
HAL Id: hal-01881339
https://imt-mines-albi.hal.science/hal-01881339

Submitted on 4 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical simulation of metal forming processes with
3D adaptive Remeshing strategy based on a posteriori

error estimation
Bessam Zeramdini, Camille Robert, Guenaël Germain, Thomas Pottier

To cite this version:
Bessam Zeramdini, Camille Robert, Guenaël Germain, Thomas Pottier. Numerical simulation of
metal forming processes with 3D adaptive Remeshing strategy based on a posteriori error estimation.
International Journal of Material Forming, 2019, 12 (3), pp.411-428. �10.1007/s12289-018-1425-4�.
�hal-01881339�

https://imt-mines-albi.hal.science/hal-01881339
https://hal.archives-ouvertes.fr


Numerical simulation of metal forming processes with 3D adaptive
Remeshing strategy based on a posteriori error estimation

Bessam Zeramdini1 & Camille Robert1 & Guenael Germain1 & Thomas Pottier2

Abstract
In this work, a fully automated adaptive remeshing strategy, based on a tetrahedral element for 3D metal forming processes, was
proposed in order to solve problems associated with the severe mesh distortion that occurs during the computation. Themain idea is
to use the h-type adaptive mesh in combination with an a-posteriori error estimator measured (by the energy norm) on each finite
elements to locally control the mesh modification-as-needed. Once a new mesh is generated, all history-dependent variables must
be carefully transferred between subsequent meshes. Therefore, several transfer techniques are described and compared. A special
attention is given to restore the local mechanical equilibrium of the system with a newmethodology. After presenting the necessary
adaptive remeshing steps, some 3D analytic and numerical results using the proposed adaptive strategy are given to demonstrate the
capabilities of the proposed equilibrated approach and to illustrate some practical characteristics of our remeshing process.

Keywords 3D metal forming processes . Automatic adaptive remeshing . A-posteriori error estimator . Transfer techniques .

Equilibrated process

Introduction

For a large class of problems such as metal forming process
like forging, rolling, cutting, etc., the use of the finite element
method is still a challenging problem. It can typically involve
high strain localization, large inelastic deformations and high

temperature problems. Often in these types of application,
mesh becomes unacceptable due to severe distortion or com-
plex workpiece-die contact occurring which induces errors in
the key internal variables (plastic strains and stresses). As
consequence, the ability to achieve a proper analysis with
reasonable CPU cost is entirely dependent on the FE mesh
spacing. Indeed, optimal mesh configuration changes contin-
uously throughout the metal forming process. Consequently,
the final results obtained with the use of a fixed mesh are
unreliable and may give a rise to severe numerical difficulties
and may even make it impossible to pursue the calculations
any further because of severe element distortion. In order to
overcome these difficulties and continue the simulation for
large deformation cases, successive mesh adaptation is needed
during the numerical simulation in order to obtain an optimal
discretization according to the geometrical shape or/and phys-
ical solution. The main ingredients in any adaptive procedure
are a posteriori error estimation and a mesh generator [1]:

(i) The a posteriori error estimation is required to decide if
the previous FEM calculation must be stopped, to locate
the critical zones of the domain where the mesh need to
be concentrated or to be coarsened and to determine the
size of optimal mesh. An overview of different a
posteriori error estimation technique is provided by [2, 3].

• Adaptive mesh strategy is developed for 3D metal material processes.
• Different methods recovery techniques are compared.
• Equilibrium method for dynamic explicit scheme is proposed.
• Results are compared with experiments test.
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(ii) The mesh generator produces the new spatial
discretization with the desired element density at pre-
scribed locations in the deformed configuration, as de-
termined after the error assessment. While the spatial
discretization changes between subsequent mesh, the
global topology of the piece is conserved. In the ap-
proach presented here, unstructured tetrahedral ele-
ments with local h-adaptive strategy guided by error
indicators and geometric approximation are used. The
advantages of their use are discussed by Lo [4, 5].

Once a newmesh is generated, two approaches are possible:
either the simulation is totally recomputed, or all the state var-
iables and history-dependent variables at the end of the previ-
ous load step must be transferred from the degenerated old
mesh to the reconstructed new one, in order to continue the
simulation. Owing to the fact that the optimal mesh configura-
tion and the boundary conditions changes continuously
throughout the numerical simulation, the second approach will
be implemented step by step in order to adapt to this change.
This is a delicate issue because if the new field variables are not
adequately determined, the simulation accuracy can be severely
affected [6]. Different techniques exist to transfer the history
variables; basically all these methods can be categorized into
two types: direct transfer (closest point technique [7], weighted
average method [8], Superconvergent recovery by element
patches [9], etc..), and indirect transfer (such as least squares
smoothing, average values [10], the superconvergent patch re-
covery (SPR) technique [11–13],etc..).

