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a b s t r a c t

In pharmaceutical development, it is very useful to exploit the knowledge of the causal relationship
between product quality and critical material attributes (CMA) in developing new formulations and prod-
ucts, and optimizing manufacturing processes. With the big data captured in the pharmaceutical indus-
try, computational intelligence (CI) models could potentially be used to identify critical quality attributes
(CQA), CMA and critical process parameters (CPP). The objective of this study was to develop computa-
tional intelligence models for pharmaceutical tabletting processes, for which bio-inspired feature selec-
tion algorithms were developed and implemented for optimisation while artificial neural network (ANN)
was employed to predict the tablet characteristics such as porosity and tensile strength. Various pharma-
ceutical excipients (MCC PH 101, MCC PH 102, MCC DG, Mannitol Pearlitol 200SD, Lactose, and binary
mixtures) were considered. Granules were also produced with dry granulation using roll compaction.
The feed powders and granules were then compressed at various compression pressures to produce
tablets with different porosities, and the corresponding tensile strengths were measured. For the CI mod-
elling, the efficiency of seven bio-inspired optimization algorithms were explored: grey wolf optimization
(GWO), bat optimization (BAT), cuckoo search (CS), flower pollination algorithm (FPA), genetic algorithm
(GA), particle swarm optimization (PSO), and social spider optimization (SSO). Two-thirds of the exper-
imental dataset was randomly chosen as the training set, and the remaining was used to validate the
model prediction. The model efficiency was evaluated in terms of the average reduction (representing
the fraction of selected input variables) and the mean square error (MSE). It was found that the CI models
can well predict the tablet characteristics (i.e. porosity and tensile strength). It was also shown that the
GWO algorithm was the most accurate in predicting porosity. While the most accurate prediction for the
tensile strength was achieved using the SSO algorithm. In terms of the average reduction, the GA algo-
rithm resulted in the highest reduction of inputs (i.e. 60%) for predicting both the porosity and the tensile
strength.

1. Introduction

Over 70% pharmaceutical products are in the tablet form, which
is manufactured with die compaction of formulated blends. Most
pharmaceutical blends need to go through granulation processes
to improve their processabilities. Two types of granulation pro-

cesses are generally used: wet granulation and dry granulation.
In recent years, dry granulation has become one of the primary
production processes for pharmaceutical tablets [1–3] due to its
distinct advantages for heat and moisture sensitive materials. Roll
compaction is a widely used dry granulation technique that con-
sists of two main steps: (1) roll compaction of raw material to
obtain ribbons and (2) milling the ribbons into granules. The gran-
ules are then used to produce tablets. It is well recognized that the
variation in composition and the quality of tablets are determined
by material properties and process conditions during die filling,
compaction and ejection [4].
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One of the grand challenges in pharmaceutical development is
to identify the causal relationship between material properties,
intermediate properties, process variables and final product prop-
erties [5]. For example, it is well known that comparing tablets
produced by direct compression, the tablets made with granules
produced using roll compaction generally have lower tensile
strengths, i.e. there is a loss in tabletability [6,7]. Several attempts
were then made to explain this behavior. For example, Malkowska
and Khan [8] proposed the concept of work hardening that was
defined as the increase of resistance to permanent deformation
of a material with the amount of deformation and argued that
work hardening led to the observed reduction in tabletability of
pharmaceutical excipients. Sun and Himmelspach [9] showed that
tabletability of MCC powders reduced with increasing granule size,
and suggested that granule size enlargement was primarily
responsible for the reduction in tabletability, because larger gran-
ules tend to pack less efficiently due to smaller binding/contact
areas, resulting in a reduced tensile strength of the tablets. This
illustrates that many factors (i.e. features) play a role in determin-
ing the quality of final products. However, the contribution of each
feature varies from process to process, and from product to prod-
uct. It is of practical and scientific importance to identify the dom-
inant ones, i.e. to select the dominant feature in formulation design
and product development.

