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Abstract. The delineation of areas of high ecological or biodiversity
value is a priority of any conservation program. However, the selection of
optimal areas to be preserved necessarily results from a compromise be-
tween the complexity of ecological processes and managers’ constraints.
Current reserve design models usually focus on few criteria, which of-
ten leads to an oversimplification of the underlying conservation issues.
This paper shows that Constraint Programming (CP) can be the basis
of a more unified, flexible and extensible framework. First, the reserve
design problem is formalized. Secondly, the problem is modeled from two
different angles by using two graph-based models. Then CP is used to ag-
gregate those models through a unique Constraint Satisfaction Problem.
Our model is finally evaluated on a real use case addressing the problem
of rainforest fragmentation in New Caledonia, a biodiversity hotspot.
Results are promising and highlight challenging perspectives to overtake
in future work.

1 Introduction

Human activities are exerting pressure on natural habitats, which generally re-
sults in a loss of surface and an increase of fragmentation. As a consequence,
many species depending on those habitats are threatened, sometimes with extinc-
tion. In this context, it is essential to devote an important part of conservation
efforts in the protection of natural habitats through the establishment of nature
reserves [1–4]. Designing a reserve system is a difficult process involving a trade-
off between the conservation targets and the socioeconomic constraints. This
problem is known as the reserve design problem. The associated questions are at
the crossroad between conservation biology, geography, mathematics, computer
science, decision theory and environmental philosophy [5]. In this paper, we fo-
cus on the mathematical modeling and the computational solving of the reserve
design problem. From this point of view, it is a decision and/or optimization
problem. In almost all cases, the combinatorial complexity justifies the need of a
systematic approach based on mathematical modeling and computational tools.



In the literature, two major aspects of the reserve design problem usually
stand out: the feature covering and the spatial configuration. The first is often
referred as the reserve (or site) selection problem [6–9]. In extension, we refer
to the reserve design problem when spatial attributes are considered [10–14].
Current models usually focus on a few aspects of the problem because: (1) they
provide an ad-hoc solution to a specific instance of the problem, or (2) they are
limited by the modeling paradigm. However, there is a need for a more unified
and flexible framework [15] which, in our opinion and based on our experience
in New Caledonia, could help to reduce the gap between computer scientists,
conservation scientists, and practitioners.

In this paper, we show how the combination of graph-based models with CP
can be the basis of such a framework. After a detailed description of the reserve
design problem (Section 2), we presents two graph-based models (Section 3). One
model is dedicated to the constraint representation of the features covering issues
(Section 3.1) and the other one is dedicated to the constraint representation of
the spatial issues (Section 3.2). We then unify the models throughout a single CP
model based on the Choco constraint solver [16] (Section 4). Finally, a realistic
operational use case on the problem of rainforest fragmentation in New Caledonia
is depicted and first results are discussed (Section 5).

2 Description of the Problem

The reserve design is a decision and/or optimization problem in the discretized
geographical space. Given a set of geographical features (e.g., Fig. 2), we are
looking for a reserve system satisfying several criteria, in accordance to conser-
vation targets. In this section, we describe and formalize the problem precisely.
We start by defining the characteristics of the problem and then define a set of
criteria that can be required for a reserve system.

2.1 Characteristics of the Problem – Input Data

The Discretized Geographical Space. The geographical space is tessellated
into n granular parcels, which are the decision variables of the problem. Several
tessellation methods are possible [17, 18]. The most commonly used is the regular
square grid (illustrated in Fig. 1). We choose to this method in this paper.

