution of the equilibrium equation applied to the
loading increment. A weak formulation with the test
function W of the equilibrium equation on the contin-
uum media V' and the introduction of the elasto-plas-
tic constitutive law give the following equation:

J (Z’:AE): grad w dv
”

= J AD.b ds + J (C:AeP): grad W dv )
S 14

The variation A is for the total time step df, the
tension variation A®, applied on the surface S, is
obtained with the boundary conditions, and the final
stress state will be deduced from the balanced stress
variation.

2.2. Constitutive equation

The plastic response of the material is described
using a classical Von Mises yield condition. The deter-
mination of the variation of the stress state is based
on the normality principle of the plastic flow applied
to a small strain variation:

SeP = n 3)

where 7 is the unitary tensor normal to the yield stress
surface:

n=—-

(4)
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s is the deviatoric stress tensor, 0eq 1s the equivalent
Von Mises stress and A is the equivalent plastic strain
deduced from the projection of the tensorial elasto-
plastic constitutive equation onto the normal to the
yield stress surface.

2.3. Equilibrium equation solver

2.3.1. Solving algorithm

To solve the equilibrium equation a constant opera-
tor strategy is used. The stiffness matrix of the prob-
lem is constituted with the elastic coefficients of the
material and is integrated on the geometry at time ¢.
Then the inverse stiffness matrix has to be computed
only once per increment, which leads to shorter com-
putation times. The total variation A for time step d¢
is cut into small iterative variations J, the equilibrium
equation being written for an iteration k in the follow-
ing way:

1
J <2 C:(grad” 6a* + grad 5&")): grad W dv
,

=J AD* b ds + f (C:AeP): grad v do (5)
S 124

The second part of the equation is deduced from the
variation of the solution at the previous iteration with
the implicit integration of the constitutive law, the
tension boundary at the surface S being introduced
only for the first iteration. The convergence of the
resolution is achieved when the residual unbalance is
lower than a very small scalar.

2.3.2. Discrete decomposition

A triangular finite-element with quadratic interpola-
tion functions is used for the geometry and the dis-
placement, the stress and the strain fields being linear
on each element:

d*=N,a;, (j from 1 to 6) (6)

The weak function is chosen as the displacement
interpolation base, and the continuous equilibrium can
be replaced in the approximation space by the follow-
ing discrete system:

K;.0a% = of & ()
1 . . B,
K, = L <2 C:(grad” N, + grad N,)): grad N, dv (8)
ofk = J S N, ds + J (C:0¢P%): grad N, dv 9)
S V

2.4. Contact and friction law

The contact and friction conditions are imposed with
a penalty method. Egs. (7)—(9) are written in a local
coordinate system for all the concerned nodes. In order
to keep a constant stiffness matrix in an increment of
time dz, the formulation must be explicit. If a boundary
condition changes at iteration k of increment i the
calculation is stopped. The matrix is then modified and
the calculation restarts at the first iteration of increment
i

As the displacement of the tool dd, is imposed, the
unknown displacement is limited to a relative displace-
ment of the node dd, so that Eq. (5) becomes:

(K, — Ky;).0a5 = of ; (10)
with:

N odn -
of = J STF.N, ds+J 51,280 N ds
s s Héar

+ J (C:9¢"): grad N, dv (11
14
1 . .
K= — S(Sff I N.N.,.ds (12)




where 7; is the tangential friction stress.

The tool surfaces are modelled with linear elements
on which different friction laws can be defined. The
Tresca friction law, the Coulomb—Orowan friction law
and the plastic wave model are available [11].

2.5. Thermo-mechanical coupling

2.5.1. Energy-balance law
Considering an axisymmetric domain V, the tempera-
ture field must satisfy the energy-balance equation:

T
p.c.i—[:div k.grad T+ Q (13)

where p is the density, ¢ is the heat capacity, k is the
heat conductivity, 7 is the temperature and Q is the
internal source.

2.5.2. Internal heat sources

In the metal-forming case there are two kinds of
internal sources that are deduced from the mechanical
results: a fraction of the plastic strain power and the
friction power at the workpiece—die interfaces.