Feature selection is very important in many engineering prac-
tices, due to the abundance of noisy, irrelevant, or misleading fea-
tures. In the development of predictive models, the redundant and
irrelevant features could degrade the model performance during
the learning process [10]. Feature selection is particularly useful
when the number of features is large and not all of them are
required for describing the data and for further exploring the data
features in experiments [11]. This process leads to reduction in the
dimensionality of feature space for a successful prediction task.
Feature selection also helps understanding data, reducing compu-
tation requirements, and reducing the effect of the curse of dimen-
sionality [12]. The selected features will improve the prediction
model performance and provide a faster and more cost-effective
prediction while maintaining the predictability (i.e. accuracy)
[13]. Identification and selection of the relevant features is, how-
ever, a complex problem. Feature selection is considered as a mul-
tiobjective task that minimizes both the selected features and the
prediction error. These two objectives are normally contradicted
and the optimal solution needs to be sought in the presence of a
tradeoff between them [14]. Hence a robust optimisation tech-
nique becomes essential in feature selection.

For optimisation, various heuristic techniques mimicing the
social behaviour of biological and physical systems of insects,
birds, animals, fish in nature were proposed [15]. For instance,
genetic algorithm (GA) was the first evolutionary algorithm intro-
duced in the literature that mimics the natural evolution process of
a population of initial individuals [16]. Particle swarm optimiza-
tion (PSO) was one of the well-known swarm algorithms based
on the movement and the social behaviour of birds within a flock
[17]. Artificial bee colony (ABC) was a numerical optimization algo-
rithm based on the foraging behavior of honeybees [18]. A virtual
bee algorithm (VBA) was developed to optimise the numerical
function in 2-D using a swarm of virtual bees, which move ran-
domly in the search space and interact to find food sources
[19,20]. Artificial fish swarm (AFS) algorithm was introduced to
mimic the stimulant reaction by controlling the tail and fin [21].

However, the application of these optimisation techniques in
feature selection is still very limited for complex pharmaceutical
development and manufacturing, where a feature is a measurable
property contributing to the process performance and product
quality, and the number of features involved is generally very
large, even though the contributions of some features are very

small. Therefore, the purpose of this study is to develop predictive
CI models for the tablet manufacturing process with pharmaceuti-
cal powders and roll-compacted granules, for which various bio-
inspired optimization algorithms are employed for feature selec-
tion and an artificial neural network is applied to predict tablet
properties, such as porosity and tensile strength. The efficiency of
these bio-inspired optimization algorithms for feature selection
will be evaluated for maximising feature reduction (minimizing
the number of selected features, or identifying the most important
features) while obtaining comparable or even better prediction.

2. Bio-inspired optimization algorithms

In this study, seven bio-inspired optimisation algorithms are
considered: (1) Grey Wolf Optimization (GWO), (2) Bat Algorithm
(BAT), (3) Cuckoo Search (CS), (4) Flower Pollination Algorithm
(FPA), (5) Social Spider Optimization (SSO), (6) Genetic Algorithm
(GA), and (7) Particle Swarm Optimization (PSO). For complete-
ness, a brief introduction of these algorithms is presented in this
section, together with a brief description of the artificial neural
network.

2.1. Grey Wolf Optimization (GWO)

Grey wolf optimization (GWO) is a new evolutionary computa-
tion technique that iss successfully applied in many optimization
tasks but still suffers from the lack of fast and global convergence.
Grey wolves manifest a social behaviour – living in groups or packs
(of 5–12 on average) with a very rigid hierarchy made of four dif-
ferent classes [22]:

1. The leaders (denoted as a wolves), consisting of one male
and one female wolves. They are responsible for making nec-
essary decisions onall pack activities, such as hunting, resting,
and travelling. All other wolves in the pack obey their
decisions.

2. Beta bð Þ wolves. They help the a wolves in decision-making and
other group actions, and are the best candidates to be elected as
the next a wolf if a a wolf dies or becomes too old.

3. Delta dð Þwolves. They are obeying the a and bwolves. There are
various types of delta wolves with different duties, such as hun-
ters, sentinels, Scouts, and caretakers.

4. Omega xð Þ wolves. They are considered as the lowest ranked
wolves and have to obey the different dominant wolves.

Each grey wolf decides its position and movement to better
areas. GWO is incorporated with a risk probability that mimics
the events of wolves crashing with their foes. Moreover, each grey
wolf has a particular sensing (coverage) range, indicated as the
visual distance. In each iteration t, the new positions X of the
wolves are determined using Eqs. (1) and (2) [23]. The best fitted
solution is assigned to a, the second-best solution to b, and the
third-best to c. All other solutions are assigned to x.
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where a! is the updating parameter, R1 and R2 are the random vec-
tors with a value in [0, 1].