In the present paper, after a concise review of error estima-
tion and the alternative mesh refinement criteria in Section
BError estimators^, different Patch Recovery Techniques such
as average values technique (Avg), superconvergent patch re-
covery (SPR) and the modified of Zienkiewicz and Zhu tech-
nique (SPR-P) will be described in Section BPatch recovery
techniques^. Then in Section BAnalytical results^ these recov-
ery methods will be compared with analytics function in order
to select the best techniques to transfer the data state variables
between two successive meshes. In Section BAdaptive
remeshing methodology ,̂ the global flowchart of the pro-
posed 3D adaptive remeshing algorithm is detailed. In
Section BNumerical results^, the efficiency of algorithm here
proposed and the equilibrated approach are validated through
various examples including the shear test as well as the forg-
ing process. Finally some conclusions are drawn in Section
BConclusion^.

Error estimators

The error estimation is the first and one of the most important
procedures in adaptive FE analysis. Because it is indicates the
quality of elements, quality of the solution, and if necessary

new element density. Among the very numerous proposals
that were, and still are available, three groups can be classified,
depending on whether they are based on: the estimators based
on residuals analysis, introduced by Babuska and Rheiboldt
[14], the estimators based on the concept of error in constitu-
tive relation, initiated by Ladvéze et al. [15], and the estima-
tors based on smoothing techniques developed by
Zienkiewicz et Zhu [16].Although the approach of the residual
estimator proposed by Babuška and Rheinbold [14] is mathe-
matically rigorous, its extension to 3D nonlinear problems is
facing some major challenges. Indeed the efficiency of this
estimator depends on the mesh quality and regularity of the
solution, which makes it less suitable for large deformation
problems. In the literature, the majority of applications are
presented in the context of 1D and 2D academic problems.
The key point of the proposed estimator by Ladevèze et al.
[15] is the construction of admissible displacement-stress pair.
For the sake of simplicity, in the context of FE method with
compressible material, the displacement field can be consid-
ered as admissible. Conversely, the stress field is not statically
admissible. In the literature, Sever method can be used to
calculate this admissible stress [17]. In spite of its remarkable
efficiency, this technique has been rarely used in FE simula-
tion software because of the cost of its implementation. In this
work, the estimator based on smoothing techniques is used
due to its cost effectiveness and reliability to estimate errors
and for its simplicity of implementation. The main idea of the
smoothing techniques is based on the construction of a recov-
ered stress tensor field ~σmore accurate than the finite element
solution σh. This recovered stress tensor field ~σ,can be con-
structed by a variety of projection techniques, such as: least
squares smoothing, average values, the superconvergent patch
recovery (SPR) technique etc..

In the following part, the average values technique,
the SPR error estimator in its almost standard form and
the modified Zienkiewicz and Zhu technique (SPR-P),
will be studied.

A posteriori error estimation

We suppose that the FE solution (uh, σh) is an approximation
of the exact solution θimp in the considered finite element
space Ω. The displacement error eu is the difference between
the exact displacement solution and the FE displacement
solution:

eu ¼ u−uh ð1Þ

The stress error eσ is the difference between the exact stress
field and the FE stress field:

eσ ¼ σ−σh ð2Þ



Dealing with problems of metal forming process and me-
chanical structure, the element error is generally given, ac-
cording to the norm of energy [18, 19]. It expresses the differ-
ence between the exact stress σ and the FE one σh:

eσk kel ¼ σ−σhk kel ¼ ∫Ω σ−σhð Þ : ε−εhð Þ dω
! "1=2 ð3Þ

To evaluate the quality of the approximate error norm it is
more logical to use a relative value, given as:

θel ¼
eσel

∫Ωσ : ε dω
! "1=2 ð4Þ

Practically, it is not possible to compute the exact error eσ. The
exact solutions (σ, ε) are further approximated by smoothed
stress distribution Ones ~σ;~εð Þ, which are computed from the
FE solutions using Patch Recovery Techniques presented there-
after. Therefore, the stress error modelling is given by:

e~σ ¼ ~σ−σh ð5Þ

Dealing with problems of metal forming process and me-
chanical structure, the element error norm will be defined by:

e~σ
####

####
el
¼ ~σ−σh

###
###
el
¼ ∫Ω ~σ−σh

$ %
: ~ε−εh
$ %

dω
$ %1=2

ð6Þ

Then, the global error ~θ over the whole structure Ω is cal-
culated by summing the errors of all the elements.

e~σ
####

####
2

Ω
¼ ∑

el∈Ω
e~σ

####

####
2

el
ð7Þ

~θ ¼ ∑
el∈Ω

~θel
$ %2

& '1=2

ð8Þ

~θel ¼
e~σ

####

####
el

∫Ω~σ : ~ε dω
$ %1=2

ð9Þ

The dependability of the estimate is measured by its effec-
tivity index ξ defined, in each element of the mesh, as the ratio
between the predicted error and the exact error as measured
respectively in Eq. (6) and expression Eq. (3). Thus:

ξ ¼
e~σ

####

####
el

eσk kel
ð10Þ

An error estimator is considered as asymptotically exact
when its efficiency index tends to 1, in other words when
the size of items tends to zero [2, 9, 12, 19].