2.5.3. Prescribed boundary heat fluxes

2.5.3.1. Convection. The prescribed boundary heat con-
vection flux is a function of the heat transfer coefficient
o(T) and the difference between the surface tempera-
ture 7 and the room temperature 7:

q=o(D(T=T,) (14)

2.5.3.2. Radiation. An evolutive closed-cavity model
with current view factors is used [12].

Radiation emission: each point along the boundary
of a cavity C emits a flux ¢ proportional to the
temperature to the fourth power, to the Stefan—Boltz-
mann constant ¢ and to the surface emissivity &:

¢ =¢c0.T* (15)

Absorption-reflection: according to the Kirchoff law,
the absorption and reflection coefficients are equal in
the same direction and frequency. Extending this law to
every direction of space and every frequency of the
signal spectrum:

P, = epi and ¢, = (1 —&)¢; (16)
where ¢; is the incident flux, ¢,is the absorbed flux and
¢, is the reflected flux.

2.6. Stress state in the tools

2.6.1. Hypothesis
As the strains are supposed small, the tool meshes
remain constant from the start to the end of the simula-

tion, and are totally independent of the thermal meshes.
The radial displacements of the tool nodes that are at
the press boundary are usually free but can also be
stopped.

2.6.2. Solving algorithm

The discrete decomposition is also a triangular finite
element composed of six nodes and three integration
points and the solving algorithm used to find the tool
stress state is similar to that described for the work-
piece.

When the strain and the stress states are known for
each Gauss point of the workpiece, they are extrapo-
lated at the tool-workpiece interface nodes. As the tool
border nodes are different from those of workpiece, the
normal stress and the tangential stress are interpolated
linearly and used as the loading conditions for the
tool-solving algorithm.

3. Failure-prediction routine

3.1. Brittle fracture modelling

The statistical nature of the fracture of ceramics is
connected to the presence of flaws in the material.
Indeed, the failure of ceramic structure depends on the
size, on the orientation and on the position in the
structure of the critical flaw which initiates the fracture.
Because this flaws distribution is impossible to deter-
mine, some statistical functions are used to describe the
strength variability of a structure.

In his theory, Weibull associates a strength o, with
each elementary volume V.. The strength of the mate-
rial is characterised by the distribution function of o,
denoted F(o), which is defined as the number of all
elementary volumes having o, < g, divided by the total
volume. This function also gives the probability P of
randomly choosing an elementary volume having a
strength equal to or less than ¢, or also the probability
that this volume fails under the stress o:

P(o.<o)=F(o) 17

Any distribution function may be written in the
form:

F(o)=1—exp(— ¢(0)) (13)
where ¢(¢g) must be a positive, non-decreasing func-
tion, vanishing at a value ¢,, which is not necessarily
equal to zero.

The advantage of this equation appears when the
failure probability of the structure constituted by all the
elementary volumes, using the weakest link theory, is
considered. If it is supposed that the total volume V'
fails if any one of its parts fails, then the probability of
non failure, under an uniform uniaxial load o, is equal
to:



(I = P)"=exp(—n¢(a)) (19)

where n is the number of elementary volumes of the
structure (V' =nl").

The failure probability P, of the structure takes then
the simple form:

P,=1—exp(—n¢(a)) (20)

Weibull has chosen a power form for the function
¢ (o), which is the most simple function satisfying the
general conditions previously described:

$(0) = <"_”“>m 1)
g

0

where o,, 0, and m are parameters depending on the
material characteristics.

The distribution function obtained has no theoreti-
cal basis, but experience has shown that in many
cases it gives a good description of the strength frac-
ture reliability of brittle materials. The threshold
stress o, is usually taken as equal to zero. The two
other parameters can then be identified easily by com-
parison with results of fracture tests.

In the case of non uniform uniaxial load o, the
failure probability takes the integral form:

P=1 —exp<—;f <;>de> 22)

This expression can be generalised to multi-axial
stress states. Two strategies are possible: the first con-
sists in considering an equivalent stress that character-
ises the loading at each point; the second consists in
supposing the independence of action of each princi-
pal tensile stress [2].

Weibull, taking up the first approach, proposed to
calculate an equivalent stress by averaging the normal
tensile stress in all directions. This model leads to a
complex integral formulation, which may increase the
computation time. In order to obtain shorter compu-
tation times, only the maximal normal stress has been
considered in the present model, as has been done by
other investigators [4]. This variable is also the maxi-
mal principal stress at each point of the structure.