The a; b, and d wolves are defined, imposing the other agents to
upgrade their positions accordingly. Thus, the wolves’ positions are
updated as

Da
!!

¼ j C1
!!

% Xa
!!

& X
!
j;

Db
!!

¼ j C2
!!

% Xb
!!

& X
!
j;

Dd
!!

¼ j C3
!!

% Xd
!!

& X
!
j

ð5Þ

X1
!!

¼ j Xa
!!

& A1
!!

% Da
!!

j;

X2
!!

¼ j Xb
!!

& A2
!!

% Db
!!

j;

X3
!!

¼ j Xd
!!

& A3
!!

% Dd
!!

j

ð6Þ

X
!

t þ 1ð Þ ¼ X1
!!

þ X2
!!

þ X3
!!

3
; ð7Þ

where t is the iteration number. a;b and d are assigned with random
numbers in [0, 1].

2.2. Bat Algorithm (BAT)

BAT algorithm is a meta-heuristic technique for solving com-
plex optimization problems. Bats use echolocation behavior for
seeking the prey and detect/avoid the obstacles. The bats use time
delay in the reflection of the emitted loud sound pulse from the
surrounding object for navigation in dark [24]. And the magnitude
of the emitted sound fluctuates from a high value when looking at
the prey and a low value when flying near their prey [25]. The bats’
positions can be determined from [26,27]:

Fi ¼ Fmin þ Fmax & Fminð Þb; ð8Þ

Vt
i ¼ Vt&1

i þ Xt
i & X'" #

Fi; ð9Þ

Xt
i ¼ Xt&1

i þ Vt
i ; ð10Þ

where b indicates the random vector defined in the uniform distri-
bution, X' denotes the best position obtained so far, Fmin outlines the
minimum frequency, Fmax shows the maximum frequency, and Vi

depicts the speed vector. Moreover, a local exploration is performed
by employing the random movement as follows

Xnew ¼ Xold þ !At; ð11Þ

where ! is a random number in [&1, 1], and At represents a bat
loudness at the t time and is given as

Atþ1
i ¼ aAt; ð12Þ

where a is a constant that can be experimentally determined, Ri

controls the BAT local search and is determined by:

Rtþ1
i ¼ R0

i 1& exp &ctð Þ½ ); ð13Þ

where R0
i denotes the first pulse emission which has a value larger

than 0.

2.3. Cuckoo Search (CS)

Cuckoo search (CS) is a heuristic search technique inspired by
the cuckoos reproduction strategy [28]. Cuckoos replace their eggs
in the nests of other host birds that may be of different kinds. Once
the host bird notices that the eggs are not its own, it will either
crush the egg or leave the nest to another. Various studies showed
that the flight behavior of many animals and insects had the typical
characteristics of Lèvy flights. Lèvy flights provide a random walk

while their random steps are drawn from a Lèvy distribution for
large steps [28]. In the CS optimisation, a new solution Xi is based
on Lèvy flight and given as

Xtþ1
i ¼ Xt

i þ #* L!evy bð Þ; ð14Þ

where # represents the step size associated with the scale problem
that is set to 1 in most of the cases, * indicates entry wise
multiplications.

Previous studies on the flight behaviour of different animals and
insects [29]. Lèvy flights for large moves could be defined as

L!evy + u ¼ t&k; 1 < k 6 3ð Þ: ð15Þ

Hence, the successive jumps of the cuckoo form a random walk,
and the Lèvy walk should generate some new solutions close to the
best solution, which will advance the local search process [28]. The
CS local search can be formulated as

Xnew
i ¼ Xold

i þ 2 ' r ' Xold
i & Xbest

$ %
; ð16Þ

This can be applied to obtain new cuckoo solutions based on Eq.
(14) [28]. In Eq. (16), r indicates the random number picked from
the Lèvy distribution, Xbest denotes the current best solution, Xold

i

represents an old solution, and Xnew
i demonstrates a newly gener-

ated solution.
The strength of the CS lies in the procedure to discard the wrong

solution, so a fraction pa of solutions are ignored, and the updated
solutions are obtained by

Xnew
i ¼ Xold

i þ rand1 ' rand2 > pað Þ ' Xa & Xbð Þ; ð17Þ

where Xnew
i is the new nest (solution), Xold

i is the old nest to be
neglected, rand1 and rand2 represent two random numbers drawn
from a uniform distribution, pa denote the probability of finding the
nest, Xa and Xb are two randomly selected of the current nests [28].

