N

N

First Steps Towards Linking Semantic 3D City
Modelling and Multi-Domain Co-Simulation for Energy
Modelling at Urban Scale
E. Widl, C. Agugiaro, P. Puerto

» To cite this version:

E. Widl, C. Agugiaro, P. Puerto. First Steps Towards Linking Semantic 3D City Modelling and Multi-
Domain Co-Simulation for Energy Modelling at Urban Scale. ISPRS TC IV Mid-term Symposium
3D Spatial Information Science — The Engine of Change, Oct 2018, Delft, Netherlands. pp.227-234,
10.5194 /isprs-annals-1V-4-227-2018 . hal-01984612

HAL Id: hal-01984612
https://imt-mines-albi.hal.science/hal-01984612

Submitted on 24 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://imt-mines-albi.hal.science/hal-01984612
https://hal.archives-ouvertes.fr

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science — The Engine of Change”, 1-5 October 2018, Delft, The Netherlands

FIRST STEPS TOWARDS LINKING SEMANTIC 3D CITY MODELLING AND
MULTI-DOMAIN CO-SIMULATION FOR ENERGY MODELLING AT URBAN SCALE

E. Widl"* G. Agugiaro®, P. Puerto®*’

! AIT — Austrian Institute of Technology, Center for Energy, Vienna, Austria - edmund.widl @ait.ac.at
% AIT — Austrian Institute of Technology, Center for Energy, Vienna, Austria - giorgio.agugiaro@ait.ac.at
3 CREM - Centre de Recherches Energetiques et Municipales, Martigny, Switzerland
* HES-SO — University of Applied Sciences of Western Switzerland, Sion, Switzerland
3 IMT Mines Albi / UMR CNRS 5302, Albi, France - pablo.puerto@mines-albi.fr

Commission IV, WG 1V/10

KEY WORDS: 3D city modelling, urban energy systems, multi-domain co-simulation, CityGML, 3DCityDB, Simulation Package

ABSTRACT:

An important prerequisite for the simulation-based assessment of energy systems at urban scale is the availability of high-quality,
well-formatted and semantically structured data. Unfortunately, best practices and state-of-the-art approaches for urban data modelling
are hardly applied in the context of energy-related simulations, such that data management and data access often become tedious and
cumbersome tasks. This paper presents the so-called Simulation Package, i.e., a data model extending the 3D City Database for CityGML,
and its derived data access layer, both aiming to bridge this gap between semantic 3D city modelling and simulation in the context
of urban energy systems. The feasibility of this approach is demonstrated with the help of a concrete example, where the proposed
extension has been implemented and integrated into a simulation toolchain. The aim is that the availability of a common, shared data
model and the proof-of-concept implementation will contribute and foster adoption and further improvement in the future.

1. INTRODUCTION AND MOTIVATION

Considering urban energy systems as complex multi-network
structures rather than the more classical silo-like approach of sep-
arated energy vectors has become widely accepted in the scientific
literature. This notion has been examined from different and com-
plementary perspectives, such as shown from the electrical (Ilic et
al., 2008) and from the thermal (Lund et al., 2014) point of view
or for hybrid networks (Widl et al., 2018). Urban energy systems
conceived as multi-network structures imply a growing number
of intricate interaction between various components. The design
and the operation of such systems requires to take into account
complex multi-domain operational constraints. Simulation is a
compulsory step to define and to practically implement complex
systems. Finding a viable compromise between integrating the
wanted level of detail in the modelling process — in order to con-
sider critical operational constraints — and ensuring an acceptable
computation time is one of the biggest challenges in urban energy
systems simulation (Van Beuzekom et al., 2015). Furthermore,
it requires competence over multiple domains like natural gas
distribution, medium- and low-voltage power grid regulation or
district heating systems operation.

Using different tools and models for each of the components of
such a complex system allows to benefit from the specific features
offered by those tools in each domain and to capitalize on the expe-
rience of specialized users. Within this context, co-simulation can
be defined as the coupling of simulation tools (also referred to as
simulators) for assessing a partitioned complex system. The idea
is to partition a system into sub-systems, modelling each of them
separately with a specific simulator and to re-create the global
behaviour of the complete system by exchanging data between the
models of the sub-systems at simulation runtime. A co-simulation
tool is the software synchronizing execution and data exchange
of the individual simulators coupled within a co-simulation. The

*Corresponding author

connections and links between the simulators modelling the sub-
systems form a co-simulation graph. A co-simulation graph can
be represented as a directed graph with the simulators (and their
models) of the sub-systems as nodes and links connecting model
inputs and outputs as edges. Each node represents an individ-
ual technical component or a group of technical components (a
building with its decentralized heat production, a centralized heat-
pump, a power grid, etc.). The models require data, parameters
and possibly geographical information in order to reproduce the
behaviour of the depicted component or group of components.
Energy systems at urban scale can be composed of a multitude
of various elements. A proper data model is therefore required to
describe and store the data of the modelled complete system and
its core components interactions.