Size map for adaptive strategies

After estimating the element error, an establishment of a relation
between this error and the element size is needed afterwards.
Usually, this relation can be established with the using either of
the following two strategies: The first allows us to calculate an
optimal mesh for a prescribed accuracy, while the second seeks
to optimize amesh under the constraint of a number of degrees of
freedom attached. One may refer to [18, 19] for more details,
which used a combination of them. The first strategy is used to
compute an optimized new mesh. Then, if the number of ele-
ments exceeds the prescribed number of degrees of freedom the
new mesh will be computed with the second strategy. Many
others authors [20] propose other similar optimization strategies
that aim to control the size of the problem studied. They seek
maximum accuracy to reach for a fixed size memory or CPU
time for a given calculation. In the present work, only the first
strategywill be studied because the goal of this paper is to evenly
distribute the error over all the elements.

Optimal mesh for prescribed accuracy θimp:

According to finite element convergence theorem, the local
element error is directly related to its characteristic length hel
and its rate of convergence p. In three-dimensional case, p is
equal to 1 for the linear tetrahedron element [21].

~θel ¼ O hpel
! "

ð11Þ

Assuming that the rate of convergence of the FEM is uni-
form throughout the entire domainΩ, the optimal size of each
element must be computed by:

~θ
opt

el

~θel
¼

hoptel

hel

& 'p

; ð12Þ

Where hel and hoptel denote respectively the current characteristic
size of an element el and the optimal characteristic size of the

new one. ~θel and ~θ
opt
el represent the predicted and optimal element

error to the current mesh and the optimal one, respectively.

~θ ¼ ∑
el∈Ω

~θel
$ %2

& '1=2

ð13Þ

θimp ¼ ∑
el∈Ω

~θ
opt

el

& '2
 !1=2

ð14Þ

In three-dimensional case, the optimal number of elements
is given by [19]:

neltopt ¼ ∑
nelt

el

hoptel

hel

& '−d

; ð15Þ



where nelt is the total number of elements within the domain
Ω and d is the number of degrees of freedom.

The optimality condition of the expected mesh leads to
uniform the error θuni on the new elements, which gives:

∀el; ~θ
opt

el

& '2

¼ θuni
! "2 hoptel

hel

& '−d

ð16Þ

From Eqs. (14) and (16), the target error θinp accepted by
the user is given by:

θinp
! "2 ¼ θuni

! "2 ∑
nelt

el

hoptel

hel

& '−d

; ð17Þ

then, a new element size factor can be computed from Eqs.
(12) and (16).

hoptel

hel
¼ θuni

~θel

 !2= 2pþdð Þ

ð18Þ

The final expression of the resize coefficient is written as a
function of the estimated error, the target error and the con-
vergence rate p:

hoptel

hel
¼

θinp
! "1=p

~θel
$ %2= 2pþdð Þ

∑nelt
el

~θel
$ %2d= 2pþdð Þ

& '1=2p ð19Þ

Patch recovery techniques

The transferring approach strongly depends on the kind of
state variables which needs to be transferred [22]. At least,
when transferring the nodal variables (such as displacements,
velocity and temperature) a direct interpolation from old
nodes to the new ones may be used via the finite element
shape function. However, the transfer of the element variables
(such as stress, strain and internal variables) is a very difficult
problem. This problem has been addressed by many authors
[10, 22].

Here, the nodal displacement data is already present in the
updated geometry of the problem because the remeshing strat-
egy is done in the deformed configuration. In fact, only inte-
gration point variables need to be transferred. It should also be
noted that in the case of a thermo-dynamic test, also the tem-
perature must be transferred from the old node to the new
ones. In order to study the compatibility of the element state
transfer with the initial field and the numerical diffusion solu-
tion, numerical result using three recovery methods will be
compared in the next part with analytic and numerical
problems.

Average values (Avg)

In each element Patch Ωk,the Average values procedure for
transferring element fields is splitted into three steps which are
summarized in Fig. 1.

First the average values are projected from the old Gauss
point g to the old nodes k. Such that an element patch Ωk

represents a union of elements containing the vertex node k,
see Fig. 3.

∀k∈Ωk
old; ~σk ¼

1
∑el∈Ωk

old
ωel ∑

el∈Ωk
old

ωel σel
h such that

: ωel ¼ ∑g∈elω
g; ð20Þ

where wg and wel are the volume contribution associated to
Gauss point g and to element el, respectively.