2.4. Flower Pollination Algorithm (FPA)

Flower pollination algorithm (FPA) is inspired from the flower
pollination process of plants that dictates the ultimate reproduc-
tion. FPA is typically related to the pollen transfer by pollinators
[30]. Pollination is normally carried out in two modes: cross polli-
nation (global search) and self pollination (local search), which are
described in detail as follows [31]:

1. Cross pollination is referred to as the transfer of the pollen of
flowers of different plants separated by a long distance by pol-
linators that can fly a long distance (i.e. also known as global
pollination) [31]. In the cross pollination, it is the pollinators
that assure the pollination and proliferation of the optimal solu-
tion g'. The initial rule may be formulated as

Xtþ1
i ¼ Xt

i þ L Xt
i & g'

" #
; ð18Þ

where Xt
i represents the vector of a i solution at t iteration, g'

demonstrates the present best solution, and L describes the pol-
lination strength that randomly pulled from the Lèvy
distribution.

2. Self pollination is defined as the implantation of one flower from
the pollen of the identical flower or different flowers of the
identical plant, which usually happens when there is no pollina-
tor available [32]. The local pollination and flower constancy are
expressed as

Xtþ1
i ¼ Xt

i þ ! Xt
j & Xt

k

$ %
; ð19Þ

where Xt
j and Xt

k demonstrate two random solutions, and !
denotes the uniform distribution function.



Since local pollination can be substantial, denoted by the fraction
(p), in the aggregate pollination actions (in this study, it is assumed
that p = 0.5). A switching probability p! 0;1½ ) controls the local and
global pollination.

2.5. Social Spider Optimization (SSO)

Social spider optimization (SSO) is a population-based algo-
rithm and one of the swarm algorithms recently proposed by Cue-
vas et al. [33]. SSO algorithm is extracted from the social behaviour
of the spider’s colony in nature. A SSO algorithm consists of two
main components: social members and communal web. Social mem-
bers are divided into male and female spiders. The social behaviour
and cooperative interaction depend on the spider gender. The
number of female spiders accounts for at least 65% of the total col-
ony members. Female spiders present an attraction or dislike to
other spiders according to their vibrations that are circulated
through the communal web. More details on the SSO implementa-
tion can be found in Refs. [34–36]. The SSO algorithm consists of
the following steps:

1. Population initialization. The most important property of the
SSO is the tendentious female population. The number of
females Nf is randomly chosen within the range [65–90%], the
number of male spiders Nm is then calculated by

Nf ¼ floor 0:9& rand ' 0:25ð Þ % N½ ); ð20Þ

Nm ¼ N & Nf ; ð21Þ

where floor[x] function gives the largest integer less than or
equal to x.
Thence, the complete population S consists of N spiders, which is
then splitted into two categories female (F) and male (M). The F

group contains the female members F ¼ f 1; f 2; f 3; . . . ; f Nf

$ %
,

whereas M group contains the male members
M ¼ m1;m2;m3; . . . ;mNmð Þ.
The female spider’s position f i and the male spider’s position mi

are randomly selected between the defined initial parameters
(lower limit plow and upper limit phigh) as follows

f ti;j ¼ plow
j þ rand ' phigh

j & plow
j

$ %
; ð22Þ

mt
i;j ¼ plow

j þ rand ' phigh
j & plow

j

$ %
; ð23Þ

where i, and j are the parameter and individual indexes respec-
tively, rand is a random number generator between [0 and 1].

2. Fitness evaluation. In the SSO algorithm, every spider (individ-
ual) has a weightwi that defines the solution goodness, a fitness
value of any spider i is calculated as

wi ¼
J sið Þ & sworst

sbest & sworst
; ð24Þ

where J sið Þ represents the obtained fitness of the spider si posi-
tion, the values of sworst and sbest describe the worst and the best
fitness values (minimization problem) as defined by

sbest ¼ maxi! 1;2;...;N½ ) J sið Þð Þ; ð25Þ

sworst ¼ mini! 1;2;...;N½ ) J sið Þð Þ; ð26Þ

3. Vibration modelling in the communal web. Vibration mod-
elling is utilized to transfer the data between the colony
members. The encoded waves rely on the weight and dis-
tance of each spider [35].

