
BEM computation of 3D Stokes flow including moving front

M.-Q. Thai1,5 & F. Schmidt2 & G. Dusserre2 & A. Cantarel3 & L. Silva4

Abstract Liquid composite molding (LCM) includes all
composite-manufacturing methods, where the liquid state res-
in is forced into the dry preformed reinforcement. In this
study, numerical simulation of the resin infusion is presented
based on a coupled approach involving Boundary Element
Method (BEM) and Level SetMethod. Themethod developed
can handle stationary and transient flows by solving the
Stokes equations. The numerical results on a square packed
set of fibers show excellent agreement with the analytical
model. The comparison between experimental and simulation
results of flow front patterns revealed a fair accordance.
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Introduction

Polymer matrix composites (PMC) reinforced by continuous
fibers are characterized by their intrinsic heterogeneity and
anisotropy. They require specific techniques of production
[1] to obtain simultaneously the material and the geometry.
This specificity allows designing a material suitable for the
intended use. A unidirectional or multidirectional fibrous re-
inforcement constitutes the skeleton of the composite material
[2], constituted mainly of glass, carbon or other fiber types.

The preform usually comprises several layers organized
into yarns, which are themselves composed of several thou-
sands of fibers. The reinforcement geometry can be described
at three different levels: the macroscopic scale (homogenized
solid), the mesoscopic scale (layup or textile pattern) and the
microscopic scale (local organization of a set of fibers [3]).

The use of liquid composite molding (LCM) is popular in
many industrial applications. The main objective of LCM is to
reach a full impregnation as the resin propagates between the
fibers bundles and inside the bundles. The impregnation driv-
ing forces result from pressure drop at macro-scale, but also
from capillary forces at micro-scale. The competition between
these driving forces in a dual-scale porous media results in
non-uniform flow velocities that can cause impregnation de-
fects such as micro-pores inside a tow, or macro-pores be-
tween the tows [4].

To control the impregnation and avoid or at least limit these
defects, the physical mechanisms involved must be accounted
for. The physical parameters must be properly measured. The
process parameters must be controlled (pressure, temperature,
actual anisotropic permeability field related to reinforcement
preforming depending on the shape of the part). A large work
is thus compulsory to optimize this manufacturing process.
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To support the development of composites manufacturing,
numerical simulation appears as an asset with regard to the
shortening of the development time. In addition, it can anticipate
the economic viability of the product, including manufacturing
costs as well as the prediction of the actual composite properties.
Driven by this need, numerical modeling addressing reinforce-
ment preforming, mold filling and resin cure [5], has become an
extensive field of investigation for the last three decades.

Modeling the resin flow through the reinforcement requires
considering the relevant level depending on the aim of the
model. Indeed, different modeling tools are involved at each
level: flow in porous media (mainly Darcy’s law) at macro-
scale [6], both flow in porous media (Darcy’s or Brinkman’s
law) and Stokes flow at meso-scale [7] and mainly Stokes
flow at micro-scale [8].

This paper focuses on the Stokes flow with two major issues.
On the one hand, the identification of the permeability tensor of a
porous media comprising several fibers organized randomly or
following a regular pattern (useful to feed meso-scale models).
On the other hand, the study of the transient resin flow front
through the fibers that may lead to micro-pores formation.

With regard to the high complexity of the fibrous architec-
tures, micro-scale flow modeling is usually carried out con-
sidering a Representative Elementary Volume (REV), large
enough to capture the average characteristics of the flow at a
higher level. Typical applications can be found in literature
regarding numerical permeability computation [7, 8].

Boundary Element Method (BEM) utilized in this paper is
an interesting alternative to Finite Element Method (FEM), for
its mesh reduction to the domain boundary. Some authors report
the use of this method in flow problems [9, 10]. Its main diffi-
culty is to calculate singular integral particularly in 3D cases. In
addition, due to global assembling of the system matrix obtain-
ed by the application of the BEM, problems of memory size are
more tedious to handle. BEM only requires discretization of the
surface rather than the volume. Another notable difference with
FEM is that the degree of interpolation is the same for both
unknowns (for example velocity and pressure).

This paper presented not only saturated flow cases but also
focuses on the mold filling step of LCM process by coupling
BEM and Level Set method. In this step, the resin is forced into
the mold to impregnate the fibrous reinforcement. Moreover
BEM is particularly well suited to be used in conjunction with
the Level Set Method to address free surface problems, as the
study of flow front propagation in a REV. Indeed, Level Set
Method [11, 12] is now considered as the most advanced nu-
merical technique in the domain ofmobile interfaces. It has been
applied to various problems in quite different fields such as fluid
mechanics, crystal growth in solid mechanics, edge detection in
imaging. In recent years, there are many studies related to the
moving interface in LCM processes using the Level Set method
[13–15]. The coupling between BEM and Level set are also
recently used for moving boundary problems [16, 17] .

