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a b s t r a c ta r t i c l e i n f o

Continuous powder mixing is gaining interest in the industrial community concerned with more and more

functional powder products. The understanding of powder flow and mixing/segregation of particles as well as

their translation into models that can be used in process monitoring and control is a major issue. In the present

work, we describe the development of different mesoscopic Markov chain models that are based on intercon-

nected compartments or cells delimited in themixing chamber. The general structure of the chain allows the der-

ivation of either homogeneous or non-homogeneous markovian models, for which transition probabilities are

state-dependent.

The models can be adapted to simulate variations of outflow rate, outlet mixture composition, hold-up weights

and the distribution of these at the level of the compartments, during processing, including stationary and tran-

sitory phases. This is applied to a Gericke 500 GCM® continuousmixer for either pure powders or theirmixtures,

in the latter case through the consideration of a Markov chain for each component. The models are fed by inde-

pendent experiments that allow for the determination of the probabilities and the rules governing their change

with the processing step, in particular during the transitory regimes. Agreement is found between model calcu-

lation and experimental data for a wide range of configurations. The models can catch the variations of hold-up

weights and internal or outlet flow rates at any rotational stirrer's speed duringmixer start and steady state. They

can reproduce the variations of the outflow rate, and therefore mixture composition, when dealing with a

mixture of two components. This is also presented for two nominal compositions.

Conclusions are drawn in terms of process monitoring and control. It gives insights for process intensification, in

particular for mixer design and the feeding configuration.
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1. Introduction

Powder mixtures, or materials that once have been under the form

of a powdermixture, are omnipresent in our everyday life. Metal alloys,

cooking species, pharmaceutical pills or special concrete are current

examples, and some can be made of up to twenty powder components

depending onwhat the formulation stage has designed in terms of func-

tionalities. Complexity of nowadays mixtures certainly lays in various

factors, but can be wrapped by the idea that particles to mix are more

and more of radically different rheological character, a statement that

has been possible tomake by the generalization of the FT-4 powder rhe-

ometer in both academia and industry over the past years. But while

this growing demand for more technological mixtures, targeting spe-

cific properties at the consumer's scale, has been experienced during

the last two decades, it has not been accompanied by a major

improvement from the part of the commercial mixing technologies

themselves. Despite of the slow emergence of some more “chaotic”

blenders, such as the Nautamixer® and the Turbula® mixer, the situa-

tion depicted by Bridgwater at the beginning of the present decade

[11] still holds true: mixing equipment in the industry are still the

basic tumbler, ribbon or plough blenders, most of the time driven in

the batch mode.

Continuous mixers can be seen as a viable alternative to face the

challenges of today's functional mixtures:

- The increase of ingredients, which is cumbersome to handle for

batchmixers to what concerns the order of introduction of the pow-

ders, is just replaced by an increase of the number of Loss-In-Weight

(LIW) feeders.

- Before entering the final continuous mixing step, ingredients can be

premixed according to their rheological compatibilities or targeted

functionalities. The premix can be performed either in continuous

or batch, depending on the quantities involved.
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- On-line analysis of the quality attributes of the products or interme-

diary has developed strongly over the past years and can be adapted

to measure each of these functionalities in real-time.

- The operator-dependency, which is strong for batch processes,

vanishes almost completely for continuous ones.

- Obviously, classical advantages hold true: reduced volume, simpli-

fied scale-up and process validation, reduced waste and energy,

easier link with yet continuous operations.

A good example of the batch to continuous dilemma for powders can

be found in the pharmaceutical industry and is worth referring to.

Anyone that has ever been concerned with powder mixing knows that

the pharma industry can serve as the industry of reference because it is

the only one that integrates standards on mixture homogeneity in its

own norms and rules. Regulatory agencies such as the FDA in the US or

the ANSM in France pushed the sector to develop the so-called Process

Analytical Technologies (PAT) at the beginning of the 2000's in order to

ensure the quality of the products (see [36]). Pharmaceutical firms had

to develop ways of controlling “critical quality attributes” on-line, and

in particular blend uniformity. Thismotivated analytical equipment ven-

dors to adapt their equipment to the pharma environment and stimu-

lated industry-academia collaborations, that in turn left footprints in

the scientific literatureof that period (see for example [15,30,53]). Fifteen

years later, and as pointed out by Roche et al. [40] as well as Ierapetritou

et al. [22], the FDAofficially recommended the shift frombatch to contin-

uous processes. At that time, big pharma companies, such as Pfizer, BMS

and Sanofi had already began their own transformation on a number of

production lines. Today, companies of less international impact, such as

Servier or Pierre Fabre in France are joining the movement.

In parallel to this industrial evolution, the understanding of continu-

ous powder processing in general and continuous mixing in particular

froma chemical engineering standpoint has been the fact of very few re-

search teams in the world and drew limited published works (see the

paper by [34] on the situation at the time of their review). The following

sub-areas of research on continuous powder mixers have been

investigated:

- Definitions of mixture quality and mixer performance.

The definition of mixture's homogeneity requires first the determi-

nation of a key component of the mixture: it can be the active pharma-

ceutical ingredient, the bleaching agent, starch for icing sugar, etc.

Homogeneity is then calculated (or estimated) by cutting the mixture

into N portions (or considering n samples from the mixture) of size

equal to that of the scale of scrutiny, to further derive the variance σ2

(or s2) of the compositions xi in the key ingredient. If μ (or xm) is the

mean content in key component in themixture (or in the sampling set):

μ ¼
1

N
∑

N
i¼1ð Þxi σ

2 ¼
1

N
∑

N
i¼1ð Þ xi−μð Þ2 ð1Þ

xm ¼
1

n

X

n

i¼1

xi s2 ¼
1

n

X

n

i¼1

xi−xmð Þ2 ð2Þ

Usually, the coefficient of variation, which is the ratio between the

standard deviation and themean, is better considered. It actually serves

as a standard for pharma blend release on themarket, as far as its value

lies below 6%.

This set of definitions is well adapted for batchmixing because it re-

flects the spatial distribution, and discrepancy in compositions, inside

the equipment. But for continuousmixers, while the spatial distribution

of the particles inside the mixer contributes to the building of a good

mixture, it is not relevant to the definition of mixture homogeneity:

only the outlet's mixture is of importance as it is the one that must

pass quality controls. As a result, its variance calculation will be based

on the consideration of a set of N consecutive samples, a “window” of

samples, taken at the outlet of the blender [18]. Therefore, Eqs. (1)–

(2) are still holding true, but for a well-defined time period of produc-

tion corresponding to that window of N samples.

Finally, and as pointed out by Weinekötter and Reh [51], a continu-

ous mixer serves as a system able to reduce the spread in compositions

between the inlet and the outlet of the equipment. Mixer performance

is therefore evaluated by calculating the Variance Reduction Ratio

(VRR), which is the ratio between the inlet variance and the outlet

variance.

- Effects of operating variables at steady-state.