4. Mating. It is a vital process to ensure the colony survival and
allow the information exchange between all the members.
Social spider mating is achieved between the dominant male
and female members in the colony. However, the dominant
male spider determines the location of one or several female
members within a particularized range. Thereafter it mates
with them to produce offspring [35].

2.6. Genetic Algorithm (GA)

Genetic algorithm (GA) mimics the natural evolution process of
a population of initial solutions (individuals) [37]. Some individu-
als undertake crossover and mutation operations to produce better
individuals (offsprings) that become the next generation of the
population. To determine which individuals should participate in
the crossover and mutation, a selection process takes place to
select the fittest individuals according to a predetermined fitness
function [37].

The crossover operation randomly chooses pairs of these
selected individuals to breed. The mutation of some individuals
keeps diversity among the population. The larger the population
size, the higher the probability to reach a better solution. However,
evaluating the fitness of all individuals in a large population is very
computer-intensive and needs tremendous computational
resources.

2.7. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is one of the well-known
swarm technique based on the movement and the social behaviour
of birds within a flock. In PSO, each solution is considered as a par-
ticle with specific characteristics (position, fitness, and a speed
vector), which defines the motion of the particle [17]. PSO is widely
used for optimization and feature selection. PSO uses a number of
particles (N) that constitute a swarm moving in the search space,
looking for the optimal solution [38]. In the PSO algorithm, the
position of a particle is determined as [17]

Xtþ1
i;d ¼ Xt

i;d þ Vtþ1
i;d ; ð27Þ

where X is the particle position vector, V is the particle velocity vec-
tor, i is the index of a particle, t is the time or iteration counter, d is
the dimension, Xt

i;d is the position of particle i at iteration t in the d

dimension, Xtþ1
i;d is the new position of particle i at iteration t þ 1 in

the d dimension, Vtþ1
i;d is the velocity of particle i at iteration t þ 1 in

the d dimension and is given as

Vtþ1
i;d ¼w'Vt

i;dþc1 ' randt
1 pbestti;d&Xt

i;d

$ %
þc2 ' randt

2 gbesttd&Xt
i;d

$ %
;

ð28Þ

where w is the inertia weight factor, gbesttd is the most optimist
position of the swarm at time t along dimension d; c1 and c2 are
parameters representing loyalty and selfishness of particles. Nor-
mally, c1 = c2 =2, while randt

1 and randt
2 are random numbers dis-

tributed uniformly over [0, 1].

2.8. Artificial Neural Network (ANN)

Artificial neural networks (ANN) are regarded as generalizations
of mathematical models of biological nervous systems. In ANN, the
effects of the synapses are described by weighted connections that
modulate the effect of the associated input signals, and a transfer
function that represents the non-linear characteristic exhibited
by neurons. The neuron impulse is then determined as the



weighted sum of the input signals transformed by the transfer
function [39].

The learning ability of ANN is performed by adapting the
weights using the chosen learning algorithm. The behaviour of
the neural network depends mainly on the interaction between
the different neurons. The basic architecture consists of three types
of neuron layers: input, hidden, and output [40]. Various ANN
architectures can be created according to the characteristics and
specification of the applications [41]. The feed-forward ANN is
one of the commonly used architectures, in which the signal flow
is from input to output units strictly in a feed-forward direction
and the data is processed over multiple units without feedback
connections.

3. The computational intelligence model

In this study, the artificial neural network (ANN) is used as a
regression model to evaluate the final prediction performance,
while seven bio-inspired optimization algorithms (GWO, BAT, CS,
FPA, SSO, GA, and PSO) described above are incorporated in the
ANN for feature selection, as illustrated in Fig. 1. The proposed
optimization algorithms for feature selection work in a wrapper-
based manner. The central point of the wrapper methods is the
use of ANN as regression to ensure the quality of selected features
during the feature selection process.

Each optimization algorithm is run for 20 times to test the con-
vergence capability. The performance of the optimization algo-
rithms are evaluated using the following indicators:

1. Average feature reduction (R') defines the mean size of the
reduced features to the aggregate amount of features as follows

R' ¼ 1&
size gi

'
" #

Nt

& '
, 100; ð29Þ

where gi
' is the best solution that obtained in the i& th applica-

tion of the algorithm, Nt represents the total number of features
in a given dataset. For example, the dataset used in this study

has 3 features, i.e. Nt = 3, and if the best solution selects 2 fea-
tures, then R' = 1& 2

3

" #
' 100 ¼ 33:3.