This work is based on an extension of prior work of
Gantois et al. [18]. They investigate the use of boundary ele-
ment method (BEM) to simulate the flows occurring at micro-
scale in the reinforcement by solving Stokes equations with
boundary integral formulations for two-dimensional flow. In
our work, the numerical model of BEM is developed for the
three-dimensional flow. Note that, the Green's functions, or
fundamental solutions, are problematic to integrate as they
are based on a solution of the system equations subject to a
singularity load. Integrating such singular fields is not easy.
For 2D case, analytical integration can be used. For 3D case, it
is more difficult to design purely numerical schemes that adapt
to the singularity. The new in this work is developed a numer-
ical method to overcome that difficulty.

Our study deals with the development of a stationary and
transient 3D BEM solver using Matlab® software framework
capable of solving Stokes problem in saturated and unsaturat-
ed environments. The results reported here aim to assess the
validity of the solver by comparing numerical solutions to
analytical and experimental data. The capillary forces are not
accounted for in these results since this work is a first step
toward a more complete modeling. First the application of
BEM to solve Stokes problems is presented. Then the front
tracking method is detailed, based on coupling of BEM and
Level Set method [15, 19], allowing to simulate free surface
flows in unsaturated cases. The method is applied to estimate
transverse and axial permeability, on a periodic arrangement
of fibers. The numerical results are compared with analytical
results of Gebart’s model [20] and Berdiche vsky et al. [21]
and show that the BEM model in steady case for saturated
flow provides relevant results of permeability in transverse
and longitudinal direction. Finally, the unsteady free surface
Stokes flow model is compared to experimental data obtained
in such conditions that the capillary effects can be neglected.
A fair agreement allows validating the numerical model.

Governing equations

In the following sections, we focus on the study of the flow at
the microscopic scale, which is governed by Stokes equations.
The Stokes flow is a particular case of the Navier–Stokes flow,
where inertial forces are small compared with the viscosity
contribution. These equations are relevant to model the low
velocity-flow of a viscous fluid in small channels. The follow-
ing assumptions are used:

1) Laminar flow, which corresponds to creeping flows
where Reynolds numbers are low [22, 23].

2) Incompressible Newtonian fluid.
3) Motionless condition for the fibers. In this paper, the in-

fluence of reinforcement deformation [24] is not
accounted for.



4) Gravity force is neglected.

In the following, Ω is an isotropic medium filled by a ho-
mogeneous fluid phase in equilibrium on which the stokes
equations applies (Fig. 1), Γ is the set of boundaries of the
domain. The outward normal to the boundary is defined as n. r
is the Euclidean distance between the current point and the
collocation point. If the aforementioned assumptions are ver-
ified, the well-known Stokes equations govern the motion of
the fluid through the domain, Eq. (1).

μΔv ¼ ∇p
∇v ¼ 0

!
in Ω ð1Þ

Where v is the fluid velocity and p the pressure. Two types
of boundary conditions can be applied:

i. vi ¼ vi on Γvi (imposed velocity)
ii. ti ¼ ti on Γti (imposed stress vector)

where vi and ti are the prescribed i-component of velocity
and stress vector on the boundary.

The normal stress vector at the boundary is given by
ti = σijnj, with nj being the component j of outward normal at
boundary.

The stress tensor σ is described using a Newtonian behav-
ior law for the resin:

σ ¼ −pI þ 2μD

D ¼ 1
2

∇vþt∇vð Þ

(

ð2Þ

where D is the strain rate tensor, I the second-order identity
tensor, μ the dynamic viscosity of the fluid.

Numerical method

This section details the BEM used to solve the fluid flow
around bodies with arbitrary geometries [9, 10]. In this meth-
od, only a boundary mesh is used instead of a full domain

mesh. In fact, we developed here a BEM method used the
given boundary conditions to fit boundary values into the
integral equation, rather than values throughout the space de-
fined by a partial differential equation. Once this is done, in
the post-processing stage, the integral equation can then be
used again to calculate numerically the solution directly at
any desired point in the interior of the solution domain [9].
The method is composed of the following steps: discretization
of the integral equation, evaluation of the integrals, application
of the boundary conditions, generation of the final system of
equations, and finally, calculation of the velocity and stress. A
fundamental solution (so called Green function) is required in
order to eliminate the domain integral. This fundamental so-
lution changes with the nature of the problem [9].

The treatment of a moving flow front has been imple-
mented at micro-scale, and is based on coupling a Level
Set method together with the Marching Tetrahedra
meshing procedure [25]. Note that, in unsaturated case,
we need to re-mesh for simulating the flow even for the
FEM method [26, 27].

There are in the literature different types of elements [10]
defined by the degree of interpolation and continuity (constant
elements, linear continuous, discontinuous linear, quadratic,
etc.…). Constant elements are developed in this paper. So,
both fields, velocity and pressure, will be considered to be
constant on an element and equal to the value at the center
of the element. The centers of the elements (i.e. the collocation
points) are going to be used as the points where the integral
equations are applied. The boundary elements used in this
work are three-node triangles for 3D domains.

In BEM, fundamental solutions are the key points.
There are different fundamental solutions for two-
dimensional and three-dimensional problems. In this pa-
per, only a fundamental solution for isotropic materials is
presented (even fundamental solutions exits for the case
of three dimensional anisotropic with spatially case [9, 28,
29], but they are very difficult to use because of the com-
plexity of their mathematical formulation or the need to
find part of the solution numerically). The boundary inte-
gral formulation for Stokes’ flow is derived from
elastostatic formulation (refer to [30] for further details).

