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A B S T R A C T

Relations between autoclave consolidation process, microstructure and mechanical properties of thermoplastic
composite laminates were investigated. For this purpose, two different carbon fibers/PPS semi-pregs were used
for laminate manufacturing: a powdered fabric and a commingled fabric with stretch broken fibers. Laminates
with [0 ]6° stacking sequence were consolidated in autoclave. Several consolidation levels were established by
varying process parameters which are external pressure, vacuum level and consolidation duration.
Microstructural characterization was performed by using matrix digestion and CT-scanning to identify void
content and morphology. Laminate mechanical properties in tensile, bending, compressive and interlaminar
shear were also assessed. External pressure increase by 0.5MPa leads to void content reduction of 2.1% for
powdered system and 5.4% for commingled system. The rising consolidation duration contributes slightly to void
content decrease. Bending and interlaminar failure stress are the most sensitive to void level with a dependency
on void size and location. Results acquired allow to identify main settings for optimized consolidation cycles
which could be used for thermoplastic composite part manufacturing with complex shape.

1. Introduction

Manufacturing structural or semi-structural composite parts by
consolidation was introduced in the aeronautical industry in order to
answer mainly weight reduction requirements. Use of thermoplastic
resins for composite manufacturing offers new significant advantages
compared to thermoset ones as no shelf life, no volatile emissions, short
forming duration for example using thermo-stamping processes and
welding capabilities; the two later aim to respond to manufacturing cost
reduction issues. However, thermoplastic viscosity at processing tem-
perature ranges from 100 Pa s to 1000 Pa s whereas thermoset viscosity
does not exceed 10 Pa s [1]. As a consequence, matrix impregnation
inside reinforcement bundles is difficult and voids may appear when
processing the laminate. Moreover, manufacturing thermoplastic com-
posite parts encounter limitations related to the high-processing tem-
peratures and to draping of complex 3D shape parts [2].

It is known that autoclave consolidation is well adapted to manu-
facture complex shape composite parts. Combined with an appropriate
process cycle selection and bagging strategy, it allows to minimize void
level and maximize mechanical properties. When addressing semi-
structural parts like air conditioning volutes and plenums, functional
requirements are fulfilled even if void level is as high as 7.0%. Relaxing

this level may also relax manufacturing constrains and contribute to
manufacturing cost decrease. Nevertheless, such a high level can only
be accepted if mechanical properties are not deeply affected.

Many experimental works have investigated the relation between
void content and laminate mechanical properties [3–6]; they have
shown that interlaminar shear and bending rupture stresses are very
sensitive even to low void level for UD laminates [7,8]. Nevertheless
only a few results are reported in open literature for thermoplastic
materials [2,9,7]. Moreover, they were obtained mostly on non-ther-
mostable thermoplastic composites (PP polymers).

This paper aims to investigate the relation between autoclave con-
solidation parameters, void level and morphology (shape, size) and
mechanical properties of C/PPS (carbon fiber with polyphenylene sul-
fide polymer) laminates. It addresses and compares two C/PPS lami-
nates manufactured with two different initial semi-pregs (fiber re-
inforcement which is partially impregnated with the resin): a powdered
fabric and a stretch broken commingled fabric. These fabrics were se-
lected because of their relative short flow distance for the matrix to
impregnate the reinforcement in comparison with others technics like
“film stacking”. In order to get a better understanding of microstructure
impact on laminates mechanical behaviour, void characterisation was
performed using X-ray computed tomography.
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2. Materials and manufacturing conditions

2.1. Materials

Two C/PPS (carbon fiber with polyphenylene sulfide polymer) semi-
pregs were investigated: a 5H satin powdered impregnated fabric
(Pipreg®from Porcher Industries in Fig. 1(a)) and a 5H satin com-
mingled fabric with stretch-broken carbon fibers (TPFL®from Schappe

Techniques in Fig. 1(b)). A detailed description of the semi-pregs is
given in (Table 1).

Both fabrics were studied because of the “short” flow distance re-
quired for the matrix to fully impregnate the reinforcement (Fig. 2). For
powdered fabrics, the polymer is applied in the form of droplets to the
reinforcement surface so as to foster significantly the interlayer im-
pregnation. For the commingled one, the polymer is deeply integrated
inside the bundles as polymer filaments (typically 20.0 µm diameter) to
ensure intra bundle impregnation. This later semi-preg is a deformable
fabric that can be easily used to drape complex shape parts [10,11].

For a given consolidation cycle, these two semi-pregs are expected
not to give the same mechanical properties. This may be explained by
the void content differences present in the laminates.