2. Mean square error (MSE)measures the average of squared errors
between the actual output and predicted ones and is given as

MSE ¼
Pn

i¼1 Pi & Oið Þ2

n
; ð30Þ

where Oi and Pi are the observed and predicted values respec-
tively, n is the total number of samples, and i denotes the
i& th number of sample in dataset.

3. Standard deviation (Std) measures how much the sets differ
from the mean value. Std represents the optimizer convergence
to the same optimal and ensures repeatability of the results
[42].

A generic representation of the fitness function assessing both
regression performance and feature reduction is also introduced as

f h ¼ a ' Eþ 1& að Þ
P

ihi
N

; ð31Þ

where f h is the fitness function of a vector h with N elements of
value 0 or 1, representing unselected or selected features, E is the
prediction error, and a is a constant controlling the importance of
regression performance to the number of features selected and bal-
ancing the trade-off between exploration and exploitation. Nor-
mally, at the beginning of optimization (a) has its maximum
value to allow for maximum exploration, while, at the end of opti-
mization, it has the minimum value for more exploitation of search
space.

Each bio-inspired algorithm is initialized using n random
agents (solutions) with each agent representing a given selected
feature combination. Then each algorithm is iteratively applied
for a number of iterations aiming to converge to a good solution.
The individual solution is represented as a continuously valued
vector with the same dimension as a number of attributes in
the given dataset. The solution vector values are normalised so
that their values are in the range [0, 1]. For the solution fitness
function evaluation, these solutions are converted to their binary
representations by

Fig. 1. An overview of the proposed model.



yij ¼
0 xij < 0:5

" #

1 xij >¼ 0:5
" #

(
ð32Þ

where xij is the continuous value of the solution number i in dimen-
sion j, and yij is the discrete representation of solution vector x.

4. Experimental

This study focuses on powder compaction, a typical manufac-
turing process used for a wide range of products, such as pharma-
ceutical tablets and catalyst pellets. A variety of widely used
pharmaceutical excipients [43] are considered, including micro-
crystalline cellulose of different grades: Avicel PH-101, Avicel PH-
102 and DG (FMC, Biopolymer, USA); (Pearlitol 200 SD, Roquette,
UK), and Lactose (Granulac 140, Meggle GmbH, Germany). More-
over, binary mixtures of MCC 102 and lactose with various mass
fractions are also produced using a mixer (TURBULA T2F, Wab,
UK). In total, three binary mixtures (see Table 1), named mixture
1, 2 and 3, based on their compositions are considered, for which
the mass fractions of MCC 102 are 25%, 50% and 75%, respectively.
The samples were mixed for 15 min at a consistent speed of 34
min-1.

Furthermore, dry granulation using roll compaction is per-
formed to produce granules from feed powders and their mixtures.
Ribbons are produced using a custom-made gravity fed roll com-
pactor with a roll gap of 1.2 mm and roll speed of 1 rpm (for which,
two smooth rolls of 200 mm in diameter and 46 mm in width are
used), and are then milled using a cutting mill (SM 100, Retsch,
Germany) at a speed of 1500 rpm, for which a screen size of 4
mm is used. The produced granules are then sieved using a sieving
tower into different granule size classes (0–90, 90–250, 250–500,
500–1000, 1000–1400, 1400–2360 m), for which the upper size
limit is used to represent the granular size.

The feed powders, their mixture and granules are then com-
pressed at various compression pressures to produce tablets of var-
ious porosities, for which the corresponding tensile strengths are
measured. Cylindrical tablets are produced with an Instron univer-
sal testing machine equiped with a 30 kN load cell. A die of 11.28
mm of diameter is used. A powder mass of 300 5 mg is manually
poured into the die and compressed to different maximum pres-
sures at the room temperature (23 !C, 45 ± 2% RH) and a com-
paction speed of 5 mm/min. Diametrical compression tests on
the produced tablets are performed using a diametric strength tes-
ter (Erweka TBH30, Erweka Gmbh, Germany), in which the crush-
ing load is determined. The tablet tensile strength (rt) is then
calculated according to [44]

rt ¼
2 ' F

p ' D ' H
; ð33Þ

where F is the maximum load required to break the tablet, D and H
are the tablet diameter and height, respectively. All experiments are
run in triplicate.