In the boundary element method, we perform a second
integration by parts to transform the integral area in equa-
tion. The application of the divergence theorem allows
achieving the integral equation. The 3D BEM for Stokes
is very similar to the 2D, ruled by the set known as
Somigliana’s equations:

Z

Ω

∂σ*
k j

∂x j
vkdΩ ¼

Z

Γ
t*kvkdΓ−

Z

Γ
tkv*kdΓ ð3Þ

Where vk
* is the virtual velocity and tk

* is the virtual stress.
Ω is the computational domain (resin), Γ is the boundary.
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Fig. 1 Geometric definition in BEM



It is noteworthy that both boundary integral equations and
fundamental solutions remain valid, and involve now ve-
locity and stress vectors. A fundamental solution σkj

* is
required in order to eliminate the domain integral of the
problem:

v*lk x; sð Þ ¼ 1
8πμr

δlk þ rlrkð Þ

t*lk x; sð Þ ¼ −
3

4πr4
r!: n!

8
><

>:
ð4Þ

r is the Euclidean distance between the current point and
the collocation point (Fig. 1), n! is the outward normal.
δlk is the Kronecker symbol.

In order to solve the discretized set of Eq. (3), we follow the
standard procedure to construct the global set of equations.
Boundary conditions are introduced, assigning the prescribed
nodal values. Passing all unknowns on the left-hand side by
permuting columns, we obtain a linear system ready to be
solved.

As previously, it is considered here that the surface Γ
of domain Ω is discretized into N boundary elements and
putting the point s at node i of coordinates xi yields to the
discrete form of Somigliana’s equation (Eq (3)) [9, 31]
given as:

δlkvk xi
" #

þ
XN

j¼1

Z

Γ j

t*lk x; xi
" #

dΓ j xð Þ

2

64

3

75vk x j
" #

¼
XN

j¼1

Z

Γ j

v*lk x; xi
" #

dΓ j xð Þ

2

64

3

75tk x j
" #

ð5Þ

vlk
* and tlk

* represent the velocity and stress in the k direc-
tion due to a unit load in the l direction acting at i.which
can be summarized using block partitioned matrices as
follows

H½ & v½ & ¼ G½ & t½ & ð6Þ

where [v] (respectively [t]) is a 3x1 matrices storing the
velocity vector (respectively, the stress vector) at the node
and [H], [G] are 3x3 full submatrices calculated by :

Hijlk ¼
1
2
δi jδlk þ

Z

Γ j

t*lk x; xi
" #

dΓ j xð Þ

Gijlk ¼
Z

Γ j

v*lk x; xi
" #

dΓ j xð Þ

8
>>>>><

>>>>>:

ð7Þ

The only real difference between the 3D and 2D cases is
how to numerically evaluate the term in each integrand of

Eq. (7). The integral expressions of submatrices G and H
(Eq. (7)) are evaluated using a numerical method.
Particularly for the case with the singularity where the collo-
cation point belongs to the element, i.e. i = j, the expression of
H is given as follows

Hiilk ¼
1
2
δlk ð8Þ

However, the integrals of Eq. (7) for the G matrix in 3D
will not be available via an analytical formula like in the 2D
case. Therefore, these integrals have to be computed using a
large number of point Gauss quadrature formulas or another
numerical method, like Telles, described in the following
subsection.

Numerical integrations

One of the differences between BEM and FEM method is
that the integrals in BEM are more difficult to evaluate
than in FEM and can sometimes contain integrals of sin-
gular functions. Due to the particular shape of the funda-
mental solution, the classical Gauss scheme for numerical
integration proves to be much more difficult, especially,
when the distance r (Fig. 1) between the collocations
point i and integration point j is low. A singularity arises
when i belongs to the element, causing a problem during
the assembly of the terms of the block diagonal matrix G.
In the case of the matrix H, this problem can be overcome
by considerations of rigid body motion, and calculated
directly (see previous Eq. (8)).

The accurate numerical integration of integrals is very im-
portant for a reliable implementation in BEM. Usually, the
regular integrals arising from an implementation are evaluated
using standard Gaussian quadrature. However, the singular
integrals that arise are often evaluated through another way,
sometimes using a different integration method with different
nodes and weights. This paper presents a simple transforma-
tion to improve the accuracy of evaluating weakly singular
integrals.

Indeed, one can notice that the fundamental solution for
three dimensions is the function with singularity at 1/r and
1/r2 :

u*lk ¼ Θ
1
r

$ %
and t*lk ¼ Θ

1
r2

$ %
ð9Þ

It is well known that conventional Gaussian quadrature
becomes inefficient or even inaccurate when applied to
evaluate these integrals directly. Then, to improve the re-
sults, we can use a large number of Gaussian points [32],
clearly an inconvenient, since calculation times become
much longer. The integral always appears in the assembly



step (diagonal) of G matrix. Hence, it is particularly im-
portant to implement an appropriate strategy of computa-
tion. The solution depends strongly on the level of accu-
racy made to evaluate these terms. There are in the liter-
ature different types of approaches to solve this problem:
analytical integration [33], the integration subdivision el-
ement, or the technical processing area. Following this
idea, the contribution of Telles [34] is one of the most
popular. The aim of this technique is to consolidate the
integration points around the singularities in order to
weaken or cancel out these singularities by using the
Jacobian of the transformation. Then, it applies the ordi-
nary Gauss rule for integral calculation. Both methods are
compared in this section: using a large number of Gauss
points and the contribution of Telles, to compare their
efficiency.