To these extents, the growing availability of semantic 3D city
models acting as information hub of integrated and harmonised
city-wide information seems to be the ideal answer to the needs
of a co-simulation environment. A semantic 3D city model offers
a representation of the urban space, in that all main urban enti-
ties (buildings, infrastructure, water bodies, etc.) are described
by means of their spatial and non-spatial properties, included
information about their mutual relationships, topology, hierar-
chy and appearance. Of particular interests is that a semantic
3D city model can reduce the effort in terms of data preparation
and provision, as it offers clear data structures, ontologies and
semantics to facilitate data exchange between different domains
and applications. In terms of existing data models, the CityGML
standard (Groger and Pliimer, 2012) is currently the most pow-
erful and omni-comprehensive data model to date at urban and
regional scale. Its availability as open standard yields the intrinsic
advantage of facilitating adoption and replicability of applications
building upon it.

Partitioning and creation of a co-simulation graph for a large-
scale system require multiple layers of abstraction and can easily

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-227-2018 | © Authors 2018. CC BY 4.0 License. 227

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science — The Engine of Change”, 1-5 October 2018, Delft, The Netherlands

lead to illogic connexions and inaccurate modelling. Linking
the co-simulation graph and its nodes to a fully semantic city
model allows to exploit integrated information about most of the
significant city objects and can be used as as safeguard for co-
simulation graph creation avoiding incorrect links.

2. THE SIMULATION PACKAGE

The Simulation Package data model is meant to facilitate the
linkage between semantic 3D city models and a co-simulation
environment. The main ideas and requirements leading to its
development, a short description of the resulting data model, as
well as its implementation as database schema are given in the
following.

2.1 Conceptual model

A crucial prerequisite for the creation of meaningful simulation
models is the availability of high-quality, city-wide data. Within
this context, CityGML and its application domain extensions like,
for example, the Energy ADE (Agugiaro et al., 2018) and the
Utility Network ADE (Kutzner and Kolbe, 2016) enable a coherent
approach for modelling geospatial and semantic information for
further use in modelling and simulation, with particular attention
to the energy domain. However, on top of the domain-specific
data defined by these data models, additional meta-information
is required to execute an actual simulation. This is especially
true in the case of a co-simulation, where not only configurations
are required for each individual simulator (e.g., integrator steps
sizes or initial conditions), but also specific information regarding
the coupling and the orchestration of several simulator instances.
Consequently, the logical next step is a persistency schema for this
type of information that integrates with the CityGML data model
and its database implementation.

The Simulation Package represents therefore a first step towards
linking semantic 3D city modelling and multi-domain co-simula-
tion for urban energy modelling at urban scale. The UML diagram
of the Simulation Package is presented in Figure 1. The structure
of the package specifically targets co-simulation setups. At the
same time, the design aims to be as generic as possible, enabling
the application of the Simulation Package to a large variety of
simulations tools and co-simulation environments. To this end,
the following classes have been defined:

Instances of class Simulation are — from a hierarchical point
of view — the top-level objects describing a co-simulation setup.
An instance of class Simulation links all the relevant entities
required to define the composition of several simulators. Fur-
thermore, it enables to store additional parameters related to the
orchestration of the simulators (i.e., configuration parameters for
the co-simulation master algorithm) as generic attributes, con-
tained in class GenericParameter. Class Simulation can op-
tionally reference class Scenario from the CityGML Scenario
ADE. The latter is conceived to allow for a systematic representa-
tion of different scenarios within a city. For further details about
the Scenario ADE the reader is invited to refer to the respective
documentation (Agugiaro and Widl., 2018).

Instances of class Node represent the basic simulation units of
a co-simulation setup. Class Node is an abstraction of the sim-
ulation models and tools themselves, providing the information
relevant to the initialization and execution of the simulation units.
Information about the associated simulation model (e.g., name

or parameters) can be specified as generic attributes (through
class GenericParameter). Furthermore, instances can be linked
with CityGML objects derived from class _CityObject, which
allows to link them to domain-specific semantic data of a city
model (useful, for instance, for automated model creation or vali-
dation). A node object can represent a template node (i.e., attribute
isTemplate is TRUE), or be itself derived from a parent template
node. In the latter case, the additional relation derivesFrom is
used.

The AbstractPort class is an abstract class that is imple-
mented by InputPort and OutputPort. Instances of classes
InputPort and OutputPort represent, respectively, the input
and output variables of a simulation node used by a co-simulation
tool to send/retrieve information to/from the associated simula-
tor. In both cases, a port is intended to represent only a single
scalar variable and must correspond to a variable in the associated
simulation model with the same name and type. Like in the case
of class Node, instances can be associated to CityGML objects
derived from class _CityObject.

The PortConnection class provides the possibility to link ports
of different nodes, with each instance linking exactly one input
port with one output port. This corresponds to the exchange
of one scalar value between these two ports. The classes Node
and PortConnection are the fundamental building blocks for
defining the coupling between simulators in a co-simulation graph.