2.2. Laminate consolidation

For each type of semi-preg, 6 layers were used with a stacking se-
quence [0 ]6° (0° correspond to the warp direction of the 5 H Satin
weave) to obtain sheets with a final thickness of 1.9± 0.1 mm for the
powder fabric and 1.8± 0.1 mm for the commingled one. A cross-sec-
tion of vacuum bagging setup is shown in Fig. 3. The semi-preg layers
(1) were inserted between two Kovar plates (2) in order to obtain la-
minates with flat surfaces. A polyimide film (3) was used as separator
between laminate and Kovar plates. Breather (Airweave UHT 800 Air-
tech) (4) on the lateral border of the laminate and on the upper surface
of the Kovar plate allowed the evacuation of trapped air bubbles during
consolidation. Vacuum-bagging film (5) (PTFE film VB-3) was used
with tape (6) (A-800-3G - Airtech) to ensure the sealing. Most research
in thermoplastic prepreg consolidation was done with polyimide film as
vacuum bagging [12]. Finally, trapped air was evacuated by a valve
(VAC VALVE 409SS HTR Airtech) settled on the vacuum bagging (7).
All metallic parts and polyimide film in contact with the laminate were
treated with a release agent (Frekote 700N).

In order to reach different consolidation levels, two processing de-
vices were used for the 400× 300mm2 sheet manufacturing: an au-
toclave (Scholtz = 1.0m; L=1.5m) and an oven (Nabertherm l
= 1.2m - L = 2.0m - H =2.0m). Processing parameters which are
consolidation times, external pressure and vacuum pressure conditions
are reported in Table 2. All cycles were performed with a consolidation
temperature of 310 C° .

Fig. 4 shows typical thermal and pressure cycles applied for com-
posite sheet manufacturing. Autoclave and oven temperature profiles
are close to the expected cycle as the temperature regulation thermo-
couple is located on the mold. Consolidation cycles were defined in
order to be able to analyse the effects of external pressure, vacuum level
and consolidation time on the composite sheet microstructure. Con-
solidation pressure effect was tested with five levels: no external

Fig. 1. Semi-pregs: (a) Carbon fiber powdered fabric - Pipreg®- Porcher
Industries (b) Carbon fiber commingled fabric - TPFL®- Schappe Techniques.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Fabrics properties.

Powdered fabric Commingled
Porcher Industries Schappe Techniques

Type Pipreg®3106-P23 TPFL®90163P
Weave 5 H Satin 5 H Satin
Structure 3 K HS 3 K HS

Dry fabric areal weight [g/m2] 285 281
Polymer areal weight [g/m2] 216 188

Fiber density [g/cm3] 1.77 1.75
Matrix density [g/cm3] 1.35 1.41

Theoretical ply thickness [mm] 0.317 0.297
fully consolidated [%] 51 55

Fiber volume fraction

Fig. 2. Structural aspect of the two prepreg fabrics: (a) Powdered fabric - (b) Commingled fabric. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)



pressure, 0.5MPa, 1.0 MPa, 1.2MPa and 1.7MPa. Consolidation
duration impact was assessed by varying the duration of the constant
temperature step from 10min to 25min. Maximum pressure reached
inside the bagging is indicated in Table 2 for each consolidation cycle.
Internal pressure losses inside the bagging, also indicated in this table,
are not controlled from one test to another. However, they are mea-
sured and used for the discussion. These values depend on the choice of
vacuum bagging materials and pressure application conditions: no ex-
ternal pressure, application of the maximal external pressure during the
whole process, only during the consolidation step at 310 C° or in a two-
step pressure cycle (first compaction at 0.3MPa until [220–240 °C]
before using the final consolidation pressure). For some consolidation
cases, vacuum was partially or totally lost during the process. It is
mainly due to leaks occurring during the heating or the consolidation
step. Vacuum is totally lost due to a bad adhesion of the vacuum-bag-
ging film on the sealant tape or to film perforation in the valves area.
The non-repeatability of the process is not critical. The objective was
manufacturing composite part with different consolidation levels. Some
improvements in the vacuum bagging preparation were done to prevent
from leaks and to manufacture composite laminates with the lowest
void content.

3. Experimental testing procedures

3.1. Specimen machining

Samples used for laminate characterization were cut by water jet
cutting (MACHINE FLOW MACH4-C). For each composite sheet, eight
tensile samples of 250× 25× 2 mm3, five compressive samples of
110× 10× 2mm3, five inter-laminar shear testing samples of

100× 15× 2 mm3 and 15 void assessment samples of
20× 10× 2mm3 were machined.

3.2. Void content assessment

Void level’s are usually measured by optical microscopy. However,
to obtain information on the whole samples, porosity level was

Fig. 3. Vacuum bagging setup for autoclave thermoplastic consolidation. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Table 2
Laminate processing cycles - (A) for powdered fabrics and (B) for commingled
fabrics

Pvacuum Maximum Consolidation P

Ext

Pressure
Id. level internal pressure duration conditions

[MPa] [MPa] [min] [MPa] application

A1 0.07 0.06+ 10 0.5 All along
A2 0.07 0.06+ 10 1.2 the process
A3 0.07 0.01 10 0.5 At T 290 C°
A4 0.04 Losta 20 1.7 First compaction

of 0, 3MPa

A5 0.06 0.04 10 0 N A
A6 0.06 0.04 20 0 N A

B1 0.07 0.06+ 10 0.5 All
B2 0.07 0.06+ 10 1.2 along
B3 0.07 0.06+ 20 0.5 the process

B4 0.04 Losta 20 1.7 First compaction
B5 0.08 0.01+ 25 1.0 of 0.3MPa

a Internal pressure measure lost.



established firstly by matrix digestion according to NF EN 2564. A
concentrated sulfuric acid solution is used to separate the fibers from
the matrix. The weight of dry fibers weight are measured so as to obtain
fiber volume fraction and to deduce void content. This procedure re-
quires the knowledge of sample density using Archimedes Principle
[13]. A minimum of three specimens from each laminate were analyzed
to obtain an average value of void content. The mean measure un-
certainty for this method is 0.89%.