Most of the academic work done so far to what concerns continuous

powder mixers concerns the effect of the operating variables on either

the bulk particle flow or the mixture quality while the equipment is at

steady-state. Marikh et al. [27] first investigated the effect of the rota-

tional speed of the stirrer before publishing their work on the effect of

the stirrer design on the hold-up weights and homogeneity of a com-

mercial pharmaceutical mixture [29]. They emphasized the effect of

the different flow regimes that can take place according to the choice

of the operating variables. Effects of blade configuration, mass flow

rates, and again stirrrer's rotational speed, have been reported over

the same period of time for pharmaceutical systems by Prof Muzzio's

team in New Jersey (see [33,38,49]). The work of Kingston and Heindel

[24] on the effect on the rotation mode (co-rotating, counter-rotating,

down or up-pumping) in a double-screw continuous mixer is also

worth noting.

- Flow models and mixing models.

Modelling both the bulk particleflow and the blending of particles of

different nature is undoubtedly the key in the understanding of contin-

uous powder mixers. Kehlenbeck and Sommer [23] developed a two-

dispersion coefficient (one for each component) model for a Gericke

GCM 500mixer. They identified the coefficients from the mathematical

fitting of the results, which makes this model semi-empirical. Some

years later, a Distinct Element Model (DEM) was being published by

Sarkar and Wasgren [42] for spherical identical particles. This allowed

the authors to derive local dispersion coefficients and define flow re-

gimes according to a Froude number in a section of themixer concerned

with approximately 104 particles. Although this is quite far from the real

number of particles involved in an industrial mixer, for which wall ef-

fects cannot be forgotten, this study caught some tendencies revealed

earlier by Positron techniques [25] and shown that DEM can be

employed as a building block for macroscopic models.

The need for a more global model, possibly able to include more

microscopic thoughts, has then been the rule in modelling powder

mixers. Sen et al. [43] and then Sen and Ramachandran [44] developed

a Population Balance Model (PBM) to simulate data of Residence Time

Distributions (RTD) obtained in Gericke GCM 250. The model formula-

tion, although continuous in time and space, needs discretization and

is finally close to a compartment model. The periodic section model de-

veloped byGao et al. [21] can be classified into this same category. These

authors compared the model results with RTD data obtained numeri-

cally and found good consistency. They emphasized the idea that their

model do not include particle diversity and that segregation is still a

challenge to account for in modelling. Another class of model uses the

Markov chain approach and can be viewed as a generalization of com-

partment models. As we will apply this modelling tool in the present

work, the lector may refer to the specific section dedicated to it.

- Transitory operation and first process control strategies.

While a continuousmixer is aimed to operate at steady-state, transi-

tory phases are taking place currently during normal production. First,



the equipment must start, which means that the hold-up weight will

rise during a certain period of time before reaching a steady value, ac-

cording to the operational conditions. Then, LIW feeders must be fed

during processingwhich drives to strong perturbations because the vol-

umetric mode of dosage is less accurate [10]. Finally, mixers must be

emptied, again conducing to a transitory period for which process out-

comes are decreasing and mixture quality is impacted. In previous

works [1,2], we investigated the influence on hold-up weight and out-

flow rates (still on the GCM 500) of various transitory phases, namely:

emptying, starting and step-changes on the rotational speed N of the

stirrer. We focused only on the bulk particle flow (no mixture) and de-

rived empirical correlations through the frame of a single cell Markov

chain model. Later on [3], we developed a system for on-line image

analysis of simple mixtures, able to capture all the particles flowing

out of the equipment and calculate mixture homogeneity in real-time.

The influences of the scale of scrutiny, aswell as that of N, on the quality

of the mixtures were demonstrated. But the main outcome was that it

was possible to evidence the extent of segregation in the mixer, as the

mixtures produced during the starting phase were richer in coarse par-

ticles (fines were accumulating in the equipment). This impacted

clearly the quality of the mixtures when considering increasing step-

perturbations on N, contrarily to negative steps.

The understanding and modelling of the transitory regime for a def-

inite continuous mixer is also a prerequisite to monitoring and control

of the operation, which can be viewed as the ultimate goal in the indus-

trial implementation of such technologies. Published works by

Ramachandran et al. [39], as well as Singh et al. [45] were concerned

mostly by the compaction process, but gave general thoughts on the

possible control strategies. From our side, we communicated on our

first results on the regulation of the GCM500 in the 2013 AIChE's annual

meeting [54].

To sumup this small specific literature survey, it can be said first that

it is far from being abundant, mainly the fact of 2–3 research teams in

the world. One of the major ideas is that there is a fundamental need

to explore what is going on inside continuous mixers and account for

particle segregation. As we experienced ourselves, it seems that segre-

gation “dictates” the bulk particle flow inside the mixer, and cannot be

considered as an epiphenomenon. The parallel development of sys-

temic/compartment models, that may in a second approach include

DEM, to capture the process dynamics and be readily employed for pro-

cess monitoring is also at stakes.

In the present work, we aim at developing and testing a mesoscopic

model that accounts for the internal hold-ups and flow distributions in-

side the GCM 500mixer. The objective is to derive a tool that could sim-

ulate and predict the behavior of themixer in terms of outflow rates and

mixture quality during both steady-state and transitory phases. For this,

we will first focus on determining the distribution of the powder mass

inside themixer. Thiswill then allow the determination of internal tran-

sition probabilities to be integrated in a mesoscopic Markov chain

model. Model testing and validation will be presented in terms of out-

flow rate and mixture quality evolution during steady-state operation,

as well as starting up and strong perturbations on the rotational speed

of the stirrer.

2. Experimental set-up and methods

2.1. Mixer

The mixing vessel studied in this work is the Gericke GCM 500

continuous mixer, equipped with two LIW feeders able to deliver a

mass flow rate up to 50 kg h−1 each (see Fig. 1a). The hemi-

cylindrical vessel is 50 cm long and 20 cm diameter. The mixing action

is performed by a system of 10 blades mounted on a frame, whose

axis is occupied by a screw-type shaft (Fig. 1b). The blades are ensur-

ing a radial dispersion of the particles, while the screw is responsible

for the axial movement of the bulk towards the outlet. Overall inlet

mass flow rate Qin as well as rotational stirrer speed N, are defining

the hold-up weight in the equipment. A too small ratio Qin/N will

drive to a nearly-complete emptying of the mixing chamber, while a

too high ratio may lead to overflow and mixer shutdown. The range

of rotational speed values is 10 to 50 Hz for a global mass flow rate

that lies between 10 and 100 kg h−1. In the present work, the inflow

rate will be kept constant at 40 kg h−1.

2.2. Particulate systems

Our goal is to gather the maximum information available so as to

model the mixing process itself, letting the particulate system consid-

ered as secondary. As in previous studies, we have chosen coarse and/

or fine couscous, depending on whether a “pure” product or a mixture

of both is investigated. This system has the following advantages:

- Shape anddensity of theparticles are identical, which leaves thepar-

ticle size as the sole difference, so as to give a clearer interpretation

of the results.

- These products have experienced a cooking process, which confer

them a certain time-stability.