The SimulationTool class contains information specific to the
simulation tool used by a node. This information is stored sepa-
rately from the simulation nodes in order to avoid duplications, as
in a co-simulation several nodes may use instances of the same
simulation tool. In order to be flexible enough, the class relies
mostly on generic attributes (through class GenericParameter)
next to a few basic attributes regarding mainly dependencies on
the OS, version, etc.

2.2 Implementation as extension of the 3DCityDB

The 3D City Database or, in short, 3DCityDB (Yao et al., 2018)
represents the reference implementation as database schema of
the CityGML data model. It comes with a number of open-source
tools that help with import and export operations of CityGML data.
Initial work has been carried out recently to extend the 3DCityDB
and add support for any ADEs (Yao and Kolbe, 2017), with con-
crete examples of implementations for the Energy ADE (Agugiaro
and Holcik, 2017), the Utility Network ADE (Boates et al., 2018,
Den Duijn et al., 2018) and the Scenario ADE (Schiiler et al.,
2018).

The 3DCityDB Simulation Package builds on top of the above-
mentioned “extended” 3DCityDB and is currently implemented
for PostgreSQL only. The overall goal of this extension is to fa-
cilitate direct connection and usage of the 3DCityDB relational
database by users and applications programmers. Besides the data-
base schema, the 3DCityDB Simulation Package is shipped with
a set of stored procedures that are automatically installed during
the setup and that, conceptually, reflect the logic of the analogous
ones shipped with the “standard” 3DCityDB. All database objects
are stored within an instance of the 3DCityDB, and are all con-
tained in a schema called sim pkg. All software resources, the
accompanying documentation and a small test dataset are avail-
able as open-source on GitHub (Agugiaro, G. and the 3DCityDB
Development Team, 2018).

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-227-2018 | © Authors 2018. CC BY 4.0 License. 228

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science — The Engine of Change”, 1-5 October 2018, Delft, The Netherlands

+scenarioMember

S «featureType»
f(eatureType» o ’ CityGML_Core::
Scenario_ADE 0.2::Scenario +refersTo, CityModel
0.1
0.1
+refersTo «featureType» +cityObjectMember
CityGML_Core::
0.1 _CityObject
0.*
«featureType»
Simulation
«dataType»
+ creationDate: Date [0..1] +additionalParameter GenericParameter
+ creatorName: CharacterString [0..1] X
+ timelnterval: TM_IntervalLength 0..* + arrayVaIue..doub.IeLlst [0.1]
+ timeStart: TM_Position * Zonn\jcredcgyobj[zctl.]URl [021)
N e + ateValue: Date [O..
+ timeStop: TM_Position
- + description: CharacterString [0..1]
N + integerValue: int [0..1]
+additionalParameter + name: CharacterString
1k realValue: double [0..1]
0. + stringValue: CharacterString [0..1]
+ uom: UnitOfMeasure [0..1]
+ URIValue: URI [0..1]
+node
0..*
«featureType» AR +additionalParameter
stiactiort +port Node +derivesFrom 0..1
+ connectedCityObject: URI [0..1] é

+ variableName: CharacterString
+ variableType: VariableTypeValue

o

+portConnection PortConnection

*

+ connectedCityObject: URI [0..1]
+ isTemplate: Boolean

[

+simulationTool 1

«featureType»
SimulationTool «enumeration»

VariableTypeValue

«featureType» «featureType» + connectionParameters: CharacterString
InputPort OutputPort + creationDate: Date [0..1] integer
+ creatorName: CharacterString [0..1] boolean
1 1 + dependencies: CharacterString [0..1] doublePrecision
+inputPort +outputPort + operatingSystem: CharacterString measure
+ operatingSystemVersion: CharacterString characterString
0.% + serverAddress: URI date
% «featureType» + serverName: CharacterString timestamp

Figure 1. UML diagram of the Simulation Package: its classes are depicted in light beige, while the azure ones belong to the CityGML

data model and the green one to the Scenario ADE

3. CASE STUDY AND IMPLEMENTATION

This section provides a concrete example for the application of the
Simulation Package presented in the previous section, demonstrat-
ing how the data model can be applied to a specific co-simulation
tool. As different co-simulation tools employ different ways of
semantically representing co-simulation graphs, this example is
not representative for the entirety of co-simulation tools. However,
the example illustrates the mapping of the Simulation Package’s
data model to a co-simulation tool’s specific representation of a co-
simulation graph, showcasing the applicability and flexibility of
the Simulation Package design. Furthermore, this section gives an
overview about the implementation of a data access layer (DAL),
which serves in the example as the actual interface between the
database instance and the co-simulation tool.

3.1 The IntegrCiTy co-simulation toolchain

The IntegrCiTy project (IntegrCiTy Project Team, 2018) focuses
on the development and implementation of an integrated decision-
support environment for city planners and energy providers to

improve efficiency and resilience of energy supply infrastructures.
An important asset in this decision support environment is a co-
simulation toolchain, which allows to perform very detailed tech-
nical assessments of proposed changes and extensions of energy
supply infrastructure.