5. Results and discussion

5.1. Dataset generation

A large dataset (see supplement) is then created using the
material, particle/granule size and compaction pressure as the
inputs (i.e. 3 inputs), while the porosity and the tensile strength
of the produced tablets as independent outputs (i.e. 2 outputs),
as exemplified in Table 1. It is worth noting that the tensile

Table 1
Example of dataset generated for the model.

Inputs Outputs

Material Granule size (m) Compaction pressure (MPa) Porosity (%) Tensile strength (MPa)

1 59 412.500 7.199 15.786
1 59 406.100 7.333 15.354
1 59 384.800 8.547 15.266
1 59 355.600 8.551 15.100
. . . . . . . . . . . . . . .

5 500 268.679 8.095 11.081
5 500 159.511 12.582 7.803
5 500 78.139 23.237 3.133
. . . . . . . . . . . . . . .

7 500 140 18.336 3.728
7 500 140 18.515 3.810
7 800 20 42.772 0.203

Fig. 2. Average MSE for porosity.

Fig. 3. Average MSE for tensile strength.



strength and tablet porosity are generally inter-related (e.g. the
lower the porosity, the higher the tensile strength) for tablets made
of feed powders and their mixtures. However, this inter-
relationship does not necessarily hold for roll-compacted granules,
as discussed in the Introduction section. Hence these two tablet
properties are treated as independent outputs in this study in order
to explore if the CI models can identify these behaviours from the
data produced with both feed powders and granules.

The legend used to identify the different materials for the CI
model is specified as follows:

- Material 1 = MCC PH 101 powder.
- Material 2 = MCC PH 102 powder.
- Material 3 = MCC DG powder.
- Material 4 = Mannitol Pearlitol 200 SD powder.
- Material 5 = MCC PH 101 Granules.

Fig. 4. Average Std for porosity.

Fig. 5. Average Std for tensile strength.

Fig. 6. Average feature reduction for both tensile strength and porosity.



- Material 6 = Binary mixture: 75% MCC102 + 25% Lactose.
- Material 7 = Granules binary mixture 75% MCC102 + 25%
Lactose.

- Material 8 = Binary mixture: 50% MCC102 + 50% Lactose.
- Material 9 = Granules binary mixture 50% MCC102 + 50%
Lactose.

- Material 10 = Binary mixture: 25% MCC102 + 75% Lactose.
- Material 11 = Granules binary mixture 25% MCC102 + 75% Lactose.

5.2. Model construction

Two-thirds of the dataset are randomly chosen to train the mod-
els (training set) and the remaining part (testing set) is used to test
the model prediction. The training set is used to evaluate the ANN

throughout the optimization process with the bio-inspired algo-
rithms and used in the prediction model. The testing data is kept hid-
den from the optimization and only used during the prediction
process. The optimisation process is run 20 times with each algo-
rithm in order to get an average performance for the prediction error
and accurately assess statistical evaluation indicators. The bio-
inspired optimization algorithms are used for feature selection, so
that only the most significant features are fed into the ANN.

In the CI model, ANN is used for the regression purpose (predic-
tion of a continuous output), and two approaches are created:

1. A model is used to evaluate all the possible solutions during the
bio-inspired feature selection process (i.e. this ANN regression
model is used to ensure the goodness of the selected features).

Fig. 7. Feature importance for porosity.



At this stage, ANN is utilised for the bio-inspired optimization
algorithm to reach the optimal solution (best-selected features).

2. A predictive model is established for the testing data using the
selected features. At this stage, the model is built using the
inputs selected by the bio-inspired optimization algorithm as
the train set.

5.3. Model prediction

The results presented in Figs. 2 and 3 show the MSE values
using each optimizer for 20 different runs, while Fig. 6 shows the
average feature reduction of the two outputs. It can be seen that
the GWO algorithm was the most accurate in predicting porosity,

while the SSO algorithm achieved the most accurate prediction
for the tensile strength. In addition, the GA algorithm led to the
highest reduction of features - 60% - with an average MSE of 7.2
for predicting porosity and 5.1 for predicting tensile strength.