3.3. Determination of porosity size and shape

X-ray computed tomography (CT-scanning) was performed to ob-
tain information in terms of size and shape of voids contained inside the
samples. A typical view in (xy), (yz) and (xz) planes of commingled
sample (B3) is shown in Fig. 5.

The sample is represented as voxels (3D pixels) which correspond
individually to the intensity of the material local density (grayscale

Fig. 4. Typical consolidation cycles used for laminate manufacturing. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. 3 plane images coming from CT-scan reconstruction of a commingled sample (Sample: B3; Vp =7.09%).



value). Objects which have a low density material, such as voids, absorb
fewer X-rays than a higher density material such as fiber and matrix.
Consequently, in this case, porosity objects have the lowest attenuation
coefficient with a grey value close to 0 (black color). On the contrary,
fiber and matrix objects have a higher gray value (approaching white
color for the matrix one).

All samples were analyzed with an Easytom 130 tomograph. The X-
ray voltage was set to 44 kV and the power source to 181 µA. Scan
resolution, in terms of voxel size, is 11.2 µ m 0.8 µm± . Reconstructed 3D
images, converted to 8-bits (greyscale value in the range [0–255]), were
analyzed with post-processing software ImageJ version 1.51 [14].

In order to analyse voids within the laminates, segmentation was
performed to obtain binary images allowing a clear separation between
voids and fiber/matrix groups (Fig. 6). Grey threshold value, used for
this image processing, was determined for each slice to take into ac-
count exposure differences of successive slices. 3D segmentation was
performed with an automatic procedure implemented in Matlab®
(MathWorks®).

3.4. Mechanical testing

Mechanical tests were performed according to the international
standards: ISO 14130 for inter-laminar shear, ISO 14125 for the three
points bending, ISO 527 for tensile tests and ISO 14126 for compressive
tests. For each laminate, five specimens were tested except for tensile
90° where only three samples were used.
4. Results and discussion

4.1. Laminate void assessment

Results obtained for void content, fiber volume fraction and lami-
nate thickness are reported in Table 3 and Fig. 7 for all laminates in-
vestigated. High standard deviation ( 1.0%)> are noticed for samples A1,
A4 and B1. Ultrasonic inspection shows a heterogeneous distribution of
the voids for these laminates and explained the high dispersion mea-
sured by CT-Scan and matrix digestion.

4.1.1. Powdered fabric laminates
For the powder fabric laminates (Pipreg®), void content obtained by

matrix digestion varies from 1.50% to 4.60%. Laminates have globally
the same fiber volume fraction close to 50% and the mean thickness is
close to 2.0mm. Mean ply thickness is 0.32mm which is slightly higher
than the value reported in the data sheet (0.317mm) obtained for la-
minates manufactured by hot-pressing. Only specimen A4 shows values
out of the range with a fiber volume fraction close to 60% that could be
explained by the very high external pressure applied during con-
solidation (1.7 MPa) which squeezes the polymer out of the laminate.
As expected the maximal void content (4.57%) is registered on laminate
A5 after a consolidation duration of 10min and without external
pressure. The minimal void content (1.55%) is measured on the lami-
nate A3 with 0.5MPa as consolidation pressure, 10min as consolida-
tion duration and a low vacuum level maintained throughout the pro-
cess.

Fig. 8 shows CT-scans of powdered fabric laminates for three por-
osity levels. According to slice analysis, two void types are identified:

• Intra-yarn voids have mostly a spherical aspect. These voids are

Fig. 6. Image segmentation for laminate B3: (a) 3D image coming from CT-Scan - (b) Segmented image.