The comparison between both methods is performed based
on the integration given in Eq. (10), which presents a singu-
larity at ε =0 or η =0.

f ε; ηð Þ ¼
Z1

0

Z1

0

log
1
ε

$ %
log

1
η

$ %
dεdη ð10Þ

The two-dimensional Gauss quadrature formula provides
Eq. (11), whereas Telles formula is obtained by using the
Jacobian of the transformation before applying the ordinary
Gauss rule, Eq. (12).

I ¼
Z1

0

Z1

0

f ε; ηð Þdεdη≅
Xn

j¼1

Xn

i¼1

f εi; η j

& '
wi;wj ð11Þ

I ¼
Z1

0

Z1

0

f ε; ηð Þdεdη ¼
Z1

0

Z1

0

f ε η
& '

; η η
& '& '

dεdη≅
Xn

j¼1

Xn

i¼1

f εi η
& '

; η j η
& '& '

wi;wj JTi J
T
j ð12Þ

Where η is the coordinate of the singular point, JT is
Jacobian of transformation.

Table 1 presents the comparison between both methods of
integral evaluation of Eq (10) and its analytical solution. This
comparison shows that Telles method provides better results than
Gauss method even with a reduced number of integration points.

In the following, Telles formula will be used to evaluate the
singular integrals in the stationary saturated case. However, in
the transient case with free surface, to easily couple Level Set
and Marching Tetrahedral, Gauss Quadratic method is used
with a large number of Gaussian points despite the consuming
time calculation.

Level set and marching tetrahedra

The moving flow front is computed using a Level Set approach.
The formulation allows taking into account flows with complex

topologies, including merging of several flow fronts. By using
the signed distance function, the method allows a continuous
capture of moving boundaries, which allows calculating precise-
ly the shape of the flow front. Level set theory indicates that the
front motion is governed by the boundary velocity field. As a
result the use of BEM together with level set techniques is
straightforward to compute the filling pattern. At first, the bound-
ary or flow front, Γ can move and filling with fluid over time.
The benefit of combining BEM and Level Set is the reduction of
the domain calculation to the boundary calculation, which mo-
tion is fully determined by its normal velocity.

Let us consider an interface Γ(t), with a shape that changes
with time and is defined in Rn. It is assumed that the interface
motion is limited in a domainΩp, defined by the whole cavity.
The interface, defined by the Level Set value of zero, depends
on space and time according to Eq. (13), where M is a fixed
point, n is the problem dimension (n = 3 in this case), and∅ is
the Level Set function.

Γ tð Þ ¼ M∈Rn; ∅ M ; tð Þ ¼ 0f g ð13Þ

Conventionally, the different subdomains are identified
thanks to Eq. (14), where ∅ (M, t) = d(M, Γ(t)) is the
Euclidean distance from the point M to the boundary Γ.

∅ M ; tð Þ < 0 if M∈ Ω tð Þ
∅ M ; tð Þ ¼ 0 if M∈ Γ tð Þ
∅ M ; tð Þ > 0 if M∉ Ω tð Þ

8
<

: ð14Þ

Table 1 Comparison between Telles method and Gauss quadrature
formula

Number
of Gaussian
points

Analytical Gauss Error Telles Error

102 1 0.9886 1.14 % 0.9992 0.08 %

62 1 0.9702 2.98 % 0.9979 0.21 %

42 1 0.9381 6.19 % 0.9858 1.42 %



The coupling of BEM and Level Set is performed using
Eq. (15), where vn is the Euclidian norm of the extended normal
velocity. The initial value of the Level Set function,∅ 0, is eval-
uated through a direct calculation from the background nodes.

∂∅
∂t

þ vn ∇∅j j ¼ 0

∅ M ; t0ð Þ ¼ ∅0

(

ð15Þ

At each time step, the Level Set function is determined
using a first order discretization, Eq. (16), where the time step
Δt is calculated using the Courant-Friedrichs-Levy formula,
Eq. (17).

∅ M ; t þΔtð Þ ¼ ∅ M ; tð Þ−vn M ; tð Þ ∇∅ M ; tð Þj jΔt ð16Þ

Δt ¼ c
δ

vn;max
ð17Þ

That condition is necessary for convergence while solving
the partial differential equations.We use the stability condition
Courant-Friedrichs-Lewy, who restricts movement of the
boundary at the background grid on a time increment

If the Level Set field is known, then we can compute
the position and shape of the moving boundary through its
zero iso-value. After calculation of the Level Set function,
the boundary mesh is updated at each time step using the
background grid through a Marching Tetrahedra algorithm
[25]. The method of Marching Tetrahedra is a direct ex-
tension of Marching Triangles [35]. In this algorithm,
each tetrahedron is investigated to determine how the
front intersects the grid. Sixteen intersection cases can
be encountered, but they reduce to only four topologies
using symmetry and nodal permutations. It is noteworthy
that this method generally generates a large number of
elements in the boundary mesh. However, it is easy to
reduce significantly unnecessary elements using a pertur-
bation procedure acting on the Level Set data [36].