Then, as mentioned in [7], the values at the new nodal
points can be computed by simple interpolation of the old
nodal values using the local interpolation functions such as
the finite element shape function.

∀k∈Ωold; ~σx ¼ ∑
nnt

k∈Ωold

~σk Nold ξ xð Þð Þ; ð21Þ

where nnt is the total number of node in each element, ξ(x) are
the local coordinates of the new node x in the old mesh and
Nold are the old FE shape functions used to interpolate the
nodal variables.

Finally, the history dependent values at the integration
points of the new mesh can be achieved by using local shape
function of the new elements.

∀x∈Ωnew; ~σ ¼ ∑
nnt

x∈Ωnew

~σx Nnew ξ gð Þð Þ; ð22Þ

where ξ(g) are the local coordinates of the new Gauss point in
the new mesh and Nnew are the new FE shape functions.

This method has the advantage of being applicable easily to
any type of complex three-dimensional case by not having to
consider the discretization of the two meshes involved. But its
first extrapolation step constitutes an important source of nu-
merical diffusion. In order to limit this diffusion, many other
advanced techniques have also been proposed such as the
Super-convergent Patch Recovery proposed by Zienkiewicz
et Zhu [9–12].

Super-convergent patch recovery (SPR) technique

The FE approximation of a one-dimensional linear function
can be locally very different from the exact solution, as shown
in Fig. 2. However, at certain points in the elements, the results
are nearly correct. These super-convergent points are located
in the center of the elements witch correspond to the element



Gauss points. This prediction is proposed by Zienkiewicz and
Zhu [9–12] and recommended by Babuska et al. [23] through
numerical investigations.

To compute the recovered stress field ~σ of each element
(represented in Eq. (22)), the following expression is generally
used for each patch. Such that an element patch Ωk represents
an union of elements containing the vertex node k, see Fig. 3:

∀k∈ Ωk
old; ~σ ¼ ∑

NG

k¼1
~σkNk x; y; zð Þ ¼ ∑

NG

k¼1
P:ak Nk x; y; zð Þ ð23Þ

The Eq. (23) is valid only over the old element patch Ωold

where NG is the total number of Gauss points in the patch, are
Nk the FE shape functions used to interpolate the nodal vari-
ables, ~σk is the recovered solution at node k computed by
considering a polynomial expansion P and a is a vector of
unknown parameters. For a three-dimensional problem and
for linear tetrahedral elements, we have:

P ¼ 1; x; y; zð Þ ð24Þ

ak ¼ ak1; a
k
2; a

k
3; a

k
4

! "t ð25Þ

The determination of the coefficients aki for each compo-
nent of the stress tensor consists of minimizing the following
functional:

π ak
! "

¼ ∑
NG

i¼1
σh ið Þ−~σ ið Þ

$ %2

¼ ∑
NG

i¼1
σh ið Þ−P xi; yi; zið Þ:ak Nk x; y; zð Þ
! "2

; ð26Þ

where σh(i) is the FE stress field calculated at coordinates (xi,
yi, zi) of Gauss point i.

The minimization problem is:

∀i ¼ 1::4;
∂π ak

! "

∂aki
¼ 0 ð27Þ

Eq. (27) can be solved in matrix form as:

ak ¼ A−1b; ð28Þ

where:

A ¼ ∑
NG

i¼1
Pt xi; yi; zið Þ P xi; yi; zið Þ

¼ ∑
NG

i¼1

1 xi yi zi
xi xið Þ

Ç
xiyi xizi

yi yixi yið Þ
Ç

yizi
zi zixi ziyi zið Þ

Ç

2

6664

3

7775 ð29Þ

b ¼ ∑
NG

i¼1
σh ið Þ Pt xi; yi; zið Þ ¼ ∑

NG

i¼1
σh ið Þ

1
xi
yi
zi

2

664

3

775 ð30Þ

Finally, the elements smoothed stress distribution ~σ is then
computed at the node k (center of the patch) by inserting its
coordinates in Eq. (23), where:

~σk ¼ P xk ; yk ; zkð Þ ak ð31Þ

The history dependent values at the integration points of
the new mesh can be achieved by interpolating the obtained
nodal recovered solution σk from old node to the new one
using Eq. (21), then from old Gauss point to the new one using
Eq. (22).

Particularly, the superconvergent patch recovery (SPR)
technique is often preferred by several authors because it is
robust and simple to use [18, 19]. However, for borders nodes
Fig. 3, in the majority of cases the number of integration
points is insufficient to determinate the coefficients of the
polynomial expansion [9, 24]. In fact, the matrix A in Eq.