Table 3
Laminate ply thickness, fiber and void volume fraction
Id. Fiber volume fraction Ply thickness Void volume fraction

[%] [mm] [%]

A1 51.45± (3.31) 0.33± (0.07) 2.46± (1.30)
A2 49.54± (0.97) 0.32± (0.06) 2.45± (0.17)
A3 50.80± (0.69) 0.32± (0.09) 1.55± (0.67)
A4 59.34± (2.78) 0.30± (0.15) 2.27± (1.71)
A5 50.68± (1.36) 0.33± (0.05) 4.57± (0.67)
A6 51.94± (0.91) 0.32± (0.04) 3.43± (0.53)
B1 55.22± (2.15) 0.31± (0.02) 6.02± (1.11)
B2 54.77± (0.88) 0.30± (0.02) 4.06± (0.70)
B3 54.16± (2.53) 0.37± (0.02) 7.09± (0.78)
B4 49.51± (0.40) 0.34± (0.02) 12.11± (0.81)
B5 55.40± (0.78) 0.32± (0.03) 1.65± (0.30)



typical for powdered fabrics and are related to the higher impreg-
nation length required for the polymer to reach the center of the
yarn. A laminate not fully consolidated as A2 presents voids mostly
located inside the yarns when compared to a fully consolidated one.
In sample A5 which shows the highest void content, spherical voids
are organized in clusters in each yarn and form macro-voids. The
latter have an ellipsoidal shape and are oriented along the directions
of the textile reinforcement.• Inter-yarn voids: Found only in the sample A5, these voids are
larger than the spherical ones and are located mostly between yarns
or in contact to yarn surface. They also have an elongated shape and

their orientations follow the warp and weft direction of the textile
reinforcement as can be seen on the 3D porosity representation of
sample A5 in Fig. 9.• Yarn cross failure: There are some transversal cracks detected only
in sample A3.

Void area distribution for powdered laminates A3 (V 1.55%p = ) and
A5 (V 4.57%p = ) are reported in Fig. 10. Results take into account the
analysis of all the slices of the specimen. Two void size categories called
micro [0 µm2–6.10 µ3 m2] and macro-porosities ( 6.10 µm4 2> ) were sepa-
rated in order to help understanding void size distribution. The size

Fig. 8. CT-scans of powdered C/PPS laminates for increasing void content. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 7. Void content (matrix digestion) for (a) powdered and (b) commingled laminates. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)



Fig. 9. 3D representation of porosities for powdered sample A5 (V 4.57%p = ). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 10. Void area distribution: (a) Sample A3 - Micro-voids ( 6.0 10 µ3< ◊ m2) - (b) Sample A3 - Macro-voids ( 6.0 10 µ3> ◊ m2) - (c) Sample A5 - Micro-voids
( 6.0 10 µ3< ◊ m2) - (d) Sample A5 - Macro-voids ( 6.0 10 µ3> ◊ m2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)



Fig. 11. CT-scans of commingled C/PPS laminate for increasing void content. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 12. 3D representation of porosities for commingled sample B4 (V 12.11%p = ). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)



distribution of micro-voids are quite similar between A3 and A5 sam-
ples. However, the number of micro-porosities is higher for sample A5
than for sample A3. Distribution graphs show larger macro-porosities
for sample A5 in comparison with sample A3 which is confirmed by the
CT-scans observation in Fig. 10 (b) and (d).

4.1.2. Commingled fabric laminates
Void content (matrix digestion method) in commingled fabric la-

minates ranges from 1.65% to 12.11%. Mean ply thickness (0.328mm)
is significantly higher than the theoretical one (0.297mm) and in-
dicates a poor consolidation quality. Fiber volume ratio is around
55.0% for all commingled laminates except for B4 specimen with only
49.51%. This specimen exhibits the highest void content (12.11%)
measured during this experimental study. Minimal void content is ob-
tained with specimen B5 with a value of 1.65%.

Fig. 11 shows CT-scans of the commingled fabric laminates for three
porosity levels. According to slices analysis, several void types are
visible:

• Inter-yarn voids: These voids are located mostly between yarns or
in contact to yarn surface. Their sizes are directly linked to the va-
cuum level and depend on consolidation parameters. For sample B4
which has the highest porosity level, these porosities agglomerate

into one macro void.• Intra-yarn voids: Visible on sample B2 and B4, these voids are
considered as micro-voids and have a spherical shape. The number
of these porosities is lower than the inter-yarn ones.• Yarn cross failure: Observed as cracks inside yarns in warp and
weft direction with a length approximately equal to the minor axis
of its cross section. These defects are parallel to fiber axis and are
distributed uniformly in the laminate. They are found for all por-
osity levels. That suggests fiber/matrix de-cohesion inside yarns
provoking transversal crack propagation. When compared to pow-
dered laminates two tentative explanations can be given: First
carbon fibers used during yarn manufacturing are sized. The sizing,
developed for thermoset composites, are degraded at consolidation
temperature and may generate volatiles that decreased the fiber-
matrix bonding. On the contrary, these defects do not concern la-
minates using thermoplastic powdered semi-preg because fibers are
not sized.
In the second explanation, transverse cracks are in general related to
the internal stresses that are generated during temperature decrease
after consolidation. In the commingled yarn, polymer filaments are
used and it was known that filament processing step in air and at
high temperature may degrade polymer quality and ductility
[15–17].