The core of the co-simulation toolchain is the OBNL software
package, the OBvious Node Link co-simulator (OBNL Devel-
opment Team, 2018). OBNL is an open-source Python package
that provides a light-weight implementation of a co-simulation
orchestrator for the synchronization of other simulators and the
data exchange between them. OBNL has been specifically de-
signed to work with Docker (Docker, Inc., 2018), which allows
to package simulators and implemented models into executable
containers. From a user perspective, setting up a co-simulation in
the IntegrCiTy toolchain is reduced to defining the co-simulation
graph, whose information is subsequently used to deploy the con-
tainerized applications and execute the co-simulation with the help
of the functionality provided by OBNL.

To facilitate the creation of co-simulation graphs for urban multi-

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

https://doi.org/10.5194/isprs-annals-1V-4-227-2018 | © Authors 2018. CC BY 4.0 License.

229

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science — The Engine of Change”, 1-5 October 2018, Delft, The Netherlands

Meta-model input: A

. ’
implements R4

4
7’

air source
heat pump

instance of/

air source
heat pump
instance #1

Model

Node

heat pump

\nstance of

air source
heat pump
instance #2

output: B

\\\ implements

N\,
~

water source
heat pump

\nstance of

water source
heat pump
instance #1

example co-simulation:
2 air source heat pumps
1 water source heatpump

Figure 2. Overview of the relation between meta-models, models and nodes in the IntegrCiTy co-simulation toolchain.

energy system simulations, an extended concept for representing
simulators and models has been developed on top of OBNL’s
generic notion of nodes and links. This enables a semantic repre-
sentation of individual parts of the co-simulation setup, offering
the user the advantages discussed in Section 1. This concept
comprises the following elements:

e The fundamental building blocks is the so-called meta-model,
which defines the generalized features of a specific compo-
nent (or group of components) of the complete system. More
precisely, it defines the attributes a simulation model of such
a component (or group of components) has to implement. In
terms of co-simulation, the attributes are basically the inputs
and outputs of an individual simulation model.

e The abstract definition of a meta-model is implemented by so-
called models. In general, several models may implement the
same meta-model, expressing differences associated to the
modelling approach (levels of detail, model of computation,
etc.) or the physical component they represent (e.g., different
technologies for the same type of component). Models are
directly associated to containerized applications.

e Finally, a node is an actual instance of a model that is to be
deployed as an individual simulator in a co-simulation. In
general, several node instances of the same model can be
present in a co-simulation.

e The inputs and outputs of nodes (implicitly defined through
the linked meta-model) can be connected using /inks. Each
link can associate exactly one input with one output.

Figure 2 depicts the concept of meta-models, models and nodes
and their relations, using a simple example. The meta-model
on the top defines the template for all models representing a
heat pump, including its attributes (one input attribute called
A and one output attribute called B). This template is then im-
plemented by two specific models (air source heat pump, water
source heat pump), which can be instantiated as actual nodes in a
co-simulation (other nodes and links not shown here).

3.2 Mapping the IntegrCiTy co-simulation graph to the Sim-
ulation Package

The representation of co-simulation setups in the IntegrCiTy tool-
chain cannot be mapped one-to-one to the scheme provided by the
Simulation Package for two reasons:

o Semantic representation: IntegrCiTy’s notion of meta-mod-
els, models and nodes is more complex than the concept
provided by the Simulation Package, which only provides
the classes Node and SimulationTool to represent the edges
of a co-simulation graph.

e Specific parameterization: OBNL’s deployment requires cer-
tain parameters (e.g., related to Docker), which are too spe-
cific to be defined as part of the general Simulation Package
scheme.

However, the design of the Simulation Package schema is rich and
generic enough to allow an unambiguous mapping to IntegrCiTy’s
representation of co-simulation graphs. Specifically, the Simula-
tion Package’s concept of template nodes and generic parameters
can be used to establish this mapping. In the following, the ratio-
nale behind the mapping is explained:

e IntegrCiTy meta-models can be conceptually best matched
using class Node of the Simulation Package. More precisely,
meta models are represented as template nodes, with their
attributes represented as input and output ports. As such,
they are not intended to be directly linked to a specific co-
simulation setup (and neither are their ports intended to be
connected with other ports). They are rather intended as
generic templates, collected in a “library” of meta-models.

o IntegrCiTy’s notion of models is closely connected to the ac-
tual implementation of these models (typically using Docker
containers). Hence, they can be conceptually best matched
with class SimulationTool. The technical details of the
model implementation that are not covered by attributes of

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-227-2018 | © Authors 2018. CC BY 4.0 License. 230

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science — The Engine of Change”, 1-5 October 2018, Delft, The Netherlands

node_id

HeatPump:Node A:InputPort

boolean is_template = TRUE | nodeid | B:OutputPort

parent_id

- - I_id
WaterSourceHP:SimulationTool <~—2="— :GenericParameter

tool_id

AirSourceHP:SimulationTool <———— .GenericParameter

tool_id ’

) i) - i
Simulation01:Simulation <——=— :GenericParameter

!