- Products are cheap and easy to get hold of, which is important when

high amounts of powders are to be handled.

- Mixtures can be analyzed easily through the image analysis method

developed in earlier works.

- Mixtures can be separated by sieving and products can be re-used, as

there is no overlap of the particle size distributions.

Fig. 1. Gericke GCM 500 facility showing the inlet chute, the mixing chamber, the LIW

feeders (a); Stirring device used in this work (b).



Table 1 gives the major physical characteristics of the products, in

terms on both individual and collective properties. Both products are

free-flowing as indicated by the Carr index. Fine couscous particles

have been previously colored in black thanks to a process of iodine ad-

sorption first described in Aoun-Habbache et al. [4]. This allowed a color

contrastwith the (white-yellow) coarse particles that could be detected

by the image analysis system.

2.3. Determination of internal masses and flows

As stated, we need to access to the spatial-distribution and time-

evolution of the hold-up weights and flow rates along the axis of the

mixer, so as to implement these in a compartment-type markovian

model. If we look at the blade configuration in the frame, it can be

seen that opposite blades can be grouped two-by-two so as to define

five compartments or cells, each comprised of two opposite blades.

These cells are of equal volume.

Let Mi(t) be the powder mass in cell i at time t, M6(t) being the cu-

mulative mass measured at the outlet of the equipment. Mi(t) has

been measured experimentally by operating the mixer for the time t,

stop it and then withdraw the whole powder mass corresponding to

each cell by suction, beginning by cell n°5. This operation has been re-

peated for up to 17 times in the time interval 0–150 s. Let Δt be a time

interval (in the present work Δt will be chosen as Δt = 0.1 s). The net

flowrate Qout, i leaving cell n°i between t and t + Δt reads:

Qout;i ¼

P6
j¼iþ1 M j t þ ∆tð Þ−M j tð Þ

# $

∆t
ð3Þ

Therefore, internal flowrates between cells can be calculated by let-

tingΔt be small enough to gain precision. In addition, if no back-mixing

takes place in themixer, themean residence time in cell i can be derived

as follows:

τi tð Þ ¼
Mi tð Þ

Qout;i tð Þ
ð4Þ

This procedure has been run for coarse couscous alone in the deter-

mination of bulk flow characteristics, aswell as for each product (coarse

and fine couscous) in the determination of mixture flow characteristics.

2.4. Mixture composition analysis

Part of the presentedworkwill deal withmixtures of fine and coarse

couscous. The analysis of these will be performed on-line by an image

analysis ring that has been fully presented in Ammarcha et al. [3]. A

belt conveyor is placed at the mixer's outlet so as to form a single

layer of particles by adjusting its speed to the inflow rate considered.

A CCD linear camera placed perpendicularly to the belt captures all

the particles passing under the camera and a specific routine created

on Labview® allows the analysis of the images. Data treatment is per-

formed through threshold procedures in order to detect fine couscous

particles (white) from coarse couscous particles (black) and the con-

veyor belt (green).

An image, which is the finest scale of scrutiny of the mixture that

can be envisioned for our system, is defined by the accumulation of

200 consecutive single-pixel lines. Samples can be built by the grouping

of various consecutive images, therefore defining various possible sam-

ple masses. In the present work, we will consider the grouping of 21

consecutive images that correspond to a sample mass of 17.8 g of pow-

der mixture. Results for two mixture compositions will be presented in

the last section of this paper, namely a 50–50% byweightmixture and a

12.5–87.5% mixture of coarse and fine couscous respectively.

3. Mesoscopic Markov chain models developed

3.1. Some generalities

A Markov chain is a mathematical tool that has been employed to

model countless systems in any field of science, such as the recognition

of words in handwritten letters [14], direct marketing [35] or the previ-

sion of significant weather events [41] to name a few.

In powder processes, it has been considered for several operations

and equipment:

- Grinding: Wei et al. [52], Auer [5], Berthiaux [8], Catak et al. [12]

- Filtration and sedimentation: Tory andPickard [48], Nassar et al. [32]

- Classification: Berthiaux and Dodds [7]

- Agglomeration: Catak et al. [13]

- Fluidized beds: Fan and Chang [19], Dehling et al. [16],

Zhuang et al. [55]

- Rotating drums: Fan and Shin [20], Tjakra et al. [47]

- Mixing: Wang and Fan [50], Aoun-Habbache et al. [4], Ponomarev

et al. [37], Legoix et al. [26], Balagurov et al. [6]

Formore insights on the applications ofMarkov chains in particulate

systems engineering, the reader can refer to the review paper by

Berthiaux and Mizonov [9].

AMarkov chain model aims at describing a systems' dynamics. First,

this system must be decomposed into a finite number of inter-

connected cells, also called “states”. The intensity of these connections,

are quantified as transition probabilities between the states. Most of

the time, the cells are corresponding to a distribution of the physical

space that may advisably be based on physical thoughts or visual

Table 1

Main physical characteristics of the powders used. Particle size has been determined by

sieving, true density by He pycnometer and apparent bulk densities by Erweka® “tap-

tap” volumenometer. Carr and Hausner ratios are deduced from bulk densities.

Considered property Coarse couscous Fine couscous

d10 (μm) 1375 680

d50 (μm) 1700 860

d90 (μm) 1970 980

(d90 − d10)/2*d50 0.175 0.170

True density ρ (kg.m−3) 1452 1442

Aerated apparent density ρa k(g.m
−3) 762 759

Tapped apparent density ρt (kg.m
−3) 779 787

Carr index: 100*(ρt − ρa)/ρt 2.22 3.60

Hausner ratio: ρt/ρa 1.02 1.04

Fig. 2. Example of Markov chain.



Fig. 3. General structure of the mesoscopic Markov chain representing the flow in the continuous mixer.

Fig. 4. Simulation of the evolution of the internal hold-ups and flowrates during the starting of a continuous mixer showing the influence of the recirculation ratio R. Qin = 40 kg h−1;

μ i ¼ 1 s−1 .



observations. In addition, transition probabilities are usually relative

mass flows between cells that may adjust to mass balances.