In the second approach, the fracture probability de-
pends on all of the tensile principal stresses. The inde-
pendence of action of the principal stresses means
that reliability of the structure is the product of the
reliability of the individual principal stresses acting
independently. The fracture probability is then given
by the equation:

1 ar\” a,\"” 73\"
ret-enl 5 (G G (2))er)
(23)

where ¢,, 6, and o5 are the positive principal stresses
or take the zero value for the compressive principal
stresses.

It is interesting to note that in the both of the
retained models, the compressive stresses are not
taken into account, it being supposed that fracture is
always the result of tensile stresses. The present au-
thors have made this choice because the compressive
fracture strength of ceramics is three or four times
higher than the tensile strength, so that it is very
unlikely that a structure would fail under compressive
stresses.

3.2. Numerical introduction of the model

Both models previously described have been intro-
duced into POLLUX. The architecture and basic
computational element of the failure prediction pro-
gram are described in Fig. 1. First, the thermome-
chanical analysis is achieved, leading to the
calculation of the stress tensor on each point of the
tools, which latter are supposed to be perfectly elastic.
Then, the failure probabilities of the tools are deter-
mined, using the Weibull parameters and criteria cho-
sen by the user.

The discrete decomposition and the Gauss quadra-
ture of the models gives, if V, is arbitrary taken equal
to unity:

P=1 —exp<—zz <‘7]> V(igaus)> (24)
iel igs \00

for the maximal principal stress criteria (criteria 1),
and:

reren{ -y (@) G+ ()
V(igaus)> (25)

for the principle of independent actions (criteria 2), in
which: ¢,, 0, o3 are the principal stresses in the
Gauss point igaus of element iel (¢, >0,>0d;) or
equal to zero for compressive principal stress, where
V(igaus) is the volume associated to the Gauss point
igaus.

The elementary failure probability DPr, or local
risk of rupture, is also calculated at each Gauss point,
and interpolated to the nodes (Fig. 1). This variable
corresponds to the fracture probability of an elemen-
tary volume of constant size equal to unity, support-
ing the stress state of the point considered. The values
can be stored in a data file for graphical display of
the structure critical regions. Another data file, con-
taining the failure probability of overall structure as a
function of time or tools displacement, is also gener-
ated. At the end of each increment, the program com-
pares the failure probability of the tools to the
maximal probability permitted, chosen by the user.
The computation is stopped when this limit or the
maximal displacement of the tools is achieved.
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Fig. 1. Computational elements of the failure-prediction routine.

4. Model testing

In order to assess the validity of the numerical model
developed, the software has been tested for the case of
a ceramic cylinder under compression loading, consid-
ering an elastic cylindrical workpiece of radius R and

! I -Wp=-Vp.t

z
Or=-T
— —
~
———R—»
h 4] Orz=T
/; r

___// o

Fig. 2. A cylindrical workpiece pressed between two planes with
uniform friction.

height /s, between two vertical planes (Fig. 2). A con-
stant velocity v, is prescribed on the upper plane, whilst
the lower plane has no displacement in the vertical
direction. The shear stress 7 (7 > 0) between the planes
and the workpiece is assumed to be constant, except for
near to the symmetry axis, where it increases in a linear
manner with the radius r.

The failure probability of the cylinder, computed by
the software as a function of the tool displacement, has
been compared to the results of an analytical calcula-
tion. For this validation, the following changes have
been provided to the failure prediction program: the
failure prediction calculation is run in the workpiece
instead of in the tools; the stress state in the cylinder
being essentially compressive, the absolute value of the
principal stress has been considered for the calculation
of the failure probability.

4.1. Analytical calculation

4.1.1. Basic hypothesis
It is supposed that the flow is axisymmetric, and that
the axial displacement is independent of r:
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g
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4.1.3. Solution

The resolution of the average equilibrium equations,
using the average of the values of the stresses and of the
radial displacement, gives the following expressions for
the average stress o..:

0<r<e
a..(r)
v o t(r? (1-2v)&* 4 Ew,
- . L 2o _yR|-
(l—v)h<g+8+ 6 R 3 ")> h
(30a)

(30b)
if (h/R)<« 1, it is assumed that:
o(rz)=ao(r) 3D

In addition, if 1« g,,, 644, 0,,, then a,, o, and o,,
can be considered as the principal stresses at each point
of the cylinder, and o,, as the maximal principal stress.
The failure probability of the cylinder can then be
expressed, using the criteria 1 as:

P=1-— exp< —27h JR <|a”(r)|>mr dr> (32)
0 0o

The value of ¢ is obtained by identification with the
stress field given by numerical computation.
The integral

(L)

having no analytical solution, has been evaluated nu-
merically, for different values of w,, using an adaptive
recursive Simpson rule [13].