Exact solution

FE solution

Super-convergent point
Gauss point

Fig. 2 Approximated values and exact solution

Interpolation with new 
mesh shape function

Interpolation with old 
mesh shape function

Extrapolation

Old mesh New mesh
Fig. 1 A tree-step procedure
illustrating the indirect element
field transfer



(29) is non-reversible. For a border node, Zienkiewicz and
Zhu [9, 12] propose to calculate the value of ~σk from a topo-
logical patch centered on an internal node closest to extern
node. Thus ~σext

k gets the neighbor value ~σint
k .

The Liszka-Orkisz variant of SPR (SPR-P)

In order to solve the boundary nodes problems the concept of
the extended patch (see Fig. 4) introduced by Liszka-Orkisz’
et al. [25, 26] can be used, where the nodal variables can be
regarded as first (or second) order Taylor series expansion

over the extended topology P in the element patch Ωk. For
linear constraints, a Taylor series expansion to the first order
of the FE stress at the Gauss points can be given as:

∀k∈ Ωk ; ~σk ¼ P xk ; yk ; zkð Þ ak ð32Þ

1st orderð Þ ¼ ak1 þ ak2 x−xkð Þ þ ak3 y−ykð Þ þ ak4 z−zkð Þ ð33Þ

Then, the minimization problem is:

πFD
k ak
! "

¼ ∑
g∈Ωk

σg− ak1 þ ak2 xg−xk
! "

þ ak3 yg−yk
$ %

þ ak4 zg−zk
! "$ %

Δr2g

0

@

1

A
2

¼ ∑
g∈Ωk

O Δrg
! "2$ %

Δr4g
ð34Þ

with:

Δr2g ¼ xg−xk
! "2 þ yg−yk

! "2 þ zg−zk
! "2 ð35Þ

And similar to the standard form SPR the Eq. (34) can be
solved in matrix form as:

ak ¼ A−1b; ð36Þ

where:

A ¼ ∑
NG

g¼1

1
Δr4g

Pt xg; yg; zg
$ %

P xg; yg; zg
$ %

¼ ∑
NG

g¼1

1
Δr4g

1 Δxg Δyg Δzg

Δxg Δxg
! "Ç

ΔxgΔyg ΔxgΔzg

Δyg ΔygΔxg Δyg
$ %Ç

ΔygΔzg

Δzg ΔzgΔxg ΔzgΔyg Δzg
! "Ç

2

666664

3

777775
ð37Þ

b ¼ ∑
NG

g¼1
σh gð Þ Pt xg; yg; zg

$ %
¼ ∑

NG

g¼1
σh gð Þ

1
Δxg
Δyg
Δzg

2

664

3

775; ð38Þ

with:

Δxg ¼ xg−xk ;Δyg ¼ yg−yk ;Δzg ¼ zg−zk ð39Þ

The weighting term 1
Δr4g

allows to varying the weight

of the contributions of neighbors in the patch. This
weight is even important if the corresponding Gauss
Point g is closer to the central node k of the patch.
However in the SPR technique all the neighbors have
the same weight.

Analytical results

Efficiency of the adaptive remeshing strategies

In this section, an analytical function f1(x,y,z) is used to
check the sensitivity of the described a posteriori error
estimation (section: Size map for adaptive strategies) for
detecting the presence of significant error localization
and to test the capabilities of the presented adaptive
remeshing st ra tegies (sect ion: Patch Recovery

Fig. 3 Two-dimensional
superconvergent patch recovery
(SPR)



Techniques) in the presence of various levels of pollu-
tion error (Fig. 5).

f 1 x; y; zð Þ ¼ 100*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh 3 x−0; 3ð Þ7* y−0; 3ð Þ7* z−1; 3ð Þ5 þ 1

$ %r

x : −1::1½ &
y : −1::1½ &
z : −1::1½ &

8
<

:

ð40Þ

The adaptive procedure starts approximately with 21,000

uniformly distributed elements. A target error ~θ
opt
el in the adap-

tive process of 0.8% was adopted. The results are shown in
Fig. 6, where each line corresponds to a remeshing step taking
the mesh in the previous line as the initial mesh. In practice,
the elements size can’t respect perfectly the target error; hence,
the sizes of elements can be very small or very large, especial-
ly in the high gradient zones. The main cause of this non
respect is the obligation to insert a midcapmesh in these zones
in order to create a better evolution of the mesh size map. To
evaluate the efficiency of the different used processes, global
and local checks can be used: a first check is undertaken to
simply calculate the average error of the new discretization. If
this error is not close to the desired precision, it is certain that
the built mesh is not optimal. However, even if the overall
error is close to the desired one, this does not prove the opti-
mality of new mesh. The main idea of the local check is to
verify the error of the entire domain Ω for each element. In
fact, if the element size is optimal, the procedure of successive
adaptation must give change coefficients close to 1.
According to [17], the size of the elements is considered sat-
isfying in all areas with his modification size coefficient Re,
where we have:

2=3≤Re≤3=2;Re ¼ hnew=hold ; ð41Þ

As shown in Fig. 6, after each remeshing steps the density
of element will increase or decrease in some zones in order to
respect the target error. The evolution of the number of ele-
ment in the histograms plot showed a concentration rise of
elements numbers around the target error after each meshing
step. For this analytic function five iterations can be consid-
ered as satisfactory because the modification coefficients of
element size Re is 90%, close to 1 in overall domain. In there-
after examples this coefficients of element size criteria will be
used in order to define the ideal number of iteration for each
FEM problem.