We denote the number of rows by r, the number of columns by c and the
set of parcels by P. We identify a single parcel with the letter i, and index the
parcels with integers from 0 to n− 1: P = { i | i ∈ J0, nJ }. While this indexing
is not the most convenient for a grid, it has the advantage to be independent of
the tessellation method and thus offers extensibility for future work. Finally, we
use the 8-connected (cf. Fig. 1) neighborhood to define the adjacency between
the parcels, in opposition to the 4-connected neighborhood.
The Environmental Features. The geographical space is characterized by a
set of m environmental features. A feature can be anything that can be spatially
represented (e.g. the presence of a species, a certain type of habitat, human



constructions). We denote by F the set of environmental features and use the
letter j to identify the features: F = { j | j ∈ J0,mJ }.
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(a) Square grid tesselation (b) 8-connected neighborhood
(gray) of the parcel 4 (black)

Fig. 1. Square grid tessellation and 8-connected neighborhood illustrations.
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Fig. 2. Three feature examples.

The Values of the Features. To each feature j is associated a set Vj , repre-
senting the available data about j among the parcels: Vj = { vji ∈ R+ | i ∈ P }.
Each vji ∈ Vj corresponds to a value describing the feature j in the parcel i.
Three types of data are possible: the presence-absence data, the abundance data
and the probability of presence data. An example for each data type is given in
Fig. 2, and below is a short description for each of them:

– Presence-absence: if j is present in the parcel i, vji = 1, else vji = 0. For
each (j, i) ∈ F × P we then have vji ∈ {0, 1}. The presence-absence data is
often used to describe the occurrence distribution of a species or a particular
characteristic of the landscape (e.g. forest, savanna, fields, roads, cities).

– Abundance: in this case, vji represents a quantitative value about the feature
j in the parcel i (e.g. density of trees per parcel, average annual rainfall).
For each (j, i) ∈ F × P we then have vji ∈ [0,+∞[.

– Probability of presence: it can be possible to evaluate the probability of pres-
ence of a feature j for every parcel in P. The most common situation is
the use of Species Distribution Models (SDMs), that are able to combine
observations of a species with environmental data to predict its spatial dis-
tribution [19, 20]. With probability of presence data, for each (j, i) ∈ F × P
we have vji ∈ [0, 1].



The Domains/Anti-Domains of the Features. As illustrated in Fig. 3, to
each feature, is associated a set Dj and its complement Dj . Dj represents the
domain of j, that is, the parcels where j is present or where the probability of
presence of j is not null: Dj = { i ∈ P | vji > 0 }. Conversely, Dj represents
the anti-domain of j, that is, the parcels where j is not present or where the
probability of presence of j is null: Dj = { i ∈ P | vji = 0 }.

0

1

0

1

1

1

1

0

0

(a) V0, D0 and D0

0 0 0.99

0.70 0 0.49

0.35 0 0

(b) V1, D1 and D1

3 0 5

0 0 0

0 0 9
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Fig. 3. The values, domains and anti-domains associated with the features in Fig. 2.
The domains are represented with solid lines and the anti-domains with dashed lines.

2.2 The Reserve System – Solution of the Problem

In the first place, we define the terms “parcel” (sometimes called “site” in the
literature), “reserve” and “reserve system”. As defined in the previous subsection,
a parcel is a granular selection unit of the discretized geographical space. On top
of that, a reserve is a set of spatially continuous selected parcels (note that a
single selected isolated parcel is a reserve). Finally a reserve system is a set of
spatially disjoint reserves (note that a reserve system can be composed of a single
reserve). We illustrated the previous definitions in Fig. 4.

parcel
reserve

Fig. 4. Illustration of a reserve system, composed of four reserves, themselves made of
several adjacent parcels.

Given that, a solution to our problem is a reserve system whose attributes are
satisfying a set of criteria, themselves depending on the conservation question.
We denote such a reserve system by S, its number of reserves by nr and its kth

reserve by Xk: S = {Xk ⊆ P | k ∈ J0, nrJ } (where P is the set of parcels).



2.3 Required Criteria for a Reserve System

According to the underlying conservation questions, several criteria can be re-
quired for a reserve system. We distinguish between the feature covering criteria
and the spatial criteria.
Feature Covering Criteria. By providing one of the first formalization of
the reserve selection problems, ReVelle et al. [7] introduced three fundamental
feature covering criteria.