Figs. 4 and 5 show the standard deviation values obtained by all
the bio-inspired algorithms. The minimum value of the std mea-
sure is obtained by GWO for the porosity as shown in Fig. 4 and
obtained by SSO for the tensile strength as shown in Fig. 5. Further-
more, it is clear that the GWO and SSO algorithms have in general
standard deviation (std) less than the ones obtained from the GA
and PSO algorithms, which indicates the capability of GWO and
SSO to converge to optimal or near-optimal solutions. In Figs. 7
and 8, the majority (9 from 14) of the seven bio-inspired

Fig. 8. Feature importance for tensile strength.



algorithms identify the compaction pressure as the most impor-
tance input for both porosity and tensile strength as shown in
Figs. 7 and 8.

Overall, it can be concluded that the GWO algorithm obtains the
best compromise between MSE, the standard deviation, and fea-
ture reduction for predicting both the porosity and the tensile
strength. Each optimizer is run for 20 different runs to ensure con-
vergence capability.

The leader selection for a given swarm has a very great impact
on the explorative/exploitative ability of each optimizer. The GWO
optimizer keeps track of the best three solutions found, but the SSO
optimizer has track of the N best solutions found. Therefore, the
GWO and SSO bio-inspired algorithms perform differently on the
same dataset. GWO performs better in predicting porosity in some

runs and SSO performs better in predicting porosity in other runs.
But over the 20 runs, the average performance of the GWO algo-
rithmwas the most accurate in predicting porosity and the average
performance of the SSO algorithm achieved the most accurate pre-
diction for the tensile strength. The different performances of the
various bio-inspired optimization algorithms are primarily due to
the intrisic nature in modelling, as detailed in the recent publica-
tions [45–52,23,53].

5.4. Model prediction

Fig. 7 shows the comparison between the experimental results
and predicted results from the SSO model. This model was chosen
here for demonstration because it is the most accurate algorithm

Fig. 9. Comparison of experimental and predicted data obtained with the SSO algorithm for different materials.

Fig. 10. Comparison of experimental and predicted tensile strength obtained with
the GWO algorithm for all materials considered.

Fig. 11. Comparison of experimental and predicted porosity obtained with the
GWO algorithm for all materials considered.



for prediction of tensile strength with an average MSE (1.375) and
average reduction (20%). More specifically, Fig. 7 presents the ten-
sile strength of the tablets as a function of compaction pressure for
pure powder (a), Granules (b) and mixtures (c). It is shown that
there is an increase in tensile strength with the increase of com-
paction pressure for all the materials and granules sizes investi-
gated. Moreover, the prediction for pure powders as MCC PH 101
(Fig. 9a) and mixtures (Fig. 9c) are generally more accurate than
the granule tensile strength predictions (Fig. 9b) where more scat-
tered results were observed. Similarly, Figs. 10–12 show the com-
parison between compaction experimental results and prediction
using the GWO due to its highest accuracy (MSE of 4.832) for
porosity prediction as discussed in the previous section (5.2). There
is an almost exponential decrease of porosity with the increase of
compaction pressure. Interestingly, the GWO gives almost identical
values to the measured ones for all the materials with no distinc-
tion between pure powders (Fig. 10), mixtures (Fig. 11) or granules
(Fig. 12). This proves that the GWO model can predict the tablet
porosity during powder compaction for a wide range of materials
with high accuracy.

6. Conclusions

The robustness of CI models that integrate artificial neural net-
work (ANN) with bio-inspired feature selection algorithms for pre-
dicting tablet manufacturing processes was evaluated. In
particular, tablet properties such as porosity and tensile strength
were predicted based upon powder characteristics. Seven bio-
inspired optimization algorithms for feature selection were
applied. The modelling efficiency was evaluated in terms of the
average feature reduction and mean square error. It was found that
the GWO algorithm was the most accurate in predicting porosity
with equal accuracy for pure powders, mixtures, and granules,
while the most accurate prediction of the tensile strength can be
achieved using the SSO algorithm, in particular, the values for pure
powders and mixtures were more accurately predicted than the
granule tensile strength. Regarding the average feature reduction,
GA obtained the highest reduction for predicting both the porosity
and the tensile strength outputs, and could be more useful for
identification of key features or the critical material attributes.
Moreover, it was shown from the results obtained with various
optimisation algorithms that the most significant feature is the
compaction pressure for both tensile strength and porosity, which
is in broad agreement with the experimental observations reported
in the literature.
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