Consider the simple case depicted in Fig. 2 that may represent the

flow of powders in a certain equipment. It consists of four states, one

of them being an absorbing state, which means that nothing can flow

out of it. An absorbing state can therefore represent the outlet of a pro-

cess. Let us observe the system after n transitions (or after any time rel-

ative to a fix time interval) and be S(n) the state vector that represents

the repartition of the powder in the four states Si(n) after those n tran-

sitions (S(0) is the initial configuration):

S nð Þ ¼

S1 nð Þ
S2 nð Þ
S3 nð Þ
S4 nð Þ

2

6

4

3

7

5
ð5Þ

Let pij(n) the transition probability, or the relative amount of powder

transiting from cell j to cell i during the nth transition, and P(n) the tran-

sition matrix that gathers all the pij(n) values:

P nð Þ ¼
p11 nð Þ ⋯ p14 nð Þ

⋮ ⋱ ⋮

p41 nð Þ ⋯ p44 nð Þ

2

4

3

5 ð6Þ

In the present case:

p41 nð Þ ¼ p31 nð Þ ¼ p42 nð Þ ¼ p13 nð Þ ¼ p14 nð Þ ¼ p24 nð Þ ¼ p34 nð Þ ¼ 0 and p44 nð Þ ¼ 1

If S(n) and P(n) are known, S(n+1) can be readily calculated by the

recurring formula:

S nþ 1ð Þ ¼ P nð Þ S nð Þ ð7Þ

A Markov chain is said “homogeneous” when the transition proba-

bilities are not varying with time or with the state of the system. In

this case Eq. (7) can be easily changed into:

S nþ 1ð Þ ¼ Pn S 0ð Þ ð8Þ

If P is not constant, the chain is considered “non-homogeneous”,

subcases being: linear chain if P depends only on n; non-linear chain if

P depends both on n and S(n). Transition probabilities can change

with time orwith the state reached by the system inmany cases involv-

ing powders, as these can be compacted during the mixing process or

experience variation in the kinetics of grinding for a size reduction

process.

3.2. General structure of the markovian models developed

To account for the horizontal configuration of the mixer and of the

powderflow inside the vesselwith thepossibility of back-mixing, a gen-

eral Markov chain that consists of n−1 cells allowing flows only be-

tween contiguous cells can be envisioned (Fig. 3). As mentioned

previously, the nth state is absorbing and figures out the outlet of the

blender. The inlet is represented by an arrow to which is attached the

inlet flowrate Qin. Let Mi(k) the powder mass in cell i and let Qij(k) be

the flow rate from cell j to cell i, after the kth transition. In the model,

only flowrates between contiguous cells are allowed. Themodel's struc-

ture lay between that of a fullmacroscopic black boxmodel and that of a

DEMmodel at the scale of a particle. It can be thought as a “mesoscopic

model”.

If pij(k) is the transition probability for powders flowing from cell j to

cell i, andΔF1(k) the powdermass introduced (at the inlet, cell 1) in the

mixer, the Markov chain can be established by the following rule:

M kþ 1ð Þ ¼ P kð Þ M kð Þ þ ∆F1 kð Þ½ &

Fig. 5. Simulation of the changes in αij(k) and μi(k) during the transitory phase leading to their steady values.



M1 kþ 1ð Þ

M2 kþ 1ð Þ

⋮

Mn−1 kþ 1ð Þ

Mn kþ 1ð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

p11 kð Þ

p21 kð Þ

0

⋮

0

p12 kð Þ

p22 kð Þ

p32 kð Þ

0

…

0

p23 kð Þ

p33 kð Þ

p33 kð Þ

…

…

⋮

pn−2;n−1 kð Þ

pn−1;n−1 kð Þ
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0

0
⋮

⋮

pnn kð Þ
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The above set of notations allows for the possibility of feeding the

equipment in cells other than cell 1, or distributing the feeding alongside

themixer. IfΔt is the time interval throughwhich the system isobserved,

assuming the inlet flow rate does not change with time, we also have:

ΔF1 kð Þ ¼ Q inΔt ð10Þ

Let αij(k) the ratio between the flowrates Qij(k) and Qin. We basi-

cally have:

Q i−1;i kð Þ ¼ αi−1;i kð Þ Q in and Q iþ1;i kð Þ ¼ αiþ1;i kð Þ Q in ð11Þ

Let us consider cell 1. The probability p21(k) for a particle to transit

from cell 1 to cell 2 between the kthand the k + 1th state is the proba-

bility (1 − p11(k)) to leave state 1 during this transition. The corre-

sponding mass leaving state 1 is therefore the product of (1 − p11(k))

by the mass present in state 1 after k transitions, which is M1(k) +

ΔF1(k). As this mass can only arrive in state 2 and is attached to the

flowrate Q21(k), we have the following equation:

1−p11 kð Þ½ & M1 kð Þ þ ∆F1 kð Þ½ & ¼ Q21 kð Þ∆t ð12Þ

Replacing Q21(k) by Eq. (11) through Eq. (12) gives:

p11 kð Þ ¼ 1−α21 kð Þμ1 kð Þ∆t p21 kð Þ ¼ α21 kð Þμ1 kð Þ∆t ð13Þ

Where:

μ1 kð Þ ¼
Q in

M1 kð Þ þ ∆F1 kð Þ
ð14Þ

A similar reasoning for the other cells drives to the following set of

equations:

pii kð Þ ¼ 1− αi−1; i kð Þ þ αiþ1;i kð Þ
# $

μ i kð Þ∆t

piþ1;i kð Þ ¼ αiþ1;i kð Þμ i kð Þ∆t ð15Þ

pi−1;i kð Þ ¼ αi−1;i kð Þμ i kð Þ∆t

where:

μ i kð Þ ¼
Q in

Mi kð Þ
ð16Þ

Eqs. (15) and (16) allow the construction of the transition matrix

P(k) and the full description of the dynamics in transitory regime, if

the initial state is known (usually empty cells). Eq. (16) also shows

that transition probabilities not only depend on k (or time), but also

on the previous state of the system (M(k)), which makes the general

model non-homogeneous and non-linear.

When themixer is at steady-state, all the back-mixing coefficients

αi-1,I are equals to a single value R, which may be dependent on

stirrer's design and rotational speed. The coefficients μi are also of

constant value, equal to μ i, and can be seen as characteristic frequen-

cies or inverse of geometric residence times, each relative to cell i.

Fig. 6. Simulation of an instantaneous change of pair (R, μ i) from (1, 0.2) to (10, 1) in terms of internal hold-ups and outflow rate. Δt = 0.005 s, Q = 40 kg h−1.



Therefore:

R ¼ αi−1;I ¼ αiþ1;I−1 μ i ¼
Q in

Mi
and μ1 ¼

Q in

M1 þ ∆F1
ð17Þ

This time, the Markov chain is homogeneous and the steady-state

transition matrix obtained is similar to that obtained by Tamir [46] for

a simpler case:

P ¼

1− 1þ Rð Þμ1∆t

1þ Rð Þμ1∆t

0

⋮

0

Rμ2∆t

1− 1þ 2Rð Þμ2∆t

1þ Rð Þμ2∆t

0

…

…

⋮

Rμn−1∆t

1− 1þ Rð Þμn−1∆t

μn−1∆t

0

0
⋮

0

1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð18Þ

Fig. 7. Distribution of the hold-up weights alongside the mixer for different rotational speeds of the stirrer, Qin = 40 kg h−1.

Fig. 8. Correlations obtained for the steady-state internal hold-ups as a function of the rotational speed N, Qin = 40 kg h−1.



3.3. An example of simulation

Themodel presented above can be used to simulate any type of flow

configuration and regime, such as starting-up, emptying, tracer pulse

and Residence Time Distribution curves, inlet flowrate perturbations,

staged feed, etc. To illustrate its potential, we will simulate the bulk

powder flow inside the mixer during the start-up phase in terms of

the distribution of the hold-upweights and the evolution of the internal

flowrates.