The filling of the domain is divided into a finite number of
quasi-static states. After the BEM calculation, pressure and nor-
mal velocity are determined at the boundaries. Then, the normal
velocity is used to update Level Set field using Eq (16) to
update the boundary mesh. In order to ensure the condition of
non-penetration, at each time step, the current Level set value is
modified by intersecting mold with resin front using Eq. (18):

∅ ¼ max ∅;∅mð Þ ð18Þ
where ∅ m is the signed-distance function to the mold walls.

Comparison with analytical and experimental results

The purpose of this section is to assess the ability of the im-
plemented methods to simulate three-dimensional flows
decoupled from cure kinetics, thermal analysis and

reinforcement deformations. Firstly, the micro scale steady
model is tested by computing the transverse and longitudinal
permeability of an idealized periodic pattern of fibers orga-
nized into square packing. Finally, some experimental results
are compared with numerical solutions of an unsteady free
surface flow where capillary forces can be neglected.

Comparison of 3D steady flow simulation with analytical
results

The main characteristic of a preform, necessary to simulate
resin flow at macro- or meso-scales is its permeability tensor.
In most cases, its value can be determined using experimental
devices [37]. However, permeability depends strongly on mi-
crostructure and to a lesser extent on other parameters such as
vacuum pressure, and the random distribution of fibers leads
to an important dispersion of the results together with exper-
imental difficulties ([38, 39]). Therefore, many works have
been devoted to the development of analytical formulae to
compute permeability in particular geometries [20, 40]. In this
section, the BEM simulations are compared with analytical
reference solutions of permeability values.

This approach enlarges the results of a preliminary work
[30], that compared the transverse permeability computed
using 2D-BEM with the well-known Gebart analytical solu-
tion [20]. In the present work, 3D BEM computations in a
square arrangement of straight fibers provide both transverse
and longitudinal permeability that will be compared to analyt-
ical results. The first analytical solution is provided by Gebart
formula [20] that express the transverse and longitudinal per-
meability in a square fibers packing as a function of fiber
volume fraction. In this model, the analytical treatment of
creeping flow perpendicular to the axis of the fibers is predi-
cated. The assumptions used are that permeability is con-
trolled by the narrow gaps formed between the fibers, and that
the width of these gaps varies only slowly.

In Gebart’s model, Stokes equations are analytically solved,
assuming thin flow channel, rigid, fixed and impermeable fibers
together with a sticking contact. The transverse permeability Kt

is given by Eq. (19), where R denotes the fiber radius and Vf the
fiber volume fraction. π/4 value corresponds to the maximal
fiber volume fraction with contacting square packed fibers.

Kt ¼
16

9π
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffi
π

4V f

r
−1

$ %5=2

R2 ð19Þ

According to similar assumptions, Gebart also proposes the
longitudinal permeability expression, Eq. (20), where Kl is the
axial permeability.

Kl ¼
8
57

1−V f
" #3

V 2
f

R2 ð20Þ



Equation (20) usually provides less acceptable results than
Eq. (19) because the actual longitudinal flow fails to match the
assumptions made. The solution proposed by Berdichevsky
[21], Eq. (21), resulting from analytical developments fitted
on finite element computations, will be considered as refer-
ence solution for the longitudinal case.

Kt ¼ A
1−

ffiffiffiffiffi
V f

Vu

q& '5=2

ffiffiffiffiffi
V f

Vu

q& 'n R2

Kl ¼
exp Bþ C:V f

" #

Vm
f

R2

8
>>>>>><

>>>>>>:

ð21Þ

Where A = 0.244 + 2(0.907 − Vu)1.229; B = 5.43 − 18.5π/4 +
10.7(Vu)

2; C = − 4.27 + 6.16Vu − 7.1(Vu)
2; m = − 1.74 +

7.46Vu − 3.72(Vu)
2; n = 2.051 + 0.381(Vu)

4.472.
Similarly as Gebart equation, this model assumes that the

permeability of a fiber assembly is influenced by the fiber
volume fraction Vf. It also is influenced by the packing pattern
characterized by the ultimate volume fraction Vu, equal to π/4
in the square packing case.

Another study of Bruschke and Advani [41] found that one
could use lubrication theory and the cell model concept to
describe permeability across an array of fibers as a function
of fiber volume fraction

K ¼
r2 1−L2
" #

3L3
3Ltan−1

ffiffiffiffiffiffiffi
1þL
1−L

q

ffiffiffiffiffiffiffiffiffiffi
1−L2

p þ L2

2
þ 1

0

@

1

A

−1

ð22Þ

Where L2 = 4Vf/π and r is fiber radius. Note that no empir-
ical parameters were needed.

In order to make comparisons with the aforementioned
analytical models, a BEM solution was computed for the same
square-packing configuration for a flow either perpendicular
or parallel to the fiber axis. The geometry and the prescribed
boundary conditions are sketched in Fig. 2: a no-slip condition
at the surface of the fiber for both longitudinal flow (Fig. 2b)
and transverse flow (Fig. 2a). Sliding conditions were im-
posed to account for the symmetry planes. A pressure drop
was imposed by setting a uniform pressure at both inlet and
outlet.