AirSourceHP01:Node

boolean is_template = FALSE

de_id i id
PR LI A:lnputPort «meutpond :PortConnection

node_id output_port_id
<«—— B:OutputPort

node_id

node_id

:PortConnection

:GenericParameter

:GenericParameter

boolean is_init_parameter = TRUE

Figure 3. Example representation of node AirSourceHP01, linking to the associated meta-model (HeatPump), model (AirSourceHP) and
co-simulation setup (simulation01). Also shown are the node’s generic parameters, initial values and the port connections (links to other
ports not shown)

class SimulationTool can be represented with the help of
generic attributes. Just like meta-models, model representa-
tions are not linked to any specific co-simulation setup.

o IntegrCiTy nodes can be directly mapped to class Node. In-
stances of nodes are basically clones of the corresponding
meta-models, with the important difference that they are not
template nodes. The node also replicates the same input and
output ports (using the exact same name) as the correspond-
ing meta-model, which can then be linked to port connections
for building up the co-simulation graph.

e A distinctive feature of IntegrCiTy nodes are their associated
set of initial values, which is a list of start values passed to
the model at the start of the simulation. They can be rep-
resented by generic parameters, with the Boolean attribute
is_init_parameter set to TRUE. This allows to differenti-
ate between other generic parameters and initial values.

e All nodes and port connections of a co-simulation setup link
to an instance of class Simulation, basically connecting
them to one co-simulation graph.

Figure 3 visualizes the mapping by giving an example based
on Figure 2. It shows the representation of a node called
AirSourceHP01, which instantiates model AirSourceHP and
implements meta-model HeatPump.

3.3 The IntegrCiTy data access layer

Figure 4 visualizes the concept of the data access layer (DAL)
developed for the IntegrCiTy toolchain (DBLayer Development
Team, 2018). The goal is to bridge the gap between semantic 3D
city models based on CityGML and technical assessments of multi-
domain urban energy systems based on co-simulation. In this
concrete instance, this is done by linking the extended 3DCityDB
(including the Simulation Package) and the tools developed for
the IntegrCiTy project.

The DAL implementation relies on state-of-the-art software pack-
ages provided by Python and several new developments for the
extended 3DCityDB (as described in Section 2.2):

3D city multi-domain
models simulations
CityGML co-simulation
data access layer
(bi-directional mapping
Extended 3DCityDB & using SQLAIchemy) IntegrCiTy
Simulation Package toolchain
(PostgresSQL) (Python)

Figure 4. Concept of the IntegrCiTy data access layer.

e The DAL is based on functionality provided by the SQLAI-
chemy software package (SQLAlchemy Development Team,
2018). Apart from a toolkit to interact with SQL-based
databases, it also offers a so-called Object Relational Map-
per (ORM). This ORM presents a method of associating
user-defined Python classes with database tables, and in-
stances of those classes (objects) with rows in their corre-
sponding tables. This mapping is done at runtime using meta-
information from the database, which means that changes in
the database scheme are automatically reflected in the DAL.

e The extended 3DCityDB and the Simulation Package come
with functions for inserting/deleting objects to/from the data-
base. Thanks to SQLAlchemy, these SQL functions can be
easily mapped to Python functions, enabling a user-friendly
interaction with the database as needed for IntegrCiTy work-
flows.

e Furthermore, the extended 3DCityDB and the Simulation
Package define so-called views linking information other-
wise distributed over several tables. SQLAlchemy allows
to interact with these views just like with ordinary tables,
increasing the user-friendliness of data access and reducing
the need for users to define complicated queries.

3.4 Example application

In the following, a minimalistic co-simulation setup is used to
demonstrate the basic functionality of the DAL described in the

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-227-2018 | © Authors 2018. CC BY 4.0 License. 231

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science — The Engine of Change”, 1-5 October 2018, Delft, The Netherlands

1

2

input: a BaseMeta output: b 3
4

5

“ 6

| 7

implements I 8

| 9

: 10

1

12

13

BaseModel 14

15

16

17

18

19

instance of instance of 20
21

2

23

24

25

BaseO Basel %

27

from ictdeploy import Simulator
Create simulation.

sim =

Simulator ()

Create meta-model.

sim.edit.add_meta(

)

name='BaseMeta', set_attrs=['a'], get_attrs=['b']

Create model.
sim.edit.add_model(

)

name='BaseModel', meta='BaseMeta',

Add nodes.
sim.edit.add_node(

)

name='Base0', model='BaseModel',
init_values={'c': 0.5},

sim.edit.add_node(

)

name='Basel', model='BaseModel',
init_values={'c': 0.25},

Add links.
sim.edit.add_link(

)

get_node='Base0', get_attr='b',
set_node='Basel', set_attr='a'

sim.edit.add_link(

)

get_node='Basel', get_attr='b',
set_node='BaseO', set_attr='a'

Figure 5. Definition of the simple co-simulation setup example.

previous section. After a short overview of the setup, three exam-
ples show anticipated workflows for interacting with the database
for users of the IntegrCiTy toolchain.