As a first approach, we will consider the homogeneous matrix of

Eq. (18) for a 6 cells case (5 mixer cells +1 absorbing) to perform the

simulations. This matrix only depends on the values of R and that of

the μ i, that are therefore necessary to run the model.

In Fig. 4, we can see the simulation of the time-evolution of internal

hold-ups and flowrates during the start of the mixer, for two different

values of R (0.5 and 10) and for μ i ¼ 1 s−1 (whatever the cell i). The

inlet flowrate is set at Qin = 40 kg h−1 and the initial state vector is 0.

Afterwards, the masses in the states of the chain are calculated thanks

to Eq. (9).

For R = 0.5, the hold-ups in the cells are higher in cell i

than in cell i + 1, whatever the time considered. Steady-state

is obviously reached earlier for the first cells of the mixer

Fig. 9. Evolution of the local net flowrates during the start of the mixer for different values of N, Qin = 40 kg h−1.

Fig. 10. Empirical link between the local net flowrates and the corresponding hold-up weights during the transitory phase (for cells 1 and 5), evidencing the existence of a minimal mass.



than for the last ones. After 15 s of simulation, all the internal

masses are equal and steady-state is reached. The flowrates

can be grouped according to their direction (forward for Qi+1,i

or backward for Qi,i+1). In each group, the flowrates corre-

sponding to the first cells are always greater than the following

ones and they attain steady-state earlier. Forward flowrates

reach a steady value of 60 kg h−1, while backward ones reach

a 20 kg h−1 value, still in 15 s.

As could be expected, a high recirculation ratio (R = 10) or

back-mixing induces closer values for the hold-ups. The flowrates

in the forward direction are also closer to each other, as well as

those in the backward direction. The two types of flowrates are
Fig. 11. Recirculation coefficients R determined by the Levenberg-Marquardt algorithm

through all the experimental data available, Qin = 40 kg h−1.

Fig. 12. Comparison of the homogeneous chain model's results with the experiments in terms of local outflow rates and internal hold-up weights during start-up, for various stirrer's

rotational speeds, Qin = 40 kg h−1.



also closer to each other than for a much smaller recirculation

ratio. Because of the high value of R, forward and backward

steady-state flowrates are higher than the outlet flowrate Qout, re-

spectively 440 and 380 kg h−1. In addition, it seems that there is

no influence of R on the attainment of the steady-state, which is

reached after 15 s in all cases.

It is worth noting that, even if the transition matrix does not

change with time because it has fixed values of R and μ i , the coeffi-

cients αij(k) and μi(k) are changing during the transitory phase. For

instance, these are calculated at each step through:

μ i kð Þ ¼
Q in

Mi kð Þ
;αiþ1;i kð Þ ¼

Q iþ1;i kð Þ

Q in
and αi−1;i kð Þ ¼

Q i−1;i kð Þ

Q in:

Fig. 5 shows the evolution these parameters during the simulation,

until they reach their steady values, respectively μ i , 1 + R and R.

Being the mixer initially empty, the μi's are infinite for t = 0, then de-

crease towards μ i . The flowrates coefficients are all starting from zero

Fig. 13. Simplified Markov chain non-homogeneous model.

Fig. 14. Evidence of a second-order relation between internal flowrates and hold-ups during the start of themixer, driving to a linear relation for transition probabilities, Qin=40 kg h−1,

Δt = 0.1 s.



(no initial flow) and increase towards their steady values, depending on

whether they are concerned with forward flow or backward flow. The

coefficient α6,5 depicts the flow from the last cell to the outlet divided

by the steady outlet flow, its steady value is therefore equal to 1. This

procedure can also be used to describe the process evolution during a

step change in operating conditions, such as the stirrer's speed N. In

Fig. 6, internal hold-ups, as well as the outflow rate evolutions are plot-

ted after a step change from a value N1 to a value N2, which may corre-

spond to the change from amatrix P1 to amatrix P2. In this example, the

pair (R, μ i) changes from (1, 0.2) to (10, 1). Because themixer is already

at steady-state, the impact of the perturbation on the hold-ups is a

global quick decrease of all the values to the new situation. The outflow

rate experiences a strong perturbation through a peak that is close to 5

times Qin, before getting back to this nominal value. This is due to the

fact that R is instantly placed at a much higher value, which in turn

forces particles to flow out of the equipment.

4. Single product bulk flowmodelling

4.1. Internal hold-up weights and flow rates

The coarse product (coarse couscous) has been first investigated in

terms of internal flows and mass distribution inside the blender. Fig. 7

shows the distribution of the hold-up weights measured experimen-

tally in each of the 5 cells defined, for the flowrate Qin = 40 kg h−1

and rotational speeds varying between 10 and 40 Hz. Cells are

experiencing a filling process one after another which is due to the

chain construction. The masses in cells 1, 2, 3 and 4 follow identical

trends, leading to a steady mass which is approximately the same

whatever the cell.

In cell 5, which corresponds to the lastmixing section beforemixer's

outlet, the powder mass is much higher, nearly five times that of the

other cells. This is due to presence of the mixer's wall that corresponds

Fig. 15.Comparison of thenon-linear chainmodel's resultswith the experiments in termsof local outflowrates and internal hold-upweights during start-up, for various stirrer's rotational

speeds, Qin = 40 kg h−1.



to an outlet sectionwhich ismuch smaller than the section of theflow in

the previous cells.More than half of thepowder in themixer is indeed in

the last part of it, close to the outlet. The good mixing of this section is

therefore critical.

For what concerns the impact of N, it can be seen that, at a fixed Qin,

the higher the speed, the smaller the hold-ups in every cells, which is

not surprising. The steady-state valuesMi of the hold-ups can be plotted

against N (Fig. 8) and drive to the following empirical correlations after

least square fitting of curves of the form Mi = ai/N + bi:

Mi gð Þ ¼
703

N
for i ¼ 1 to 4 M5 gð Þ ¼

1714

N
þ 60 ð19Þ

The data collected also allows for the determination of the local net

flowrates in the forward direction ΔQi+1,i at any time and for each cell

by comparing the masses after a small time interval Δt:

∆Q iþ1;i ¼ Q iþ1;i−Q i;iþ1 ¼

P6
j¼iþ1 M j t þ ∆tð Þ−M j tð Þ

# $

∆t
ð20Þ

The time evolution of these flowrates during themixer's start is pre-

sented in Fig. 9. Each of these intermediary flowrates increases at a rate

that is dependent on the rotational stirrer's speedN: as expected, higher

values of N drive to a quicker establishment of a steady-state. The steady

value of the flowrates is the same whatever the cell considered, and is

equal to the inflow rate Qin (which is 40 kg h−1 in the present case).

Contrarily to what happens in the other cells, it can be noted that the

outflow rate Q5,6, which is also that of the mixer Qout, only increases

after a minimal mass of approximately 40 g is attained in cell 5. This re-

sult is emphasized in Fig. 10,which representsΔQi+1,i as a function ofMi

for cells 1 and 5, from which the following empirical correlation can be

drawn and is valid during the transitory phase:

∆Q iþ1;i kð Þ ¼ aM2
i kð Þ þ bMi kð Þ þ c ð21Þ

Where a, b and c are parameters depending on N.