– Covered Features. Among the features that are covered (with certainty) by
the reserve system S, we want a set of mandatory features F ′ to be repre-
sented (e.g. rare or endangered species).

– α-Covered Features. Assuming that the vji’s are pairwise independent, we
want a set of features F ′ to be covered by S with a probability of at least
α. This criterion is helpful when probability of presence data is available.

– k-Redundant Features. A feature j is k-redundant in the reserve system S if
and only if it is covered (with certainty) by at least k distinct parcels. We
want to enforce this property for a set of features F ′ (e.g. for increasing the
chances of persistence of vulnerable species).

Spatial Criteria. A list of six geometric principles had been defined by Dia-
mond [10] and Williams et al. [11] summarized them into six spatial attributes
to take into account when designing a reserve system: the number of reserves,
the reserve areas (by extension we define the reserve system area), the reserve
proximity, the reserve connectivity, the reserve shape and core areas and buffer
zones. Here we consider three of those spatial attributes (expressed as criteria)
and keep the remaining ones for future work.

– Number of reserves. Determining if the best suited is a ”single large or several
small reserves” (SLOSS), or a ”few large or many small reserves” (FLOMS)
is a well known debate in ecology ([10, 21]). The conclusion is that the answer
strongly depends on the context, and that flexibility is needed. We therefore
want to set a minimum value Nmin and/or a maximum value Nmax for the
number of reserves.

– Reserve Areas. Following the previous criterion, it is also essential to provide
control on the reserve areas by setting a minimum area Amin and a maximum
area Amax.

– Reserve System Area. It should also be possible to express this criterion on
the whole reserve system area, by setting a minimum total area ATmin

and
a maximum total area ATmax .

3 The Graph-Based Models

In this section, we present two graph-based models. The first one is a resource
allocation model that will enable us to express the feature covering criteria in
the form of constraints. In the same way, the second one is a spatial model



that will enable us to control the spatial criteria. In both models, each parcel
is represented by a vertex. This common characteristic is essential since it is
the one that makes the aggregation of the models possible, through a set of
appropriate channeling constraints.

3.1 The Resource Allocation Graph

We consider parcels as resources that can be allocated to the conservation of fea-
tures, then considered as tasks, and thus define the directed graph Gr = (Vr, Ar),
also called the resource allocation graph. The vertices of Gr are partitioned into
three disjoint sets Fr, Pr and {s, t}. Fr represents the feature (or task) vertices,
Pr represents the parcel (or resource) vertices, s is the source vertex and t the
sink vertex.

Vr = Fr ∪ Pr ∪ {s, t};
Fr = { fj | j ∈ F };
Pr = { pi | i ∈ P }.

(1)

Furthermore, using Ar(X,Y ) as the notation for the set of all X-Y arcs, we
define the arcs of Gr in the following way:

Ar = Ar(s, Fr) ∪ Ar(Fr, Pr) ∪ Ar(Pr, t). (2)

Ar(s, Fr) and Ar(Pr, t) are defined such that there is an arc from s to each
feature vertex and an arc from each parcel vertex to t:

Ar(s, Fr) = { (s, fj) | fj ∈ Fr };
Ar(Pr, t) = { (pi, t) | pi ∈ Pr }.

(3)

Moreover, Ar(Fr, Pr) represent the possible allocations between Fr and Pr.
More precisely, there is an arc from a feature vertex fj to a parcel vertex pi if
and only if the feature j is represented in the parcel i, that is i ∈ Dj . We then
have:

Ar(Fr, Pr) =
⋃

j∈F
{ (fj , pi) | i ∈ Dj }. (4)

On the arcs of Gr, we define a lower bound (or demand) function l : Ar 7→ R+
∞

and an upper bound (or capacity) function u : Ar 7→ R+
∞ such that if f is a flow

in Gr:
∀a ∈ Ar, l(a) ≤ f(a) ≤ u(a). (5)

Finally, we define Hr : P(Pr) 7→ P(Vr) ×P(Ar) that associates to a set
X ⊆ Pr the subgraph of Gr induced by {s, t} ∪ Fr ∪ X, that is, the resource
allocation graph obtained when only considering a subset of parcels. We denote
by Vr[Hr(X)] the vertices of Hr(X) and by Ar[Hr(X)] the arcs of Hr(X). An
example is provided in Fig. 5.