Please note that the presented examples have been kept simple on
purpose in order to focus on the functionality provided by the DAL.
For examples of more advanced apllications refer to the examples
provided with the DAL implementation (DBLayer Development
Team, 2018).

3.4.1 Simple co-simulation setup: Figure 5 shows the sim-
ple co-simulation setup used further down (see Sections 3.4.3
and 3.4.4). The left side of the figure shows the conceptual com-
position of the setup in terms of meta-models, models and nodes,
with a graphical representation of the co-simulation graph at the
bottom. The co-simulation setup comprises a system divided in
two sub-systems, with each sub-system represented as an individ-
ual node. Output b of node BaseO is linked to input a of node
Basel and vice versa, forming a cyclic dependency between the
two nodes.

The right side of Figure 5 shows the pseudo code for defining the
model within the IntegrCiTy toolchain (ICTDeploy Development
Team, 2018). The depicted code is not complete, it rather only
shows how to add meta-models (lines 5-7), models (lines 9-11),
nodes (lines 13-20) and links (lines 22-29) to a co-simulation
setup. Setting the initial value for a model parameter called c
(not depicted on the left side of the figure) is shown in lines 15
and 19. Setting the values of other model or node parameters
(especially related to the Docker implementation) are indicated
only by ellipses (lines 10, 15 and 19). Setting of global simulation

parameters is not shown at all. The full example (including exe-
cutable models) is available online (Puerto, P. and the ICTDeploy
Development Team, 2018).

3.4.2 Accessing the extended 3DCityDB: In this section ba-
sic examples of how to interact with the 3DCityDB through the
implemented DAL are shown. The most basic functionality of the
DAL is to provide access to the database. This is achieved through
class DBAccess, which allows to connect to an instance of the
extended 3DCityDB by calling function connect_to_citydb.
The following examples demonstrates how to establish such a
connection:

1 from dblayer import *
2
3 access = DBAccess()

connect = PostgreSQLConnectionInfo(
user='postgres', pwd='postgres',
host='localhost', port='5432', dbname='testdb'
)

© ® 9 o w A

10 access.connect_to_citydb(connect)

After a successful connection, class DBAccess offers several func-
tions enabling a user-friendly interaction with the database. For
instance, an important feature is that the SQL functions of the
extended 3DCityDB can be called to insert new objects. The fol-
lowing code snippet demonstrates how a new heat pump object is
inserted with a reference to the building it belongs to (e.g., with
building ID 1122) using SQL function insert_heat_pump (lines
1-5). Finally, these changes are committed permanently to the
database (line 7).

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

https://doi.org/10.5194/isprs-annals-1V-4-227-2018 | © Authors 2018. CC BY 4.0 License.

232

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science — The Engine of Change”, 1-5 October 2018, Delft, The Netherlands

1 hp_id = access.add_citydb_object(

2 insert_heat_pump, name='HEATPUMP_O1',
3 nom_effcy=1.2, effcy_indicator='COP',
4 inst_in_ctyobj_id=1122

50)
7 access.commit_citydb_session()

In the context of creating co-simulation setups it is probably most
important to have easy access to data already available in the data-
base. For this, the extended 3DCityDB provides in many cases con-
venient views. The following example shows how this can be done
in the case of heat pump data. First, class HeatPump is associated
with the view citydb_view.nrg8_conv_system heat_pump
(lines 1-4). This association is then used to refine condi-
tions for querying the database (lines 6-9). Finally, function
get_citydb_objects is called to retrieve data from the speci-
fied view with the specified query conditions (lines 11-13). Lines
15-16 show that the attributes of the retrieved objects indeed
reflect the content of the specified view.

1 HeatPump = access.map_citydb_object_class(

2 'HeatPump', schema='citydb_view',

3 table_name='nrg8_conv_system_heat_pump'
4)

5

6 conditions = [

7 HeatPump.name=="HEATPUMP_O1"',

8 HeatPump.nom_effcy==1.2

9 1

11 heatpumps = access.get_citydb_objects(
12 'HeatPump', conditions=conditions

15 effcy_ind = heatpumps[0].effcy_indicator
16 heatpump_id = heatpumps[0].id

3.4.3 Interfacing with the Simulation Package: The DAL
also implements the mapping of the Simulation Package scheme
to IntegrCiTy’s concepts for representing co-simulation graphs
(as defined in Section 3.2), providing basically a persistence layer
for co-simulation setups. For storing co-simulation setups to the
extended 3DCityDB, the DAL provides class DBWriter. Upon
connecting to the database (line 1), a co-simulation setup can be
assigned a name and written to the database with the help of a
single command. Lines 3—5 show how this is done for the exam-
ple from Section 3.4.1. The parameters in line 4 indicate that a
co-simulation setup already defining meta-model MetaBase and
model BaseModel has been previously written to the same data-
base (otherwise the corresponding parameters should be omitted).

| writer = DBWriter(connect)

3 writer.write_to_db(sim, 'TestSimil',
4 write_meta_models=False, write_models=False

500)

For reading co-simulation setups from the extended 3DCityDB,
the DAL provides class DBReader. Upon connecting to the data-
base (line 1), a co-simulation setup stored in the database can
be referred to by name and retrieved with the help of a single
command (line 3). In the example below, which simply reads
back the co-simulation setup written in the previous example, the
resulting object sim_read would be identical to object sim from
the example in Section 3.4.1.