Fig. 13. Void area distribution: (a) Sample B5 - Micro-voids ( 5.4 10 µ3< ◊ m2) - (b) Sample B5 - Macro-voids ( 5.4 10 µ3> ◊ m2) - (c) Sample B4 - Micro-voids
( 5.4 10 µ3< ◊ m2) - (d) Sample B4 - Macro-voids ( 5.4 10 µ3> ◊ m2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)



A 3D representation of voids for sample B4 is shown in Fig. 12. In
contrary to the powdered case, voids look like macro-bubbles which are
located between the plies. The 3D views suggest, in this case, the
connection of these macro-voids in laminate thickness. Intra-yarn voids
are also visible and in warp and weft direction of the reinforcement.
Void area distribution for commingled laminates B5 (V 1.65%p = ) and
B4 (V 12.11%p = ) are presented in Fig. 13. There is the same micro-void
size distribution between these two samples. However, an increase of
macro-void size with the void content is noticed with a maximal por-
osity area increased by a factor of 10.

Void observations performed for the two laminate types (powdered
and commingled) show the importance of polymer integration strategy
inside the textile reinforcement with respect to void formation, shape
and consolidation conditions. Commingled laminate consolidation is
more difficult than powdered one.

4.2. Mechanical properties

Elastic moduli in bending, tension (warp and weft directions) and
compression are shown in Fig. 15 for the two laminates. Moduli in
tension are higher for powdered than comingled laminates with a re-
spective average of 55.5 GPa (respectively standard deviation of 1.7
GPa) and 45.8 GPa (respectively standard deviation of 3.7 GPa). Values
in compression are in the same order of magnitude with 55.3 GPa for

powdered fabric and 43.9 GPa for commingled fabric; however, a high
standard deviation ( 5.0 GPa)> was recorded. The higher modulus value
of sample A4 is related to the higher fibers volume fraction (59%).
Moduli in bending are nearly constant for powdered laminates with a
value of 48.8 GPa 1.1 GPa± whereas modulus varies between 34.8 GPa
and 45.6 GPa for commingled fabrics.

Rupture strength results for powdered and commingled laminates
are reported in Fig. 14. It can be seen that laminates made of powdered
fabrics show higher rupture strength values than commingled ones for
all test conditions (bending, tensile, compressive and ILSS) even if
commingled laminates have a higher fiber volume fraction (55%) than
powdered laminates (50%). Tensile warp and weft rupture properties
are close to each other for all laminates. Due to the stretch broken
carbon fibers in the commingled laminates their tensile and compres-
sive rupture stress are less than half of the powdered ones. These results
show the same trend as those reported by Svensson [18] where stretch-
broken carbon and polymer filaments induce a reduction of long-
itudinal strength and moduli.

4.3. Influence of consolidation cycle on porosity level

In Fig. 16, external pressure values applied during laminate con-
solidation are related to void content and pressure level inside the
bagging.

Fig. 14. Rupture strength of powdered and commingled laminates: (a) Three point bending - (b) ILSS - (c) Tensile in warp and weft direction - (d) Compressive. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



It appears that a higher external pressure ensures a better con-
solidation process in terms of void content. The trend is similar for the
two types of semi-pregs but with different amplitudes. For the pow-
dered fabric an increase of external pressure by 0.5MPa contributes to a
reduction by half of the void content (Laminate A1 versus A5). For the
commingled system, there is a 30.0% decrease of the void content when
the pressure rises by 0.7MPa between laminate B1 and B2. Laminate
B4 shows the highest void content measured in this experimental
campaign despite an external pressure of 1.7 MPa. A vacuum loss oc-
curred at the beginning of the manufacturing cycle and hindered the air
evacuation.

Fig. 16 also shows that vacuum level helps significantly in void
reduction for both fabrics. Vacuum applied inside the bagging improves
the laminate quality by evacuating air and volatile particles trapped
inside the textile reinforcement. A vacuum pressure maintained during
the whole process limits the amount of porosity and their clustering
inside the laminate and also improves the homogeneity of the whole
part. It appears that powdered samples A1 (2.46%) and A3 (1.55%),
manufactured with 0.5MPa as external pressure and a pressure inside
the bagging respectively maintained at +0.06MPa and −0.01MPa,
have comparable void levels than sample A2 (2.45%) and A4 (2.27%)
which were manufactured with respectively 1.2MPa and 1.7MPa and

no vacuum during the consolidation. Same observations are made for
commingled fabrics in particular between sample B1 (6.02% and in-
ternal pressure maintained at +0.06MPa) and sample B3 (7.09% and
no air evacuation during the consolidation step) which were con-
solidated with the same external pressure 0.5MPa.

Duration of consolidation step also contributes to void reduction
during sheet manufacturing. For the powdered fabric, a higher value of
this parameter (from 10min to 20min) results in a porosity level re-
duction of around porosity level of 3% which represents a void content
reduction of 1.0% (Table 3) (Fig. 7) (Samples A5 and A6). Results for
commingled fabric do not permit to establish the same conclusion due
to the other involved factors (Papplied, Pvacuum). However, as well as for the
external pressure, there is a limit [10–12 bars] where, beyond this value,
the effect becomes negligible. An optimal value has to be found, taking
into account the whole manufacturing time and the viscous behavior of
the matrix.