Hr(X) = Gr[ {s, t} ∪ Fr ∪X ]. (6)



X = {p2, p8}

p8

Fr

s

f0

tf2

p2

f1

l(s,f2)
u(s,f2)

l(f0,p8)
u(f0,p8)

l(f2,p8)
u(f2,p8)

l(f1,p2)
u(f1,p2)

l(p2,t)
u(p2,t)

l(f2,p2)
u(f2,p2)

l(s,f1)
u(s,f1)

l(s,f0)
u(s,f0)

l(p8,t)
u(p8,t)

Fig. 5. Hr({p2, p8}) associated with the example in Fig. 2. Lower and upper bounds
are represented on the arcs.

Expressing Feature Covering Criteria as Constraints. From this point,
to each feature covering criterion (as defined in the previous section) we associate
a constraint that can be applied on the resource allocation model. More precisely,
if S is a reserve system and Xs its associated set of parcel vertices, a criterion is
satisfied by S if and only if its associated constraint if satisfied by Hr(Xs). We
express these constraints as flow constraints by defining the value of l and u on
certain arcs. When the value of l is not explicitly defined, it is unconstrained and
then set to 0. Similarly, u is set to +∞ when its value is not explicitly defined.
Covered Features. In our resource allocation model, we can easily express this
criterion as a flow constraint on Hr(Xs).

Constraint 1: Covered Features.
Input parameter(s): A set of features F ′ ⊆ F .
The set of features F ′ is covered by S if and only if Hr(Xs) admits a feasible flow
f verifying (5) when:

l(s, fj) = 1, ∀fj ∈ F ′
r;

l(fj , pi) = 1, ∀(fj , pi) ∈ Ar(Fr, Pr);
u(fj , pi) = 1, ∀(fj , pi) ∈ Ar(Fr, Pr) such that vji ≥ 1;
u(fj , pi) = 0, ∀(fj , pi) ∈ Ar(Fr, Pr) such that vji < 1.

(7)

α-Covered Features. To express this criterion, we assume that the probabilities
of presence vji are pairwise independent. We then rely on the probability of
absence qji = (1− vji) and express the constraint as:

∀j ∈ F ′ ,
∏
i∈S

qji ≤ 1− α. (8)

We then express the α-presence constraint in the following way:



Constraint 2: α-Covered Features.
Input parameter(s): A set of features F ′ and a real α ∈ [0, 1].
The set of features F ′ is covered by S with a probability of at least α if and only
if Hr(Xs) admits a feasible flow f verifying (5) when:{

l(s, fj) = − log(1− α), ∀fj ∈ F ′
r;

u(fj , pi) = − log(qji), ∀(fj , pi) ∈ Ar(Fr, Pr) such that vji < 1. (9)

k-Redundant Features. Since the k-redundancy is actually a generalization of
the covering features criterion, we can also express it as a flow constraint on
Hr(Xs).

Constraint 3: k-Redundant Features.
Input parameter(s): A set of features F ′ and a positive integer k.
The k-redundancy of the set of features F ′ in the reserve S is satisfied if and only
if Hr(Xs) admits a feasible flow f verifying (5) when:

l(s, fj) = k, ∀fj ∈ F ′
r;

l(fj , pi) = 1, ∀(fj , pi) ∈ Ar(Fr, Pr);
u(fj , pi) = 1, ∀(fj , pi) ∈ Ar(Fr, Pr) such that vji ≥ 1;
u(fj , pi) = 0, ∀(fj , pi) ∈ Ar(Fr, Pr) such that vji < 1.