4.2. Homogeneous model

In this section, we will first consider the homogeneous model pre-

sented above, which means that the transition matrix P is that of

(Eq. (18)). P depends on six parameters, the five values of μ i and R.

The μ i ’s are available from both Qin and the steady hold-up weight in

each cell i. As this is in turned linked to N through (Eq. (19)), we have

a general relationship of μ i vs N. For the parameter R, we will proceed

Fig. 16. Comparison of the non-linear chain model's results with the experiments in terms of hold-up and outflow rate, during either a positive or a negative step perturbation of the

stirrer's rotational speed (from 20 to 50 Hz and vice-versa), Qin = 30 kg h−1.



to an optimization scheme ruled by a Lenvenberg-Marquardt algorithm

run onMatlab®, throughminimalizing the following criteria D based on

the internal hold-up weights:

D ¼
X

5

j¼1

X

nexp

i¼1

M j ið Þ
# $

model
− M j ið Þ
# $

exp

n o2
ð22Þ

In the above equation, nexp is the number of experimental data

considered.

This has been repeated for each rotational stirrer's speed and is plot-

ted on Fig. 11. As expected, R increases with N through what may be

viewed as a power law, which is consistent with previous works on

RTD in such mixers [28].

As explained in the example of simulationwith this model, while the

transitionmatrixdoesnotvarywith time, it canserve to calculate theevo-

lution of the systemduring the transitory phases, such as themixer's start

through (Eq. (9)). Fig. 12 shows the comparison of model and experi-

ments in terms of internal hold-up weights Mi(t) (to which R has been

fitted) and local netflowratesΔQi+1,i(t)which is derived fromtheMi(t)’s.

Being the chain homogeneous, it is not surprising to see that the

model results are all the more acceptable that the flow regime is at

steady-state. Steady values of the flowrates and the hold-ups are well

predicted by the model, whatever the rotational stirrer's speed is.

While the model is still able to capture the global behaviors during the

start of the mixer it fails in a fine description of the evolution of the

hold-ups, in particular for cell 5. The outflow rate of the mixer ΔQ6,5 is

also not well predicted. The model forces the particles to flow out of

the equipment since the beginning of the run, while it has been recorded

that a minimal mass Mmin,5in cell 5 was necessary for that to happen.

4.3. Non-homogeneous model

In the previous homogeneous model, the main difficulty

came from the impossibility to measure or calculate all the flowrates

Qi,j, but only net flow rates ΔQi+1,i. For this, we now consider a

simplified Markov chain model for which the exchanges between ad-

jacent cells are replaced by these net flow rates. By doing so, we have:

ΔQi+1,i = Qi+1,i.

This model (see Fig. 13) can be viewed as a series of continuous

stirred tank reactors (CSTRs). The fact that no back-mixing is permit-

ted is consistent with the data obtained on the hold-ups, the real

mixing section being finally cell 5. As a result, the general matrix

rule for the calculation of the internal hold-up weights, and subse-

quent outflow rates, will be:

M1 kþ 1ð Þ
M2 kþ 1ð Þ
M3 kþ 1ð Þ
M4 kþ 1ð Þ
M5 kþ 1ð Þ
M6 kþ 1ð Þ

2
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¼

p1;1 kð Þ
p2;1 kð Þ

0
0
0
0

0
p2;2 kð Þ

p3;2 kð Þ
0
0
0

0
0

p3;3 kð Þ
p4;3 kð Þ

0
0

0
0
0

p4;4 kð Þ

p5;4 kð Þ
0

0
0
0
0

p5;5 kð Þ
p6;5 kð Þ

0
0
0
0
0

p6;6 kð Þ
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(

M1 kð Þ þ ∆F1 kð Þ
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M4 kð Þ
M5 kð Þ
M6 kð Þ
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6

6
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7
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ð23Þ

As for (Eqs. (15)–(16)), the transition probabilities can be derived

from the internal hold-up weights and flowrates:

p21 kð Þ ¼
Q21 kð Þ∆t

M1 kð Þ þ ∆F1 kð Þ
p11 kð Þ ¼ 1−

Q21 kð Þ∆t

M1 kð Þ þ ∆F1 kð Þ
for cell 1

piþ1;i kð Þ ¼
Q iþ1;i kð Þ∆t

Mi kð Þ
pii kð Þ ¼ 1−

Q iþ1;i kð Þ∆t

Mi kð Þ
for cells 2 to 5

ð24Þ

In Fig. 14, the flowrates Qij(k) measured inside themixer are plotted

against the correspondinghold-upweights, for cells 1, 2 and 5, aswell as

for different values of N. Second-order correlations fits the data very

well if the minimum mass Mmin,5 is considered, which means that the

Fig. 17. Fine particle content inside the mixer as measured for mixture 1 (top) and mixture 2 (bottom), evidencing a segregation phenomenon, Qin = 40 kg h−1.



transition probabilities are following linear relationships with Mi(k):

i ¼ 1 : Q21 kð Þ ¼ a1M1 kð Þ M1 kð Þ þ ∆F1 kð Þð Þ;p21 kð Þ ¼ a1M1 kð Þ∆t ð25Þ

i ¼ 2;3;4 : Q iþ1;i kð Þ ¼ aiMi kð Þ
2
;piþ1;i kð Þ ¼ aiMi kð Þ∆t ð26Þ

i ¼ 5 : Q65 kð Þ ¼ a5M5 kð Þ M5 kð Þ−M min;5

- .

; p65 kð Þ ¼ a5 M5 kð Þ−M min;5

- .

∆t

ð27Þ

It must be noted that when M5(k) is smaller than Mmin,5, Q65 = 0

and p65(k)=0. The Fig. 14 also shows the plots of pi+1,i(k) as a function

of Mi(k), confirming the above development.

The set of equations (Eqs. (25)–(27)) demonstrates that, as long as

the internal hold-ups are evolvingwith time, such as during a transitory

phase, the transition matrix depends on the actual state of the system.

This means that the Markov chain is not only non-homogeneous, but

also non-linear. When the hold-ups are steady, transition probabilities

are all establishing themselves at a fixed value pij,max, for which internal

flowrates are replaced by Qin, the chain becoming then homogeneous:

p21; max ¼
Q in∆t

M1 þ Q in∆t
piþ1;i; max ¼

Q in∆t

Mi

for cells 2 to 5ð Þ ð28Þ

The maximum values of the probabilities can be extracted graphi-

cally from Fig. 14, and used to determine the parameters ai:

a1 ¼
p21; max

M1

ai ¼
piþ1;i; max

Mi

i ¼ 2;3;4ð Þ a5 ¼
p65; max

M5−M min;5

ð29Þ

If a new perturbation takes place, such as change in stirrer's rota-

tional speed or mixer's emptying process, the hold-ups will change

towards their corresponding steady value. This will in turn affect the

probabilities and the homogeneity of the Markov chain.