1 reader = DBReader(connect)
2
3 sim_read = reader.read_from_db('TestSiml')

3.4.4 Associate co-simulation graphs with 3DCityDB data:
In the current IntegrCiTy toolchain, the association of co-simula-
tion graphs with 3DCityDB data happens first and foremost by
using the available information to parametrize simulation models.
In the context of urban energy systems simulation, this comprises
not only scalar model parameters (e.g., U-values for walls) but also
time-series data as provided via the Energy ADE (e.g., electrical
load profiles).

The rather trivial approach for such an association is to directly
retrieve certain values with the help of the DAL (according to
the example in Section 3.4.2) and setting them as initial values
when defining the co-simulation graph (compare lines 15 and
19 in Figure 5). However, IntegrCiTy’s DAL and the Simula-
tion Package also allow to persistently store associations with
attributes of 3DCityDB objects and generic parameters. This is
demonstrated in the following pseudo code snippet, which basi-
cally extends the setup shown in Figure 5 by defining an instance
of class AssociateCityDBObject (lines 4-7) and assigning it
to parameter ¢ of node BaseO (lines 10-11).

1 table = 'citydb_view.nrg8_conv_system_heat_pump'
2> attribute = 'nom_effcy'

4 associate_object = AssociateCityDBObject(

5 table_name=table,

6 object_id=heatpump_id,
7 column_name=attribute
s)

10 sim.edit.nodes.loc['BaseO'].init_values['c'] =\
11 associate_object

13 writer.write_to_db(sim, 'TestSim2',
14 write_meta_models=False, write_models=False

15)

Please note that in above example the resulting co-simulation
graph object sim would not be valid to deploy an actual co-
simulation (because parameter c is not associated to a scalar or
vector). However, when writing the setup to the database, the
association of parameter ¢ with the corresponding table attribute
is stored persistently. Furthermore, when reading this stored co-
simulation setup from the database (using class DBReader), the
association is automatically resolved. This means that parameter
c in the resulting co-simulation graph object would have the corre-
sponding numerical value and the object would be valid to deploy
an actual co-simulation.

4. CONCLUSION AND OUTLOOK

This paper has presents initial work carried out to link semantic 3D
city modelling and multi-domain co-simulation for urban energy
modelling at urban scale. Starting from the CityGML data model
(and the derived 3DCityDB as database schema implementation),
a Simulation Package extension for the 3DCityDB has been con-
ceived and implemented. The Simulation Package is meant to
model and store in an integrated way additional meta-information
which is required to execute an actual simulation or co-simulation.
In the latter case, not only configurations are required for each
individual simulator, but also specific information regarding the
coupling and orchestration of several simulator instances.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-227-2018 | © Authors 2018. CC BY 4.0 License. 233

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science — The Engine of Change”, 1-5 October 2018, Delft, The Netherlands

In the context of project IntegrCiTy, the Simulation Package has
been adopted in order to build on top of it a Python-based data ac-
cess layer allowing for linkage with an OBNL-based co-simulation
tool. It lays the foundation for a two-way connection between a de-
tailed city-scale data model and simulation models of centralised
and distributed complex energy systems, and it tries to answer the
lack of extensible and adaptable cross-domain ontologies.

Work carried out within the IntegrCiTy project is a first step to-
wards linking semantic 3D city modelling and multi-domain co-
simulation for urban energy modelling at urban scale. Although
at a rather initial state of development, the assumption is that the
developed tools are generic and flexible enough to be used also
in other contexts. The wish is that the availability of a common,
shared data model and the accompanying data access layer will
contribute and foster adoption and further improvement of the
Simulation Package in a sort of virtuous circle.

ACKNOWLEDGEMENTS

Research and implementation work presented in this paper has
been carried out within the project IntegrCiTy (IntegrCiTy Project
Team, 2018) (ERA-NET Cofund Smart Cities and Communities
call). In Switzerland, it is funded by the Swiss Federal Office of
Energy (contract SI/501404-2), as well as by the industrial and
institutional partners of the project. In Austria, it is funded by the
Austrian Federal Ministry for Transport, Innovation and Technol-
ogy within the framework of the ENERGIE DER ZUKUNFT/JPI
Urban, with support from the European Union’s Horizon 2020 re-
search and innovation programme. Please visit the project website
for a full list of project consortium partners.