An optimal combination of all these process parameters allows an
improvement of laminate quality. The external pressure, as reported in
Lystrup’s [2] work, impacts strongly the porosity level. However, re-
garding the previous conclusions, composite part quality obtained after
autoclave consolidation also depends strongly on the combination of
external pressure and vacuum level (allowing air evacuation) inside the

Fig. 15. Elastic moduli for powdered and commingled laminates: (a) Bending - (b) Compressive - (c) Tensile in warp and weft direction. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)



bagging. Liu [3] also underlines the need to maintain vacuum level with
an external pressure in order to optimize the void content. Moreover
with a vacuum pressure maintained during the entire process, the ex-
ternal pressure required to reach a low porosity level is lower. Duration
at consolidation temperature also contributes to the void reduction but
at a lower level.

4.4. Mechanical properties in relation with void content

Voids have a significant impact on mechanical properties of C/PPS
laminates manufactured with powdered and commingled prepregs. All
mechanical properties (strength and moduli) decrease with void con-
tent. This drop depends on the type of mechanical test.

Mean rupture strength with respect to void content is plotted in
Fig. 17 for powdered and commingled fabrics. For powdered fabric,
bending and inter-laminar shear strengths decrease linearly with void
content. The maximum value is reached for a void content of 1.55%
with 757.6MPa for bending strength and 45.4MPa for ILSS. Tensile
strength in warp [0 ]° and weft [90 ]° direction remain nearly constant
until a porosity level of 3.5%. However, strength values for weft di-
rection are slightly higher than warp direction values. Compressive
rupture stresses are not affected by porosity level up to 2.5%. The
maximum standard deviation is as high as 100MPa especially for
compressive stresses. For the commingled laminate, bending strength is
the most sensitive to void content with a strength loss higher than
40.0% when void content increases from 1.0% to 12.0%. On the contrary,
tensile strength values, in both directions, show a limited sensitivity to
void content (decrease not higher than 20.0%). ILSS and compressive
rupture stresses are nearly constant up to 7.0%.

Fig. 18a shows the moduli variations measured for bending, tensile
and compressive tests as a function of void content for powdered fabric.
There is a slight decreasing (less than 10%) for the tensile modulus in
both testing directions when void content increases from 1.55% to
4.57%. The values stay in the range [52–58 GPa] with a maximum
standard deviation of 2.5 GPa. The trend is similar for bending modulus
with a value between 47.0 GPa and 51.0 GPa. The same trend is ob-
served for compression. Nevertheless the standard deviation is higher
(close to 2.0 GPa). The high value registered for sheet A4 (V 2.27%p = ) is
attributed to the high fiber volume fraction due to matrix squeezing

during manufacturing.
As shown in Fig. 18b, bending and compressive moduli for the

commingled fabric laminate are also sensitive to void content variation
with respectively a loss of 22.0% and 30.0% when porosity increases
from 1.0% to 12.0%. Tensile moduli, in warp and weft directions, de-
crease is limited to 20.0%. Nevertheless these latter results show a high
standard deviation that may be partly related on one side to fiber or-
ientation variation generated during the dry plain weave lay-up and on
the other side to porosity variation from one sample to the other.

4.5. Influence of void size and shape on mechanical properties

For both materials, mechanical properties, in particular failure
strength, decrease with void content increase. However, as suggested by
Lambert [19], this analysis remains too global and does not permit to
understand fully the mechanical properties/porosity relationships. Size,
orientation, localization of voids must be taken into account. To illus-
trate this aspect, bending strength mechanical properties are con-
sidered.

For the powdered laminates, voids are clusters inside warp and weft
yarns as seen in Fig. 8. These intra-yarn voids grow with void content
and have the potential to become multiple sites for crack initiation and
propagation [19,20]. In Fig. 19, bending failure modes of specimen A2
and A5 illustrate the failure mode dependency for two porosity levels.
Tensile and compressive fiber failures occur for a void content of 1.55%
A2 with a bending strength as high as 757.6MPa (Fig. 17a). On the
contrary, elongated interlaminar cracks are observed in specimen A5
with a void content of 4.57% and bending failure strength as low as
449.5MPa. Void area distribution reported in Fig. 10 shows a higher
ammount of macro-porosities in specimen A5 than specimen A2. Related
to CT-scan images in Fig. 8, voids may be considered as active sites for
crack propagation which induce interlaminar delamination failure
mode in the plies. Bending stress-strain curves for increasing void
content are plotted in Fig. 20a; they confirm a change in rupture mode
if porosity level is higher than 3.0%.