(10)

3.2 The Spatial Graph

We now define the undirected graph Gs = (Vs, Es), the spatial graph, which is
a representation of the discretized geographical space P (a r × c regular square
grid in our case). Once again, to each parcel i of P, we associate a vertex pi, we
then have:

Vs = { pi | i ∈ P }. (11)

Moreover, the edges of Gs are defined such that if pu and pv are two vertices,
there is an edge between pu to pv if and only if the parcels u and v are spatially
adjacent. The edges ofGs can be partitioned into four disjoint sets: the horizontal
edges (EH), the vertical edges (EV ), the north-west to south-east diagonal edges
(ENW SE

) and the north-east to south-west diagonal edges (ENESW
).

Es = EH ∪ EV ∪ ENW SE
∪ ENESW

;
EH = { (pi, pi+1) | i ∈ P ∧ ¬ (i+ 1) ≡ 0 (c) };
EV = { (pi, pi+c) | i ∈ P ∧ i < c(r − 1) };

ENW SE
= { (pi, pi+c+1) | i ∈ P ∧ i < c(r − 1) ∧ ¬ (i+ 1) ≡ 0 (c) };

ENESW
= { (pi, pi+c−1) | i ∈ P ∧ i < c(r − 1) ∧ ¬ i ≡ 0 (c) }.

(12)

See Fig. 6 for an illustration of the above equation. Also note that it takes
into account the extremal positions of the grid. In fact, the parcels located in



the first column are the one whose index is a multiple of c, that is i ≡ 0 (c).
Moreover, the parcels located in the last column are the ones preceding those
that are located in the first column, that is (i + 1) ≡ 0 (c). Finally, the parcels
located in the last line are the ones satisfying i < c(r − 1).

pi+c pi+c+1

pi pi+1

Fig. 6. Illustration of a portion of a spatial graph Gs associated with a r × 4 square
grid, using the 8-connectivity neighborhood definition.

Expressing Spatial Criteria as Constraints. Similarly to what had been
defined for the resource allocation graph, to a solution S of the problem we
associate Xs ⊆ Vs. Moreover, to each reserve Xk ∈ S we associate Xs(k) ∈ Xs,
the vertices associated to the parcels of Xk. We now express each spatial criterion
as a constraint that can be applied on Gs[Xs].

Number of Reserves. We easily express this criterion by bounding the number
of connected components (NCC, [22–24]) in Gs[Xs].

Constraint 4: Number of Reserves.
Input parameter(s): Two positive integer Nmin and Nmax.
Ensuring that the number of reserves in S is bounded by Nmin and Nmax is
equivalent to bounding the NCC of Gs[Xs] with Nmin and Nmax.

Nmin ≤ NCC(Gs[Xs]) ≤ Nmax. (13)

Reserve Areas. We express this criterion as a constraint on the number of vertices
of the smallest connected component of Gs[Xs] (MIN NCC, [25, 23, 24]) and on the
number of vertices of the largest connected component of Gs[Xs] (MAX NCC, [25,
23, 24]).



Constraint 5: Reserve Areas.
Input parameter(s): Two positive integer Amin and Amax.
Ensuring that the area of every reserve Xk ∈ S is bounded by Amin and Amax is
equivalent to constraining the lower bound of MIN NCC(Gs[Xs]) to Amin and the
upper bound of MAX NCC(Gs[Xs]) to Amax.

∀k ∈ J0, nrJ, MIN NCC(Gs[Xs]) ≥ Amin;
MAX NCC(Gs[Xs]) ≤ Amax.

(14)

Reserve System Area. In the current case of a regular tessellation method, we can
control the whole reserve system’s area by bounding the norm of Xs.

Constraint 6: Reserve System Area.

Input parameter(s): Two positive integer ATmin and ATmax .
Ensuring that the total area of the reserve system is bounded by ATmin and ATmax

is equivalent to bounding |Xs|.