4.2. Numerical results

Analytical and numerical values of the stress o, as a
function of radius r are compared on Fig. 3, for a
displacement of the upper plane w, equal to 0.03 mm.
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Fig. 4. Evolution of the failure probability of the cylinder as a function of the displacement of the upper tool.

The analytical calculation gives a slightly lower stress
(1%) than that of the numerical computation, but nev-
ertheless it gives a good approximation.

Fig. 4 represents the evolution of failure probability
calculated with the finite-element program (criteria 1),
and with the analytical expression for the stress o... The
two curves are relatively close, nevertheless, the analyti-
cal calculation give significantly lower values than the
numerical computation, which is in accordance with the
difference observed in the stress values and with the
high value of the m parameter (m = 12).

5. Application: design of ceramic forging dies

The software has been developed in order to be able
to predict the reliability of ceramic tools during a
forging operation, the resulting information enabling
the improvement of the design of the tools.

Two data types are accessible: (i) the overall failure
probability of the tool as a function of its displacement,
or of time, the reliability of the tool during one opera-
tion being deduced from the maximal value of this
probability; (ii) the elementary failure probability, or
local risk of rupture at a given time of the forging
process, which allows the identification of the tool
critical regions.

These two items of information are required for the
designing of the tools. The design technique using
failure prediction software consists of three steps: in the
first step, the user defines the tool initial geometry and
reliability, according to the type and the geometry of
the forged piece; in the second step, the software calcu-

lates the overall failure probability of the tools, using
the initial geometry, where if the corresponding reliabil-
ity is consistent with the defined reliability, then the
geometry is convenient. On the contrary, if the calcu-
lated reliability is lower than the chosen reliability, then
the third step consists in modifying the geometry of the
tools, according to the local risk of rupture. These data
enable the user to identify the critical zones of the tools
which must be modified. It is then possible, by local
change in the tool geometry, to increase the reliability
without modifying in a significant manner the final
shape of the forged piece.

This technique has been applied to a simple case of
isothermal forging. The workpiece material is of As-
troloy (nickel-base alloy) and the forging dies are of
refractory ceramic.

5.1. Forging modelling

The running of the POLLUX code with the failure
prediction program requires the creation of three files.
The first file contains the geometry of the initial work-
piece and of the tools. As described earlier, the first step
in the design method must be the definition of the tool
initial geometry, according to the shape of the final
piece. The second file contains the data of the mechan-
ical and thermal behaviour of the different materials,
the initial and boundary conditions (temperature, tools
displacement, etc.), and the friction conditions between
the workpiece and the tools. The third file contains the
fracture parameters of the tools material. The following
sections present the data contained in these different
files.



5.1.1. Geometry

For this example, a simple geometry has been chosen
for the final piece (Fig. 5). According to this shape, the
tools geometry has been defined (Fig. 6). The lower tool
is flat with an axisymmetric geometry, like the final piece,
whilst the engraving of the upper tool corresponds to the
shape of the piece to be obtained. The radius in the
concave fillet of the engraving was not indicated in the
geometry of the piece, and has been taken as 3 mm. The
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Fig. 5. Final geometry of the forged piece (dimensions: mm).
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Fig. 6. Geometry of the tools (dimensions: mm).

Fig. 7. Initial and final configuration of the finite-element simulation.

workpiece has a cylindrical initial geometry, with a height
of 50 mm and a diameter of 50 mm.

5.1.2. Material behaviour and initial and boundary
conditions

Astroloy material has superplastic behaviour at tem-
peratures above 1323 K, and at low strain rates. The
simulation of an isothermal forging operation at the
temperature of 1373 K, with a downwards speed of the
upper tool of 0. mm min ! (the lower tool remains
fixed), has been chosen. Heat transfer can be neglected,
the temperature of the tools and the workpiece being
assumed to be constant during the operation.