REFERENCES

Agugiaro, G. and Holcik, P., 2017. 3D City Database extension for
the CityGML Energy ADE 0.8 PostgreSQL Version — Documen-
tation. https://github.com/gioagu/3dcitydb_ade/blob/
master/02_energy_ade/manual.

Agugiaro, G. and the 3DCityDB Development Team, 2018.
3D City Database “Plus” Software. https://github.com/
gioagu/3dcitydb_ade.

Agugiaro, G. and Widl., E., 2018. CityGML 3D City Data-
base Simulation Package, PostgreSQL Version — Documenta-
tion. https://github.com/gioagu/3dcitydb_ade/tree/
master/05_simulation_pkg/documentation.

Agugiaro, G., Benner, J. et al., 2018. The energy application
domain extension for citygml: enhancing interoperability for ur-
ban energy simulations. Open Geospatial Data, Software and
Standards 3(1), pp. 2.

Boates, 1., Agugiaro, G. and Nichersu, A., 2018. Network mod-
elling and semantic 3D city models: how mature is the Utility
Network ADE? A test case based on a water network. In: ISPRS
Ann. Photogramm. Remote Sens. Spatial Inf. Sci., GeoDelft 2018
Conference, The Netherlands.

DBLayer Development Team, 2018. The DBLayer Pack-
age — IntegrCiTy Data Access Layer. https://github.com/
IntegrCiTy/obnl.

Den Duijn, X., Agugiaro, G. and Zlatanova, S., 2018. Modelling
below- and above-ground utility network features with the citygml
utility network ade: experiences from rotterdam. In: ISPRS Ann.
Photogramm. Remote Sens. Spatial Inf. Sci., GeoDelft 2018 Con-
ference, The Netherlands.

Docker, Inc., 2018. Docker containerization platform. https:
//www.docker.com/.

Groger, G. and Pliimer, L., 2012. CityGMLinteroperable semantic
3D city models. ISPRS J Photogramm Remote Sens. 71, pp. 12-33.

ICTDeploy Development Team, 2018. IntegrCiTy co-simulation
deployment APIL https://github.com/IntegrCiTy/
ictdeploy.

Ilic, M., Xie, L. et al., 2008. Modeling future cyber-physical
energy systems. In: 2008 IEEE Power and Energy Society General
Meeting - Conversion and Delivery of Electrical Energy in the
21st Century, pp. 1-9.

IntegrCiTy Project Team, 2018. Decision-support environ-
ment for planning and integrating multi-energy networks and
low-carbon resources in cities. http://iese.heig-vd.ch/
projets/integrcity.

Kutzner, T. and Kolbe, T., 2016. Extending semantic 3d city mod-
els by supply and disposal networks for analysing the urban supply
situation. In: Ldosungen fiir eine Welt im Wandel, Dreiliindertagung
der SGPF, DGPF und OVG, 36. Wissenschaftlich-Technische
Jahrestagung der DGPF, pp. 382-394.

Lund, H., Werner, S. et al., 2014. 4th generation district heating
(4gdh): Integrating smart thermal grids into future sustainable
energy systems. Energy 68, pp. 1-11.

OBNL Development Team, 2018.
co-simulator (OBNL) Software.
IntegrCiTy/obnl.

OBvious Node Link
https://github.com/

Puerto, P. and the ICTDeploy Development Team,
2018. Minimal dummy example with ICTDeploy.
https://github.com/IntegrCiTy/DemoDeployICT/blob/
master/MinimalExample.ipynb.

Schiiler, N., Agugiaro, G. and Marechal, F., 2018. Linking in-
teractive optimisation for urban planning with semantic 3d city
models. In: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf.
Sci., GeoDelft 2018 Conference, The Netherlands.

SQLAIchemy Development Team, 2018. The SQLAlchemy SQL
Toolkit and Object Relational Mapper Software, Version 1.2.
http://docs.sqlalchemy.org.

Van Beuzekom, I., Gibescu, M. and Slootweg, J., 2015. A re-
view of multi-energy system planning and optimization tools for
sustainable urban development. In: IEEE Eindhoven PowerTech,

pp- 1-7.

Widl, E., Jacobs, T., Schwabeneder, D. et al., 2018. Studying
the potential of multi-carrier energy distribution grids: A holistic
approach. Energy 153, pp. 519-529.

Yao, Z. and Kolbe, T., 2017. Dynamically extending spatial
databases to support CityGML application domain extensions
using graph transformations. In: 37. Wissenschaftlich-Technische
Jahrestagung der DGPF in Wiirzburg - Publikationen der DGPF,
Vol. 26, pp. 316-331.

Yao, Z., Nagel, C. et al., 2018. 3DCityDB - A 3D Geodatabase
Solution for the Management, Analysis, and Visualization of Se-
mantic 3D City Models based on CityGML. Open Geospatial
Data, Software and Standards.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-227-2018 | © Authors 2018. CC BY 4.0 License. 234