ATmin ≤ |Xs| ≤ ATmax . (15)

4 The CP Model

In this section we present our CP model for the reserve design problem. For its
implementation, we rely on the solver Choco [16] and its extension Choco-graph
[26], which provides graph variables and constraints.
The Decision Variables. We naturally model the parcels with a boolean vari-
able array, named parcels. If the parcel i is selected in the reserve system,
parcels[i] = 1, else parcels[i] = 0.

BoolVar[] parcels = model.booVarArray("parcels", n);

These decision variables are the cornerstone of our CP model because they allow
us to aggregate the two models we introduced in the previous section.
The Feature Covering Constraints. Given the particular configuration of the
resource allocation graph, we are able to express each feature covering constraint
with several local flow conservation inequalities, one for each feature involved in
the constraint. Note that we would certainly benefit from the filtering of a global
flow constraint [27]. However, there is no such constraint implemented in Choco
at the time we are writing this paper. We thus keep this idea for future work.
Constraint 1, Covered Features (7): with local flow conservation inequalities, (7)
becomes:

∀j ∈ F ′,
n−1∑
i=0

bi × (vji ≥ 1) ≥ 1.

Below is the implementation with Choco 4, using the scalar constraint.



for (int j : featuresToCover) {
int[] coeffs = Arrays.stream(V[j])

.mapToInt(v -> (v >= 1) ? 1 : 0)

.toArray();
model.scalar(parcels, coeffs, ">=", 1).post();

}

Constraint 2, α-Covered Features (9): the coefficients in the scalar constraint
must be integers. We then retain only two digits of precision for the probabilities
of presence. If α ∈ [0, 0.99] then− log(1−α) ∈ [0, 2], moreover, with this precision
the order of the smallest variation between two values (α = 0 and α = 0.01) is
10−3, we thus multiply our local flow inequality by 103 in order to stay in the
integer domain. If vji ≥ 1, we set the flow upper bound to −103 log(1−0.999) =
3000 as a replacement for +∞ .Consequently, we reduce (9) to:

∀j ∈ F ′,
n−1∑
i=0

bi ×min(−103 log(1− vji), 3000) ≥ −103 log(1− α).

Below is the implementation with Choco 4.

for (int j : featuresToCover) {
int[] coeffs = Arrays.stream(V[j])

.mapToInt(
v -> (v >= 1) ? 3000 : (int) (-1000 * Math.log10(1 - v)))

.toArray();
int scaled = (int) (-1000 * Math.log10(1 - alpha));
model.scalar(parcels, coeffs, ">=", scaled).post();

}

Constraint 3, k-Redundant Features (10): similarly, we reduce (10) to:

∀j ∈ F ′,
n−1∑
i=0

bi × (vji ≥ 1) ≥ k.

And implement it the following way with Choco 4:
for (int j : featuresToCover) {

int[] coeffs = Arrays.stream(V[j])
.mapToInt(v -> (v >= 1) ? 1 : 0)
.toArray();

model.scalar(parcels, coeffs, ">=", k).post();
}

The Spatial Constraints. We rely on Choco-graph to express the spatial
constraints in our CP Model. First, we use a graph variable g to model the
reserve system. Its kernel is the empty graph (GLB in the code), and its envelope
is Gs (GUB in the code).



UndirectedGraph GLB = new UndirectedGraph(model, n, BIPARTITESET, false);
UndirectedGraph GUB = new UndirectedGraph(model, n, BIPARTITESET, false);
for (int i = 0; i < n; i++) {

GUB.addNode(i);
for (int ii : getNeighbors(i)) {

GUB.addEdge(i, ii);
}

}
UndirectedGraphVar g = model.graphVar("g", GLB, GUB);

Then, we link the graph variable g with the boolean variables parcels using
the nodesChanneling constraint.

model.nodesChanneling(g, parcels).post();

We also force the existence of an edge between two selected adjacent parcels
through an edgeChanneling constraint with a reified and constraint between
each pair (i1, i2) of adjacent parcels. Doing so, we ensure that every existing
edges between two selected vertices are also present in our graph variable.