For commingled laminates, most voids are located between yarns as
can been seen in Fig. 11. They become larger with a more elongated
shape as the void content increases which is confirmed by void area
distribution reported in Fig. 13. They are also preferentially oriented in
warp and weft direction of textile reinforcement. In specimen B4 with a
12.11% void content, these voids permit crack propagation between the
plies (interlaminar propagation) (Fig. 21 (a)) and explain the important
decrease of bending failure strength value (190.0MPa) whereas spe-
cimen B5 (V 1.65%p = ) shows a localized bending failure strength of
356.7MPa (Fig. 22 (a)). Bending stress–strain curves of commingled
laminates (Fig. 20b) are significantly different from those observed for
powdered laminate samples. After an initial quasi-linear part until
reaching the maximal bending stress there is no sample rupture with a
stress drop, but a smooth decrease followed by a nearly constant pla-
teau value up to high strains. This is related to the interlaminar rupture
mode that happens for this type of laminate manufactured from com-
mingled fabrics. Inter-ply porosities are considered as active for crack
initiation and propagation and impact significantly the rupture mode
when void content is higher than 3.0%. Failure modes are presented for
samples B4 (Fig. 21 (b)) and B5 (Fig. 22 (b)). Both figures show micro-
buckling failures in the compressive failure area. However, inter and
intralaminar cracks, observed for sample B4, confirm the impact of
inter-ply voids on the failure mode and the diminution of failure stress
in bending, compressive and interlaminar shear (Fig. 14).

5. Conclusion

C/PPS composite laminates were manufactured from powder im-
pregnated and commingled yarns prepreg fabrics. Consolidation cycles
were defined to obtain laminates with a porosity level within the range
1.0–13.0%.

Fig. 16. Effect of consolidation pressure and pressure level inside the bagging
on void content. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)



Consolidation pressure impacts considerably the quality of the
composite parts. By raising the external pressure by 0.5MPa, the void
content decreases from 7.0% to 1.65% for commingled system and from
4.60% to 2.50% for powdered system. A first pressurization (as a first step
of 0.5 MPa) of the lay-up also contributes to the defect reduction and
prevents the bagging break. The decrease of the internal pressure in the
laminate before the consolidation step significantly increases the void
content. A maintained low pressure inside the bagging during the whole
process ensures the consolidation of the laminate with an acceptable

porosity level in accordance with aeronautic standards. It also improves
the homogeneity in terms of defects in the laminate. Consolidation
duration impacts to the composite part quality by decreasing slightly
the void content when it increases.

Mechanical properties of laminates manufactured from powdered
fabrics show higher mechanical properties than those manufactured
from stretch broken commingled fabrics whatever the void content.
Experimental results show a dependency of mechanical properties in
terms of failure strength to void content. It appears that inter-laminar

Fig. 17. Evolution of failure strength properties: (a) Powdered laminates - (b) Commingled laminates. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)



shear and bending strength are the most sensitive to void level when
compared to tensile strength in warp and weft orientation. Moduli are
slightly affected by void content variation for powdered laminates ex-
cept for commingled laminate moduli with a minimal reduction of
20.0% (obtained for modulus in tension) when void content increases
from 1.0% to 12.0%. In addition, it has been noticed that porosity size,
shape and location impact mechanical properties. For powdered lami-
nates, the cluster of void changes the failure mode in bending. For
commingled laminates, inter yarn voids modification in size and shape

explain mechanical behavior change.
The identification of process parameters which have the biggest

impact on the laminates microstructure allows the optimization of
consolidation cycle. The use of commingled fabrics with stretch broken
fibers offers the possibility to produce by consolidation thermoplastic
composite parts with complex shapes contrary to powdered fabrics.
Further studies has to be done in order to optimize the consolidation
cycle thanks to the mechanical polymer behaviour.

Fig. 18. Elastic moduli variation: (a) Powdered laminates - (b) Commingled laminates. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)



Fig. 19. Bending failure mode for powdered laminate: (a) Specimen A2 - (2.45%) (b) Specimen A5 - (4.57%). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 20. Bending stress–strain curves with respect to void content: (a) Powdered laminates - (b) Commingled laminates. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. Bending failure mode for commingled laminate B4 (12.11%): (a)
macro observation - (b) micrography (×100). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 22. Bending failure mode for commingled laminate B5 (1.65%): (a) macro
observation - (b) micrography (×100). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)



Acknowledgement

This work was supported by BPI France and Region Midi-Pyrénées
in the frame of ACAPULCO project.

References

[1] Klinkmüller V, Um MK, Steffens M, Friedrich K, Kim BS. A new model for im-
pregnation mechanisms in different GF/PP commingled yarns. Appl Compos Mater
1994;1:351–71. https://doi.org/10.1007/BF00568041.

[2] Lystrup A, Andersen TL. Autoclave consolidation of fibre composites with a high
temperature thermoplastic matrix. J Mater Process Technol 1998;77(1-3):80–5.
https://doi.org/10.1016/S0924-0136(97)00398-1http://www.sciencedirect.com/
science/article/pii/S0924013697003981.

[3] Liu L, Zhang B-M, Wang D-F, Wu Z-J. Effects of cure cycles on void content and
mechanical properties of composite laminates. Compos Struct 2006;73(3):303–9.
https://doi.org/10.1016/j.compstruct.2005.02.001http://www.sciencedirect.com/
science/article/pii/S0263822305000437.