The permeability value is computed from the flow exiting
the REV (Representative Elementary Volume) by integrating
the normal velocity field and using Darcy’s law, Eq. (22):

K ¼
μ 1−V f
" #

pin−pout

Z

Γout

v:n dΓ ð23Þ

where Γout is the REVoutlet boundary, μ is the dynamic viscosity
of the fluid, v is the velocity of the fluid, pin and pout are pressure at
inlet and outlet respectively. Vf is the fiber volume fraction.

The permeability value is also calculated by Finite Element
Method. By calculating the average velocity from FEM sim-
ulation in Comsol 4.2 Software, knowing the pressing drop
Δp = pin − pout over the length of the unit cell, and using
Eq. (23) the permeability values are obtained.

All models were compared from data computed with fiber
volume fraction ranging between 0.1 and 0.7. The radius of the
fiber was set to 10 μm, corresponding to an average value for a
glass fiber. The increase in the volume fraction is obtained by
decreasing the inter-fiber space. A boundarymesh is only required
with BEMmethod. The surface normal velocity is computed first
and then the permeability value is calculated using Eq. (23).

Equation (23), which involves only a boundary field veloc-
ity, shows that the calculation can be carried out using a fully
surface approach. BEM allows accessing directly to the bound-
ary velocity without calculating any volume variable inside the
3D domain. It is clear that this approach is an alternative to the
powerful finite element method that requires more advanced
meshing tools. Thus, one of the seven cases of calculation
was complete in less than 10 min on a PC with a CPU
2.26GHz/8GB Ram with about 3000 boundary elements.

A plot of the transverse permeability versus fiber volume
fraction is presented in Fig. 3. The comparison of the analyt-
ical results and numerical simulations shows that all models
provide very similar permeability values, and perfectly agree
for fiber volume fraction higher than 0.4. Below this value,
BEM solution is between Gebart, Bruschke and Berdichevsky
results and FEM simulation (Comsol 4.2 software) but the
discrepancy remains very low.

The value of longitudinal permeability obtained using
BEM and analytical formulae are in the same order of magni-
tude. However, the results reported in Fig. 4 show that all

Fig. 2 Boundary conditions for
transverse (a) and longitudinal
flow (b)



models do not provide the same trend. Indeed Gebart’s model
overestimates the permeability value for low fiber volume
fraction and underestimates it for high fiber volume fraction.
However both Berdichevsky formula and BEM simulations
and also FEM simulation properly match together over the
entire range of fiber volume fraction. These results confirm
that the 3D BEM model provides relevant results for 3D
steady flow under Stokes conditions.

Comparison of 3D unsteady free surface flow simulation
with experimental results

Experimental setup

This section is devoted to the validation of a 3D free surface
flow simulation in the unsteady case by comparison to

experiments. The flow experiment was conducted in a cavity
whose dimensions (477mmx117mmx2mm) are sufficiently
large to neglect the capillary forces, at low velocity to match
the Stokes flow conditions. The objective of this test is to
capture experimental flow front patterns at several times to
compare with the numerical results. In order to provide flow
front patterns similar to those encountered in the intended
application, i.e. the flow of resin around a set of fibers, some
26 mm-diameter circular rubber obstacles were located sym-
metrically in the cavity (Fig. 5), leading to front merging and
separation. In this experiment, canola oil was used as a model
fluid for its appropriate properties (perfect incompressibility
and Newtonian behavior [22]). The test was performed at
room temperature in order to match isothermal conditions.
The obstacles are motionless during the test and considered
as rigid. Note that the process is monitored optically. The
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images are captured at a rate of 4 frames per second thanks to a
CDD camera placed above the setup. The inlet and outlet
pressures were measured with strain gauges based miniature
pressure transducers. The experimental data including the dy-
namic viscosity and specific mass of the fluid are given in
Table 2.

The pressure drop between inlet and outlet is not constant
with time (Fig. 6). A nominal relative air pressure of 25 kPa
was applied on the fluid tank inside a chamber thanks to a
pressure reducer. At the beginning of the test, the inlet pres-
sure increased exponentially from atmospheric pressure.
When the pressure drop reached 25 kPa at inlet, the pressure
reducer went off and the inlet pressure decreased slowly to
tend toward a pressure drop of 20 kPa. Figure 6 shows the
pressure drop measured during the experiment. These actual
values of pressure drop were taken into account in the simu-
lation as boundary conditions.

The assumptions of the BEMmodel include creeping flow
hypothesis (Stokes flow). Low Reynolds number Re will in-
dicate if the inertial effect can be neglected compared to vis-
cous contribution. It is defined by Eq. (23), where v is average
velocity of the fluid and D is the hydraulic diameter.

Re ¼ ρvD
μ

ð24Þ

The experimental results indicate that the time for complete
filling is about t = 2.25 s, so the average velocity of the flow is
about v = 0.1 m.s−1. The hydraulic diameter is defined by
D = 4A/P (A is the cross-sectional area and P is the wetted
perimeter). Considering a rectangular cross-section with a
mold thickness e very small compared to the width L, e ≪ L,
thenD = 2e and finally computing Reynolds number gives Re
≃ 4.9. This value of Reynolds number is very low compared to
the critical value 1400 which is the minimum critical

Reynolds number for laminar-turbulent transition [42]. It can
thus be considered that the assumption of laminar flow is
acceptable in this experiment, as well as the assumptions of
quasi-steady flow, fluid incompressibility and Newtonian
behavior.