Selection of the best recovery techniques

In order to select the best Patch Recovery Techniques to transfer
the data state variables between two meshes, several analytical
functions (linear and nonlinear) are considered in Fig. 7. Here,
we measure the exact error value, since the true solution is
known. The approximated solution is made by using the smooth-
ing techniques. The accuracy and convergence of each technique
is examined with two different L2 error norms which are volu-
metric norm Eq. (42) and surface norm Eq. (43). These L2 error
norms measure the error between the recovered field values and
the exact analytic solution.

ξk kvol ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k f k analyð Þ− f k SPR=SPR P=Avgð Þ

)))
)))
2

∑k f k analyð Þ

)))
)))
2

vuuuut ;∀k∈Ω ð42Þ

ξk ksurf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k f k analyð Þ− f k SPR=SPR P=Avgð Þ

)))
)))
2

∑k f k analyð Þ

)))
)))
2

vuuuut ;∀k∈∂Ω ð43Þ

Figure 7 presents the volume and surface error values
for SPR, SPR-P and Average recovery operator obtained
for linear, quadratic, trigonometric and exponential func-
tions for several meshes with uniformly decreasing element
sizes. The corresponding comparison shows how the SPR
technique values represent an improvement with respect to

Fig. 4 Two-dimensional
superconvergent extended patch
recovery (SPR-P)

100

1
Fig. 5 The analytic values of the function f1(x,y,z)



the analytic values inside the domain, in comparison with
the other techniques; but this improvement is not enough to
ensure a good surface error prediction. This verdict is well
known when the standard SPR technique is applied to
boundary points, especially for coarse meshes. In order to

reduce the surface error booth, SPR-P and Average recov-
ery technique can be used. Also, we can note that the error
estimation both on surface and inside the domain illustrates
better results with SPR-P recovery compared to the
Average recovery technique.

1

100

Ini!al mesh 20973 tetrahedral elements

Itera!on n°2: 38580 tetrahedral elements

Itera!on n°5: 59000 tetrahedral elements

Itera!on n°1: 95010 tetrahedral elements

Re=hnew/hold Error es!ma!on  

Re=hnew/hold Error es!ma!on  

Re=hnew/hold Error es!ma!on  

Re=hnew/hold Error es!ma!on  

Fig. 6 Iso values of the tested analytical function: f1(x,y,z) mesh size coefficient: Re, and local error estimation for each remeshing step



a Linear function  f (x,y,z)=x y z

b Quadratic function f (x,y,z)=x² y² z²

c Trigonometric function f (x,y,z)=cos(x y z)+sin(x y z) 

d Exponential function f (x,y,z)=exp(x y z) 
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Fig. 7 Comparison between some indirect transfer operators with linear, quadratic, trigonometric and exponential functions



For this work and in order to combine the advantage of
these methods the SPR technique will be used to transfer the
variables inside the domain and the SPR-P technique will be
used to transfer the surface ones.

Adaptive REMESHING methodology

The proposed automatic adaptive remeshing strategy is pre-
sented in Fig. 8 and tested by solving two numerical examples
under large inelastic deformations and high strain localization.
The purpose of these examples is to illustrate the efficiency of
the adaptive remeshing scheme adopted to optimize the mesh
according to the aimed prediction and to improve a good qual-
ity of elements in each step-time. In this work and similar to
[7], an element is classified as being distorted if one of his
dihedral angles (angles between two faces) is larger than 160°
or smaller than 10°, or if the radius-element ratio (the ratio
between the volume of initial tetrahedron and the volume of

the regular tetrahedron registered in the same circumscribed
ball, Fig. 9) is smaller than 0.2.