Fig. 15 shows the results obtained by the new model, as compared

to the experimental results measured in terms of internal flowrates

and hold-ups during the start of the mixer, for various rotational

stirrer's speed. The model captures all these variations very well, in

particular for the mixer's outflow rate that was not well predicted

by the previous homogeneous chain. The small discrepancies that

can be noted for N = 10 Hz can be attributed to the lack of stability

of the speed itself.

To test the model a bit farther, negative and positive step perturba-

tions on the stirrer's rotational speed have been imposed to the sys-

tem after it has reached steady-state, both experimentally and

numerically. The results are presented in Fig. 16 in terms of hold-up

weights (within cells or global) and outflow rate of the mixer. The

model proves here that it follows extremely well the strong perturba-

tions during its occurrence, as well as it succeeds in predicting the

new stable regime.

5. Binary mixture flowmodelling

5.1. Derivation of a non-homogeneous model

Tomodel theflowof a binarymixture that consists of coarse andfine

particles, we will consider that each type of particle is following a

Markov chain on its own. We therefore have two transition matrices

Pc(k) and Pf(k) that correspond to the coarse particles and the

fine particles respectively, made of transition probabilities pcij(k) and

pfij(k), but also states vectors Mc(k) and Mf(k), each consisting of the

masses Mci(k) and Mfi(k) in the 6 cells defined above, as well as inlet

masses ΔFc(k) and ΔFf(k). After k transitions, the particle flow is

Fig. 18. (a) Evidence of the equality of theminimalmasses in cell 5 (a); (b) fine particles content of theminimalmass in cell 5 according the various operational conditions considered (b),

Qin = 40 kg h−1.



Fig. 19. Simulation ofmixer start,mixture 1, two different values of N - (a) Comparison of theMarkov chainmodel's resultswith the experiments in terms of outflowcomposition; (b) p65 –

M5 probability plots, Qin = 40 kg h−1, Δt = 0,1 s.



therefore ruled by the following equations:

Mc1 kþ 1ð Þ

Mc2 kþ 1ð Þ

Mc3 kþ 1ð Þ

Mc4 kþ 1ð Þ

Mc5 kþ 1ð Þ

Mc6 kþ 1ð Þ
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Obviously, the hold-up weight Mi(k) and the composition Xfi(k) in

fine particles in cell i are given by:

Mi kð Þ ¼ Mci kð Þ þMfi kð Þ Xfi kð Þ ¼
Mfi kð Þ

Mci kð Þ þMfi kð Þ
ð32Þ

In particular, the outlet composition of themixture can be calculated

through (note Qfij and Qmij are the local net flow rates in fine and coarse

particles respectively):

X f kð Þ ¼
Q f65 kð Þ

Q c65 kð Þ þ Q f65 kð Þ
¼

p f6;5 kð ÞM f5 kð Þ

p f6;5 kð ÞM f5 kð Þ þ pc6;5 kð ÞMc5 kð Þ
ð33Þ

Xc kð Þ ¼
Q c65 kð Þ

Q c65 kð Þ þ Q f65 kð Þ
¼

pc6;5 kð ÞMc5 kð Þ

p f6;5 kð ÞM f5 kð Þ þ pc6;5 kð ÞMc5 kð Þ
ð34Þ

Because the same equations hold for either the coarse or the fine

particles, we will limit our analysis to the fine product.

As for the bulk flow model, the transition probabilities are linked to

the flow and masses through:

p f21 kð Þ ¼
Qf 21 kð Þ∆t

Mf 1 kð Þ þ ∆Ff 1 kð Þ
for cell 1; pfiþ1;i kð Þ ¼

Qf iþ1;i kð Þ∆t

Mf i kð Þ
for cells 2 to 5

ð35Þ

When steady-state is reached, probabilities are assigned to their

steady values. So if Mf i is the steady hold-up in cell i, those maximum

probabilities are:

p f21

/ 0

max
¼

Qf in∆t

Mf 1 þ Qf in∆t
pfiþ1;i

/ 0

max
¼

Qf in∆t

Mf i
for cells 2 to 5 ð36Þ

We further assume a linear relationship between the probabilities

and hold-ups by the introduction of constants afi that can be linked to

the steady-state probabilities:

pfiþ1;i kð Þ ¼ afiMf i kð Þ for cells 1 to 4

p f6;5 kð Þ ¼ a f5 Mf 5 kð Þ−Mf min;5 kð Þ
# $

for cell 5 ð37Þ

a f1 ¼
Qf in∆t

Mf 1 Mf 1 þ Qf in∆t
h i afi ¼

Qf in∆t

Mf i
2

a f5 ¼
Qf in∆t

Mf 5 Mf 5−Mf min;5 kð Þ
h i

Fig. 20. Simulation of mixer start, mixture 2, two different values of N - Comparison of the Markov chain model's results with the experiments in terms of outflow composition, Qin =

40 kg h−1, Δt = 0,1 s.



The last step is to transform these equations into a probability-based

set of equations that demonstrates the non-homogeneous and non-

linear character of the Markov chain:

p f21 kð Þ ¼
Mf 1 kð ÞQf in∆t

Mf 1 Mf 1 þ Qf in∆t
h i

pfiþ1;i kð Þ ¼
Mf i kð ÞQf in∆t

Mf i
2

ð38Þ

p f65 kð Þ ¼
Mf 5 kð Þ−Mf min;5

# $

Qf in∆t

Mf 5 Mf 5−Mf min;5

h i

5.2. Internal hold-up weights

For the matrix calculation of the states to be performed, the knowl-

edge of the steady-state values of the internal hold-ups, aswell as that of

the minimal mass in cell 5 must be known. For this, experiments of de-

termination of internal hold-up weights have been performed for each

product during their mixing, as described earlier for the single product.

The content of each cell has been withdrawn from the blender at differ-

ent moments of time and sieved so as to separate coarse and fine cous-

cous, afterward each product could be weighed. This procedure has

been repeated until the steady-state regime has been reached. Two

cases have been investigated, namely a 50–50% by weight mixture

and a 87.5 coarse - 12.5 fine % by weight mixture. These two mixtures

will further be identified by mixture 1 and mixture 2 respectively.

Fig. 17 shows the fine particle content in the five cells at steady-state

for the two mixtures. As commented in Ammarcha et al. [3], the first

four cells are richer in fine particles than the last cell, whatever the con-

ditions underwhich the blender operates, pointing out the presence of a

segregation effect. As for the coarse product alone, it can be shown that

the steady hold-upweight of themixture in each cell can be assimilated

to that of coarse couscous, whichmeans that (Eq. (19)) holds true. This

allows for thedetermination of the steadyhold-upweights of each com-

ponent in every cell Mf i and Mcci through the empirical relations:

Mf i ¼ Xfi (
703

N
gð Þ;Mci ¼ 1−Xfi

- .

(
703

N
gð Þ for i ¼ 1 to 4 ð39Þ

Mf 5 ¼ X f5 (
1714

N
þ 60

3 4

gð Þ;Mc5 ¼ 1−X f5

- .