In our work, we assume that the effect of gravity is
neglected based on the study of the Froude number [43],
which represents the relative importance of inertia forces to
gravity forces, Eq. (25).Where g is acceleration due to gravity,
Lc is characteristic length (in our case Lc = e).

Fr ¼ v2

gLc
ð25Þ

Equation (25) allows computing a numerical value of
Froude number of approximately 0.5. This value shows that
both effects of inertia forces and gravity forces have the same
order of magnitude. This is the reason why the gravity force is
neglected.

Similarly, the relative effect of viscous forces versus sur-
face tension is represented by the modified capillary number,
Eq. (26), where the surface tension of canola oil is
γ = 32.10− 3Nm− 1 [44], the viscosity of canola oil is given in
Table 2, and θ is the contact angle between the fluid (canola
oil) and solid (steel). This angle depends on the surface rough-
ness and its value is around 83° [45]:

Ca ¼ vμ
γcos θð Þ ð26Þ

We can finally find out the value of the modified capillary
number, Ca ≈ 2. This means that the capillary effect again is
less important than viscous effect.

The assumptions considered to develop the present model
of resin flow at microscopic scale are verified, as proved by

Fig. 5 Experimental setup

Table 2 Experimental parameters

μ (Pa.s) ρ (kg.m−3) rinlet (m) robstacle (m)
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Fig. 6 Pressure drop change measured during the test. The dots
correspond to times were images were captured



the calculation of Reynolds and Froude numbers. These di-
mensionless numbers are very important because their calcu-
lation already provides very important information about the
flow before solving the Stokes equations.

These dimensionless numbers at both scales can be com-
pared in order to verify the validity of these hypotheses. Let us
first consider the Reynolds number (Eq. 23).

Because the resin density ρ, and the viscosity μ are as-
sumed constant, only the study of the variation of the velocity
v and the hydraulic diameter D is needed.

At the test-scale, the velocity of the resin has the order of
magnitude 0.1 m/s and the hydraulic diameter: 4 mm, while at
the microscale, the velocity of the resin has the order of mag-
nitude 10−1 - 10−2 m/s (see [30, 46]), and the hydraulic diam-
eter : 10−6 m.

So from Eq. (23), we see that the Reynold number at mi-
croscale is still smaller than that at test-scale. Then, inertia
terms can be neglected. So, the assumption of laminar flow
is always valid at microscale.

Similarly, the ratio of the order of magnitude between the
Froude number at test-scale FrI and at microscale FrII is ob-
tained through equation below:

FrI
FrII

¼ v2I
v2II

LcII

LcI
¼ 10−3−10−5 ð27Þ

It turns out that the Froude number at test-scale is smaller
than that at microscale. This means that the gravity effect is
less important than the inertia effect. Therefore, the gravita-
tional force may be neglected.

In conclusion of this section, from dimensional analysis,
we find that the assumptions used in this study are also valid
for the flow at the microscale, except the effect of capillarity
since the experiment was design in such a way that this phe-
nomenon can be neglected.

Simulation of the experiment

Numerical computations were performed to simulate the free
surface flow in the first half of the cavity where the obstacles
were located. Two kinds of mesh are needed to simulate the
flow. The first one is a background grid. It is generated by a

standard tetrahedral element mesh. The other mesh is a com-
putational boundary mesh, which bounds the fluid phase at
each step time. The 3D grid mesh (Fig. 7) is established with
4589 nodes and 17264 tetrahedral elements, including 6352
boundary triangle elements and 3162 boundary nodes. The
mesh was parameterized with 4 elements through the thick-
ness (see Zoom (fig. 7.a in Fig. 7).

The Reynolds number calculation allows assuming that the
flow can be modeled using Stokes equations. Moreover, the
flow is described as a succession of quasi steady states. At
each time step, governing equations are solved using BEM.
The flow front is then updated by coupling BEM with Level
Set method. A Marching Tetrahedra algorithm is applied to
generate a boundary mesh at each time step. The process is
repeated until the mold is completely filled. The following
boundary conditions were prescribed to simulate the flow ex-
periment. The actual pressure drop (Fig. 6) was imposed uni-
formly on a cylindrical surface in front of the mold inlet as-
suming that the cavity is thin enough to neglect the pressure
drop through the mold thickness. No-slip conditions were im-
posed at all solid boundaries, where the fluid is in contact
either with the mold or with the rubber obstacles.

The simulation was carried out using a PC (2.26GHz, 8GB
of RAM) with a CPU time of 12 h to perform the complete
filling of the mold.

In the present work, a simple version of BEM was devel-
oped which still needs to be optimized and the comparison
with the computation time of commercial FEM in this case
would not make sense.