Only for the first step, the initial finite elements
discretization using a tetrahedral element is provided. Then,
for each time step an ABAQUS 6.13/ Explicit FE calculation
is performed with a small test displacement, and the resulting
simulation is analyzed through a posteriori error estimators
and element quality. If the estimated elementary error and /
or the number of distorted elements does not exceed a given
threshold, the previous FE simulation will be continued. Else,
the mesh is then modified automatically (refined and / or
coarsened) with MeshGems software according to the con-
stantly changing physical fields and geometrical shape and a
new solution for this loading sequence is computed. For each
time step, this process is repeated many times until the mesh
no longer changes and/or the error level has been reached.
Finally, all field variables are transferred from the old mesh
to the new one and the simulation is restarted from the previ-
ous time step. It should also be noted that after each time step,

• Initialization of mechanical fields, t 0 = 0s, iteration n = 0
• Definition of the geometry
• Definition of boundary conditions and material behavior

Small test 
displacement (Explicit)

Generation of the new mesh

Mesh distortion
Or

Error estimation

t n ≤ T totalEnd

Transfer the thermomechanical 
fields between the old mesh and 

the new mesh

Continue the previous FEM 
calculation

Yes

Yes

No

No

Error 
estimation

Small test 
displacement (Explicit)

tn = tn + ∆t

tn = tn

Yes

No

Fig. 8 Flow chart of the FE-
simulation for 3D remeshing
module



the boundary and loading conditions are generated according
to the old step modification.

Numerical results

Shear test

First, a shear test is used in order to validate the proposed
methodology and study some numerical aspects. Then, a met-
al forming process of a complex geometry will be tested. In
each case, both the tool and the workpiece are discretized with
tetrahedral elements C3D4Twith thermomechanical coupling
taken fromABAQUS element library. The mesh of the tools is
selected before the first step and remains unchanged.
However, the initial mesh of the work piece is a regular coarse
mesh and will be automatically adapted during the FE process.
In the adaptive process the smallest hmin and largest hmax ele-
ment sizes are respectively 0.1 mm and 1 mm. The contact
interface between the tools and the parts is modelled by the
classical Coulomb model with a constant friction coefficient

η = 0.2. Finally, material subroutine Vumat is implemented to
predict the Johnson-Cook model [27] at each Gauss point for
titanium alloy Ti17. The mechanical properties are similar to
those reported in Reference [28].

For the shear test, the geometry dimensions and boundary
conditions are given in Fig. 10. According to the symmetry
conditions in a 3D configuration, only one quarter of the
workpiece is modeled. To illustrate the efficiency of the adap-
tive strategy under large inelastic deformations and high strain
localization, two uniform displacements of the rigid tool has
been analyzed. All the adaptive procedure starts with 2493
uniformly distributed elements (Fig. 11a). Also, in order to
attend the convergence of the FE solution and to study the
influence of the element size on the stability of load, three
target errors of 1%, 0.1%, and 0.03% have been used in the
adaptive process. In this adaptive process, the smallest hmin
and largest hmax element sizes are 0.1 mm and 1 mm
respectively.

Fig. 11b shows the final mesh obtained after four adaptive
remeshing loops that can be compared with the initial one Fig.
11a. This adaptive remeshing loop is adopted at every time

Sy(z)

Sy(x)

Uy
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6 
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Fig. 10 Geometry and boundary conditions of the specimens used in shear test

ini!al tetrahedron circumscribed ball regular tetrahedronFig. 9 The radius-volume ratio of
tetrahedron



step taking the adaptive deformedmesh in the previous step as
the initial mesh. It can be observed how the adapted mesh
concentrates additional elements in the critical zones whereas
the number of elements in the rest of the domain remains
practically unaltered or decreased.

We can note that the element size increases and the number
of elements decreases with increasing the imposed target error.

The comparison between the numerical load–displacement
curves and published experimental data [28] with different
deformation rate 1 mm/s and 100 mm/s are shown in Fig.
12. At Fig. 12a, it can be shown that the smallest target error
0.03% is much more efficient in terms of convergence and
accuracy of the FE solution in comparison with the large
values 0.1 and 1%. However, even with this small target error
0.03% the system is not in mechanical equilibrium anymore.
In fact, the numerical curves show a small fluctuation in the
load-displacement response after each remeshing step which
can be caused by a small degree of numerical diffusion during
the transfer of variables between subsequent meshes. Also, we

can note that the level of fluctuation decreases with the de-
cease of the target error used in the adaptive process. This non-
smooth pattern fluctuation is also observed using various
others approaches such as average values, closest point tech-
nique [7], Superconvergent Patch Recovery (SPR) [22] or the
unique element method (UEM) [29].

In Fig. 12b, we consider the same shear test as previously
presented in Fig. 12a, but the shear test is performed under a
high deformation rate of 100 mm/s. More fluctuation of load–
displacement curves results under high deformation rate in
comparison to the low one are observed.

Equilibrium process

In order to solve the problem of this numerical instability, the
results obtained before and after data transfer process between
two successive meshes are compared. In Fig. 13, the first line
and the second one show the distribution of the von Mises
stress components at integration points in each element; the

Fig. 12 Comparison of load–displacement curves of mechanical tests using different deformation rate: 1 mm/s and 100 mm/s

Fig. 11 Meshes at different
instants with different targets
errors



third line and the fourth one show the value of internal forces
at tetrahedral element nodes Eq. (44).

f int ¼

f intx1
f inty1
f intz1
⋮
f intxnnt
f intynnt
f intznnt

2

6666666664

3

7777777775

¼ ∫
V
BT ~σ dV ; ð44Þ

where B is the spatial derivatives of the FE shape function.