The mechanical behaviour of the tools is supposed to
be perfectly elastic during the forging operation. Young’s
modulus and the Poisson coefficient are respectively
equal to 262 GPa and 0.3 at the forging temperature.

The rheological behaviour of the workpiece is assumed
to be viscoplastic in the process range temperature. A
constitutive model has been proposed by Soucail for
Astroloy material [14]:

o=K(T).&" (33)

where ¢ is the Von Mises equivalent stress (MPa); & is
the equivalent strain rate (s ~'); K(7T') is a proportionality
constant, taken as equal to 119 at 1373 K; and # is the
strain-rate sensitivity factor, taken as equal to 0.19.
Friction between the tools and the workpiece is modelled
by the Coulomb law, with a coefficient x4 of 0.1.

5.1.3. Fracture parameters of material tools

The Weibull parameters describing the fracture char-
acteristics of the used ceramic have been determined
according to the results of four point bending tests, run
at 1373 K. The ¢, and m values are respectively equal
to 400 MPa and 12, and are assumed to be constant
during the whole of the forging process.
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Fig. 8. Evolution of the fracture probability of the upper tool as a function of its displacement, for two different engraving concave fillet radii.

These data have been deduced from quasi-uniaxial
stress-state tests, which makes it difficult to choose the
multi-axial stress-state criteria. Thus, it is assumed arbi-
trarily that the maximal principal stress criteria (criteria
1) is more suitable for the present ceramic material.

A tool reliability of 0.9999 has been chosen, which
means that the failure probability of the tools must be
always lower than 10 ~* during the process cycle.

5.2. Failure prediction results

To obtain a forging piece with a near net shape, the
final displacement of the upper tool has been fixed at 30
mm. The initial and final configurations of the simulation
computation are presented in Fig. 7.

Owing to its being flat, the lower tool is subjected to
essentially only compressive stresses, so that its failure
probability is very low compared to that of the upper
tool. In the latter, the engraving leads to the occurrence
of stress concentration during forging, which increases
the failure probability. Fracture-prediction software has
thus been used for the upper tool only.

The evolution of the overall fracture probability of the
upper tool is represented in Fig. 8 (r = 3) as a function
of the vertical displacement of the tool. This probability
increases swiftly, and overshoots the fixed limit before
the end of the forging operation. The stress state to which
the upper tool is subjected is too severe to preserve the
fixed reliability. The tool geometry must be then
modified to improve the reliability, according to indica-
tions given by the local risk of rupture distribution (Fig.
9).

The graphical analysis of local failure probability
allows the identification of regions sustaining the more
critical stress states. According to this distribution, the
maximal local risk is localised around the bottom radius
of the engraving. The stress concentration in this zone
is too high.

The stress field around a corner being related to the
value of its radius, the increasing of the bottom radius
of the engraving leads to a decrease of the stress
concentration factor, and correspondingly to a decrease
of failure probability of the piece.

A second tool geometry can then be defined, with a ra-
dius in the concave fillet engraving of 5 mm instead of
3 mm. The overall fracture probability corresponding to
this new geometry is represented as a function of tool dis-
placement in Fig. 8 (r = 5): the global risk does not exceed
10 —%, which is in agreement with the fixed reliability.

13.76656
12,0362
10,3167

8.5973

Fig. 9. Local risk of rupture (%) of the upper tool around the
engraving fillet radius.



6. Conclusions

A fracture-prediction software for brittle materials
has been introduced into the POLLUX finite-element
code, in order to be able to predict the risk of rupture
of ceramic tools during a forging operation. Compari-
son between the code results and the results of the
analytical calculation in a simple compression case has
led to the validation of the implementation of the
numerical model. The use of this software allows the
improvement of the design of ceramic forging tools.
The utilisation strategy is presented for a forging exam-
ple of a simple shape piece.

The fracture-prediction software requires, however,
the knowledge of experimental data about the fracture
behaviour of the ceramic material used. These data
enable the choice of the failure criteria that is more
convenient for the material, and the identification
model parameters. Two failure criteria are already
available. Future developments forecast the introduc-
tion of other criteria, including shear stresses, and the
differentiation between two types of defects (surface
defaults and volume defects, for instance). In addition,
fracture prediction tests are currently being performed
on computer-designed samples in order to further vali-
date the chosen numerical model.
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