On other aspect, BEM is also well suited to combine with
Level Set Methods, as they use the signed-distance to the
interface to follow the front motion. By using the signed-
distance function, the method allows a continuous capture of
the moving boundary, which allows calculating accurately the
form of the flow front. Hence, in several cases, coupling BEM
and Level Set methods can achieve significantly better preci-
sion than FEM.

Discussion

The numerical flow front patterns are compared in this sub-
section to those captured at several times during the

Fig. 7 Background 3D grid
mesh: injection inlet (a) and
reinforcements (b)



experiment. Each image (Fig. 8a) was analyzed with commer-
cial Aphelion software to extract the boundary pixels
(Fig. 8b). The numerical simulation and the experimental flow
front pattern were then superimposed (Fig. 8c) to achieve
comparisons.

The experimental and numerical flow fronts are com-
pared at different time steps on Fig. 9. In most of the
cases, a good agreement can be observed between both
simulated and experimental flow front patterns. At the

beginning, the fluid enters quickly into the mold
(Fig. 9a and b) and then flows through the obstacles
(Fig. 9c–e). Even when the flow front meets obstacles,
the simulation provides flow front patterns very similar
to those measured thanks to image analysis. This shows
the ability of BEM model to describe properly the flow
front patterns occurring at lower scales during the filling
of yarns.

It is important to notice that the main feature of the
BEM is the use of a boundary mesh instead of a full
domain mesh. With boundary elements, there is no need
to refine the domain elements, but simply discretize only
the boundary mesh. In our work, the boundary mesh is
updated at each time step using the background grid
through a Marching Tetrahedra algorithm. Note that the
boundary mesh for the next increment is built by the in-
tersection of the volume mesh and the position of the
Level Set function computed at the current increment. It
means that the flow front is immersed in the fixed volume
mesh. This background grid is only used to define the free
surface mesh. The results in Figs. 7, 8 and 9 present the
advancing front of the resin at each time step and to be
meshed by only boundary mesh, not full domain mesh.
Therefore, this method is less time consuming in term of
mesh generation. In order to calculate the variables (pres-
sure, velocity…) at any desired node of the 3D domain,
there is no need to solve again the equations; but just to
post-process the surface solution previously computed.

Figure 10 details the flow front pattern computed be-
tween two obstacles by highlighting the tridimensional
description of the flow. The computed flow front is quite
disturbed due to a coarse mesh and related to the thin
cavity. Indeed, a parabolic velocity profile may arise in
the thickness of the flow and would require a finer mesh
to accurately reproduce the flow front shape. However,
this does not globally influences the macroscopic flow
front pattern response.

To further investigate the validity of the assumptions in
this experiment, the local values of the Reynolds number
have been computed thanks to simulated results.
Figure 11 presents the Reynolds number value at the mov-
ing fluid boundary at the last iteration of simulation,
t = 1.75 s (Fig. 9e). These values are assessed using
Eq. (24). In this case, v is the velocity at the center of
each element and D is the hydraulic diameter. Note that

(a) Original image (b) Extraction of boundary 
pixels

(c) Superposition results

Fig. 8 Image processing
(Aphelion and Matlab)

(a) Time : 0.25s

(b) Time : 0. 5s

(c) Time : 1.25s

(d) Time : 1.5s

(e) Time : 1.75s

Fig. 9 Comparison between experimental and numerical flow front
patterns



the hydraulic diameter is based on the actual cross section
area. The boundary elements used are three-node trian-
gles. Therefore, the hydraulic is approximately equal the
diameter of the circumscribed circle of each triangular
element.

This diameter depends thus on the element size, ranging in
the present study between 1.5 mm and 5.5 mm. The Reynolds
number ranges between 0 (at contact with mold and fibers due
to the sticking contact) and 8. The average value is close to the
global Reynolds number assessed above. These values are
very low compared to the critical value of the transition
laminar-turbulence (about 1400 [47]), showing that the local
effects are small enough and that Stokes flow assumption is
still relevant.

Conclusion and prospects

This paper develops a numerical model to simulate the
flow occurring at the fiber-scale in LCM processes by
using the BEM method. The advantage of this model is
that only the surface of domain is meshed, allowing an
easier meshing step. The numerical model developed in
this work is dedicated to solve quasi-static 3D Stokes
problems and to account for free surfaces (flow fronts).

The scope of this paper is the validation of numerical
simulations by comparison to analytical and experimental
data. The case mentioned is devoted to the identification
of the transverse and longitudinal permeability. The cal-
culations without moving free surface have been per-
formed on a square packing of fibers and reveal an excel-
lent agreement with the relevant analytical models.

The relevance of the quasi-static free surface solver to sim-
ulate Stokes flowwas analyzed by comparison to the results of
a macro-scale fluid flow experiment. This test involves some
circular obstacles to reproduce the flow front merging and
separation occurring at the micro-scale during the impregna-
tion of a tow. The size of the cavity allowed neglecting the
capillary effects. This comparison shows that the numerical
simulation is able to provide a fair description of the flow front
pattern.

Further improvements of the model can be performed
to account for the deformation of the fibrous reinforce-
ment, and more realistic boundary conditions between
the fluid and the fiber surface (wettability, capillary ef-
fects, surface tension). It would provide the possibility
to study the origin and the development of voids during
the process, which is an important indicator of the quality
of processing composites parts.
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