[4] Ledru Y, Bernhart G, Piquet R, Schmidt F, Michel L. Coupled visco-mechanical and
diffusion void growth modelling during composite curing. Compos Sci Technol
2010;70(15):2139–45. https://doi.org/10.1016/j.compscitech.2010.08.013http://
www.sciencedirect.com/science/article/pii/S0266353810003210.

[5] Zhu H-y, Li D-h, Zhang D-x, Wu B-c, Chen Y-y. Influence of voids on interlaminar
shear strength of carbon/epoxy fabric laminates. Trans Nonferr Metals Soc China
2009;19:s470–5. https://doi.org/10.1016/S1003-6326(10)60091-Xhttp://www.
sciencedirect.com/science/article/pii/S100363261060091X.

[6] de Almeida SFM, dos Santos Nogueira Neto Z. Effect of void content on the strength
of composite laminates. Compos Struct 1994;28(2):139–48. https://doi.org/10.
1016/0263-8223(94)90044-2http://www.sciencedirect.com/science/article/pii/
0263822394900442.

[7] Ye L, Klinkmuller V, Friedrich K. Impregnation and Consolidation in Composites
Made of GF/PP Powder Impregnated Bundles. J Thermoplast Compos Mater
1992;5(January):32–48. https://doi.org/10.1177/089270579200500103.

[8] Olivier P, Cottu JP, Ferret B. Effects of cure cycle pressure and voids on some
mechanical properties of carbon/epoxy laminates. Composites 1995;26(7):509–15.
https://doi.org/10.1016/0010-4361(95)96808-J.

[9] Santulli C, Brooks R, Rudd CD, Long aC. Influence of microstructural voids on the
mechanical and impact properties in commingled E-glass/polypropylene

thermoplastic composites. Proc I MECH E Part L J Mater:Des Appl
2002;216(2):85–100. https://doi.org/10.1243/146442002320139298.

[10] Bernet N, Michaud V, Bourban P-E, Månson J-A. Commingled yarn composites for
rapid processing of complex shapes. Compos Part A: Appl Sci Manuf
2001;32(11):1613–26. https://doi.org/10.1016/S1359-835X(00)00180-9http://
www.sciencedirect.com/science/article/pii/S1359835X00001809.

[11] Bourban P-E, Bernet N, Zanetto J-E, Månson J-AE. Material phenomena controlling
rapid processing of thermoplastic composites. Compos Part A: Appl Sci Manuf
2001;32(8):1045–57. https://doi.org/10.1016/S1359-835X(01)00017-3http://
www.sciencedirect.com/science/article/pii/S1359835X01000173.

[12] Fernández I, Blas F, Frövel M. Autoclave forming of thermoplastic composite parts.
J Mater Process Technol 2003;143-144:266–9. https://doi.org/10.1016/S0924-
0136(03)00309-1.

[13] Little JE, Yuan X, Jones MI. Characterisation of voids in fibre reinforced composite
materials. NDT & E Int 2012;46:122–7. https://doi.org/10.1016/j.ndteint.2011.11.
011http://linkinghub.elsevier.com/retrieve/pii/S0963869511001769.

[14] Rasband W. Image processing and analysis in Java (ImageJ); 2014. <http://imagej.
nih.gov/ij>.

[15] Peters OA, Still RH. The thermal degradation of poly(phenylene sulphide)part 1.
Polym Degrad Stabil 1993;42(1):41–8. https://doi.org/10.1016/0141-3910(93)
90023-Chttp://www.sciencedirect.com/science/article/pii/014139109390023C.

[16] Lamethe JF. Adhesion study of semi-crystalline thermoplastic composites; appli-
cation to the welding process, Theses, Université Pierre et Marie Curie - Paris VI,
beauchêne Pierre (co-directeur); Dec. 2004.<https://tel.archives-ouvertes.fr/tel-
00008449>.

[17] Bessard E. Matériaux composites structuraux à base PEEK élaborés par thermo-
compression dynamique: relation procédé-propriétés, Thèse, Université de
Toulouse III - Paul Sabatier; 2012.

[18] Svensson N, Shishoo R. Manufacturing of thermoplastic composites from com-
mingled yarns - a review. J Thermoplast Compos Mater 1998;11:22–56. https://doi.
org/10.1177/089270579801100102.

[19] Lambert J, Chambers AR, Sinclair I, Spearing SM. 3D damage characterisation and
the role of voids in the fatigue of wind turbine blade materials. Compos Sci Technol
2012;72(2):337–43. https://doi.org/10.1016/j.compscitech.2011.11.023.

[20] Sisodia S, Garcea S, George A, Fullwood D, Spearing S, Gamstedt E. High-resolution
computed tomography in resin infused woven carbon fibre composites with voids.
Compos Sci Technol 2016;131:12–21. https://doi.org/10.1016/J.COMPSCITECH.
2016.05.010http://www.sciencedirect.com/science/article/pii/
S0266353816303542.