BoolVar forceEdge = model.and(parcels[i1], parcels[i2]).reify();
model.edgeChanneling(g, forceEdge, i1, i2).post();

Constraint 4, Number of Reserves (13): we use the nbConnectedComponents
and the arithm constraints.

IntVar nbCC = model.intVar("nbCC", Nmin, Nmax);
model.nbConnectedComponents(g, nbCC).post();

Constraint 5, Reserve Areas (14): at the time we are writing this paper, there
is no constraint in Choco-graph for controlling the MIN NCC and MAX NCC graph
properties. We thus implemented the sizeConnectedComponents5 constraint,
which allows us to bound MIN NCC and MAX NCC.

model.sizeConnectedComponents(g, Amin, Amax).post();

Constraint 6, Reserve System Area (15): we can control the number of vertices
of Gs (that is, the number of parcels) through the nbNodes graph constraint, or
through the sum constraint over the decision variables.

IntVar nbParcels = model.intVar(Atmin, Atmax);
model.nbNodes(g, nbParcels).post(); // Option 1
model.sum(parcels, "=", nbParcels).post(); // Option 2

5 https://gist.github.com/dimitri-justeau/8098af35824bbf8d52ef21282291e621



5 Use case: Rainforest Fragmentation in New Caledonia

New Caledonia is biodiversity hotspot located in the South Pacific, slightly north
of the tropic of the Capricorn. The flora of this large archipelago is distinguished
by an exceptionally high rate of endemism. Like most of the world’s remaining
natural forests, New Caledonian rainforests are endangered with surface loss and
fragmentation. A case study had been conducted in the south of New Caledonia
in order to highlight “how does forest fragmentation affect tree communities”
[28]. We relied on this case study and its associated dataset (up to date) for our
use case, and considered the following fictive but realistic operational scenario:

“We want to establish a reserve system in which a pool of endangered
species must be present. In addition, most of the other species known in the
area must have a high probability to occur, or a high habitat suitability. The
reserve system must be mostly covering rainforest areas. Its area and its
number of reserves must be limited because of budget limitation. Moreover,
each reserve must be large enough to ensure the persistence of the species.”

Note. In this scenario, the objective is to protect both existing and poten-
tial rainforest areas. To do so, we relied on SDM layers that were generated
with presence-only data and thus produce a score of habitat suitability rather
than a standardized probability of presence. A high habitat suitability in a non-
rainforest zone can then be interpreted as an adequate zone for recolonization.

5.1 Input Data, Constraints and Parameters

The original dataset consists of the mapping of a 60 km2 landscape where 97 tree
communities had been sampled in 88 digitized rainforest fragments (forest/non-
forest). The dataset gathers 5431 identified trees belonging to 223 species. More-
over, an SDM raster layer was available for 173 of the species [29, 30]. Arbitrarily,
we considered the 50 species without SDM as the endangered ones. We then pre-
pared this dataset by tessellating the study area into a 46 × 75 regular square
grid and by rasterizing the dataset according to this grid. Each parcel then has
an area of about 1.7 ha. Note that we also defined a set of forbidden parcels
corresponding to lakes and mining sites.

From this point, we defined a feature for each observed species in the area.
When available, we relied on the SDM layer for the feature data (probability of
presence data). We forced the values to 1 for the parcels where an observation is
available. When no SDM was available, we only relied on the occurrence dataset
(presence-absence). We represented the rainforest coverage as a presence-absence
feature.

We then applied the Covered Features constraint for the set of endangered
species, and the α-Covered Features constraint for the other species with α = 0.8.
In order to ensure a minimum rainforest area of 340 ha in the reserve system, we
applied the k-Redundant Features constraint for the rainforest coverage, with



k = 200 parcels. Moreover, we enforced the forbidden parcels on the enve-
lope of the graph variable g. We then set the minimum area of the reserves
to Amin = 176 parcels (about 300 ha) with the Reserve Areas constraint. In
addition, we limited the reserve system area using the Reserve System Area
constraint, with Atmax

= 589 parcels (about 1000 ha). According to those re-
strictive parameters, we allowed the number of reserve to be at most two, using
the Number of Reserves constraint, with Nmin = 1 and Nmax = 2.