(
1714

N
þ 60

3 4

gð Þ ð40Þ

The minimal mass of each product has been also determined exper-

imentally by stopping the mixer when the first particles begin to flow

out of it, withdrawing the content of cell 5, sieve it and weigh the sepa-

rated components. Fig. 18a shows that the overallminimalmass in cell 5

can be assumed to be a constant equal to 50 g, while Fig. 18b shows that

the content in fine particles depends onN, in particular formixture 1. As

expected, a higher value of N drives to a mixture that is closer to the

nominal value of 50% by weight for this mixture. For mixture 2, a segre-

gated mixture is still present in the last cell, but its composition will

change as steady-state is approached.

5.3. Binary mixing model validation

The validation of themodel has been performedby comparing its re-

sults in terms of outlet's mixture composition to themeasurements that

have been obtained through on-line image analysis. This evaluation is

based on two process operations: the start of the blender towards the

attainment of steady-state and negative/positive step perturbations on

the stirrer's rotational speed.

Fig. 19a presents model and experimental results obtained during

the starting phase of the equipment for two stirrer's rotational speeds,

formixture 1. In both cases, themodel catches the evolution of the com-

position very well. In particular, it predicts the fact that the mixture is

richer in coarse particles during the start of the mixer, a segregation

phenomenon we discussed in a recent work [3]. Fig. 19b shows the lin-

ear relationships between the evolving probabilities and the hold-up

weights for cell 5 and for both component. As commented before, the

probabilities are increasing with the hold-up until they reach their

steady value, afterwards the calculation rule become that of an homoge-

neous chain. In addition, it can be seen that theminimummass of pow-

der that allows the outflow of the mixture, and can be estimated by

adding the hold-up weights in cell 5 for each component, is roughly

the same whatever the stirrer's speed and equal to 50 g. Finally, and

as expected, the higher the stirrer's speed, the higher the probability

for the particles to get out of the equipment. Results corresponding to

mixture 2 are presented in Fig. 20. Once again, the model reproduces

the experiment quite well but is unable to catch the small-scale mass

fluctuations that have been recorded for each component.

Fig. 21. Simulation of negative and positive perturbation steps, mixture 1 - (a) Comparison of the Markov chain model's results with the experiments in terms of outflow composition;

(b) p65 – M5 probability plots, Qin = 40 kg h−1, Δt = 0,1 s.



A negative step perturbation on the rotational speed (from 50

to 10 Hz) has been imposed to the system operating with mixture

1 and is depicted in Fig. 21a. In this graph, both coarse and fine

products are represented. In the same figure, the results for a

positive step perturbation (from 25 Hz to 45 Hz) are shown. What-

ever the case, the model is adequate in representing the evolution

of the composition during the perturbation, in particular the way

the system is able to reach another steady-state configuration.

Fig. 21 (continued).



The evolution of the transition probabilities during the whole pro-

cess is presented in Fig. 21b, only for cell 5. In the case of the neg-

ative step, the probability increases with the local hold-up until it

reaches the maximum value that corresponds to steady-state. At

the time of the perturbation, this operating point is no longer

valid. The system therefore has to catch the p65 – M5 line that cor-

responds to the operation under the new condition (10 Hz), after-

wards the probability will evolve until it reaches the corresponding

maximum value (approximately 0,006 for coarse particles). This is

exactly the same that happens for the positive step (Fig. 21c),

with the exception that at the moment of the perturbation, the

probability that corresponds to the same hold-up – but for the

higher stirrer's speed- is much higher (nearly 0,023) than the max-

imum probability under this operating condition (0,013). The path

followed to reach this steady value is in fact the extension of the

p65 – M5 line that can be drawn in a mixer start experiment

under the condition N = 45 Hz. Results relative to mixture 2 are

presented in Fig. 22. They are globally similar to those obtained

with mixture 1. However, it can be seen that the model fails in de-

scribing finely what happens during the two types of perturbation,

in particular it predicts that the system will join steady-state earlier

than in reality. Once again, the fluctuations that are appearing can-

not be caught by the Markov chain in its present form. Various

thoughts, underlining some of the model limitations, can be

brought to partially explain this:

- The transition probabilities are defined for each component in-

dependently of the other, at the scale of the cells. Mixture 2,

being mostly composed of coarse particles, could be more sensi-

ble to this hypothesis as the fine particles flow could be affected

by the presence of the coarse particles. An improvement of the

model would therefore be, for each component, to account for

the presence of the other component in the transition matrix,

for example by including a function of the composition directly

in the probabilities.

- The time interval Δt chosen for the simulation is fixed and equal

to 0.1 s. For a typical flow rate of 40 kh.h−1, this corresponds to

1 g, or roughly to 500 couscous particles. There is therefore a lim-

itation to the use of equations (39) and (40) as they put together

mass values that may correspond to 1000 times the particles in-

volved in Δt.

- The mixture is dumped from the outlet mixer's gate onto the belt

and conveyed through the image capture systems. There may be

some segregation at the outlet gate or on the, belt causing the

variations in compositions that are experienced.

6. Concluding remarks

TheMarkov chain models developed in this work have proven their

efficiency to catch the major process changes in terms of mass flows,

mixture composition and hold-ups, for a wide range of typical process

situations such as: mixer start, mixer stop, negative or positive steps

on the rotational speed. They do not seem able to figure out the extent

of the small-scale fluctuations on the composition of the mixtures that

are recorded at the outlet of the equipment, especially for mixture 2

which is mainly composed of coarse particles by weight. It is unclear

to what phenomena or factor this may be attributed.

Markov chains also need experimental input to calculate the transi-

tion probabilities, even if it can be done through various independent

experiments. There is indeed a great interest, in process monitoring as

well as in process development, in trying to link this input to the output

of a DEMmodelling scheme, so as to derive a hybridmodel catching the

whole system at any scale. Such models have emerged some ten years

ago (see [17]) and are still looking very promising, although they need

to be properly implemented to include the complexity of the particulate

system and that of the mixer itself.

The intensification of themixing process is also worth investigating.

For instance, there is a lotwork to undertake in terms of stirrer design so

as to induce perfect mixing in a horizontal configuration that is much

proper to plug flow. The same holds true for the LIW feeders for

which the smoothing of the mass flow fluctuations due to the feeding

screw is a key issue. The location of these feeders along the mixer

needs to be studied into details because, as we pointed out in the pres-

ent work, segregation by percolation takes place close to the inlet wall.

This means that it may advisable to consider other feeding configura-

tions, such as placing the segregating component's feeder to another

place, and even so distributing the feed over the mixer's length. This

has been theoretically considered by Mizonov et al. [31], again through

a Markov chain model, but needs to be experimentally studied.

The immediate following step for this researchwork is to implement

a process control loop, transforming the outlet mixture homogeneity

signal into an action on the rotational stirrer's speed. This will help

smoothing the fluctuations that appear during transitory phases or

when LIW feeders are operating in the volumetric mode, like for hopper

re-filling. This will be discussed in further papers.
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