5.2 Questioning and Results

In the first place, the number of reserves and the number of parcels are criti-
cal parameters of our use case: the less the better. This is why we started by
implementing a search strategy that starts by branching on the lower bound of
the nbCC variable and continues by selecting the lower bound of the parcels
variables, sorted in descending order by a score corresponding to the number of
features with a value greater than 0.6 (cf. 7). The solver quickly found a solution
to the decision problem (DP), as summarized in Table 1. Given that, we ran a
first optimization problem (OP1) where we tried to minimize the total area of
the reserve system, that is the nbParcels variable. We limited the computation
time to 4 hours and retrieved the best solution found, which reduced the total
area by 8% in comparison to DP (cf. Table 1). In order to cover more rainforest
parcels, we ran a second optimization problem (OP2) in which we forced the
nbParcels variable to be within 15% of the best value found in OP1, and tried
to maximize k (the number of forest parcels), thus defined as an integer variable.
After a limited run of 4 hours, we could increase the area of rainforest by 12%
(cf. Table 1). A mapping of our results is provided in Fig. 7.

Fig. 7. Mapping of the use case best solutions. The parcel scores correspond to the
heuristic score and the mandatory occurrences to rare species observed only once in
the study area (they must then be covered by any solution).



Table 1. Use case results: resolution times and solution characteristics. All experiments
were run on an Intel Core i5-5200U CPU (2.20GHz×4), with 7.7GB of RAM.

DP OP1 OP2
Resolution time 28s 3h24m 1h5m
Number of solutions found 1 8 25
Number of reserves 1 1 1
Number of parcels 318 292 328
Number of rainforest parcels 200 200 224

6 Conclusion and Challenges

To the best of our knowledge this paper tackles, for the very first time, the reserve
design problem from a constraint programming point of view. It is also the first
time that a reserve design model integrates such a diversity of constraints, simul-
taneously involving decisions based on occurrences, SDMs and spatial attributes
with an exact approach. Although performance enhancements are needed, the
combination of graph-based modeling and constraint programming reveals as a
powerful and promising framework for dealing with the reserve design problem.

Based on a challenging use case, our model highlighted a solution compatible
with the conservation strategy, namely a trend to link isolated forest patches in
order to enhance the functioning of tree communities. However, in this use case
we restrained to a binary landscape only composed of forest/non-forest while it
is often assumed that a reserve system must include an assemblage of several
landscape types. In such a mosaic, an important challenge lays in weighting and
balancing the reserve system characteristics and shape in order to maintain (or
restore) the functional connectivity inside and between the reserves. In fact, the
functional isolation of an habitat leads to a reduction of biological flows, which
tends to amplify its spatial isolation. Moreover, since the underlying processes
are dynamic, robust solutions must rely both on the current state and future
scenarios. It also remains to model the impacts of a reserve system on the off-
reserve area, such as the creation of boundaries or enclosed areas.

These elements lead us to identify several lacks and challenges. First of all,
the main lack is that Choco solver does not offer an implementation of the flow
constraint [31, 32]. We will focus on its implementation in future work. Next, a
bottleneck in the constraint propagation is the interaction between the constraint
on the number and the size of the connected components [25]. We actually treat
each one independently but we think that there is a possible enhancement of
the filtering by dealing with their interaction. A first challenge for future work
concerns our capacity to model constraints on the shape of the reserves by using
graph properties, such as graph diameter, in order to design reserves that are
compatible with the long-term persistence of species. A second challenge is more
oriented to decision making aspects such as identifying key areas that have to
be present in any solution. Finally, a last challenge is related to our capacity to
take a dual point of view: is it possible to take into account managers’ needs on
the off-reserve area by adding constraints on the same graph representation?
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