The second line in Fig. 13 show a good continuous evolu-
tion of the von Mises stress after the transfer, due to the stress
smoothening. However, only with small target error test, very
small smooth diffusion can be seen. Before meshing, the nod-
al forces in the old mesh are very small since the explicit
solver is used as shown in the third line and Eq. (45).
However, it is not the case after remeshing specially in highly
stain regions as shown in the fourth line. At this stage the main
cause of the unbalanced system is due to the non-equilibrated
forces at element nodes caused by stress smoothening in ele-
ment. These nodal forces were self-equilibrated before trans-
fer of state variables because the previous converged state was

Target error = 0.1 %        Target error = 0.03 %        Target error = 0.03 %
Deformation rate= 1 mm/s  Deformation rate= 1 mm/s    Deformation rate= 100 mm/s

30092 tetrahedral elements  94572 tetrahedral elements   82741 tetrahedral elements

30634 tetrahedral elements     88394 tetrahedral elements    80548 tetrahedral elements
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Fig. 13 The evolution of the von
Mises stress and the nodal force
caused by stress smoothening
before and after transfer at the
same displacement u = 0.08 mm



valid only for the old mesh Eq. (45), but became external
forces after transfer and are no longer in self-equilibrium with
the new dynamic equilibrium equations Eq. (46).

div σel
old

! "
−mn

old:γ
n
old ¼ 0 ð45Þ

div σel
new

! "
−mn

new:γ
n
new≠0; ð46Þ

where σel
old and σ

el
new are respectively the initial and transferred

stress. mn
old :γ

n
old

! "
and mn

new:Y
n
new

! "
are respectively the mass

and acceleration of each node of the initial and finally mesh.
From Figs. 12 and 13, it can be construed that if the rate
deformation or the elements size used during the numeric
simulation is sufficiently small, mechanical equilibrium can
be established again at small time increment, because the
transfer error is too small. In the case of high rate deformation,
the remeshing process cannot be used because the numerical
instability will be amplified (third row in Fig. 13) even if the
transfer error is too small.

So, to restore equilibrium with the new boundary condi-
tions the unbalanced internal forces must be removed.
However, if they are eliminated at once, often the following
iterations are found in mechanical imbalance, especially for
coarse meshes. Analogy example of Spring-mass system can
be helpful to solve the equilibrium problem. In fact, when a

spring is stretched or compressed by a mass, the spring de-
velops a restoring force. Only if this restoring force is small or
relaxed the Spring-mass system can easily reach back to equi-
librium. From this idea, a relaxation procedure has been im-
plemented during the next step where these unbalanced nodal
forces are removed successively by series of analytic function

Fig. 14 Comparison of load–displacement curves of mechanical tests before and after equilibrium

Fig. 15 Geometry, boundary conditions, and initial finite elements
discretization



with decreasing coefficients. Note that only the values of dy-
namic nodal forcemn

new:γ
n
new are kept. Wheremn

new is the nodal
mass of the new mesh discretization and the new acceleration
values at the nodal points γn

new are computed by an

Fig. 16 Meshes at different tool displacement in the left with mesh adaptation and in the right without mesh adaptation



interpolation of the old nodal acceleration via the FE shape
function. The obtained results are presented in Fig. 14.

It is obvious in Fig. 14 that the equilibrium recovery pro-
posed in this work allows to restore equilibrium after each
meshing step. In terms of convergence under high and low
rate deformation, the computed load/displacement responses
obtained with equilibrium process give a good approximation
of the experimental solution compared to the one obtained by
only direct transfer.

From these results, it can be concluded that the use of
adaptive mesh process coupled with the proposed equilibrium
recovery has the better results compared to the use of standard
one, for which the equilibrium recovery process is not
imposed.

Metal forming processes

The metal forging is simulated with Abaqus 6.13 software.
The half of geometry and boundary conditions are shown in
Fig. 15. According to the symmetry conditions, only an eighth
workpiece is modeled.

In order to demonstrate the interest and efficiency of adap-
tive remeshing at a more complex geometries level, the same
metal forging simulation is carried out with the presented
mesh adaptation strategy (adaptive case) and without mesh
adaptation (standard case). One of the critical ingredients in
any FEM process is the mesh discretization. In fact, a severe
mesh distortion can occur during the standard simulation es-
pecially with constant coarse mesh. However, it is not the case
with the adaptive test because the mesh is automatically
adapted according to the constant change (physical fields
and geometrical shapes). That’s why the initial mesh of the
standard test must be optimized in some critical zones as
shown in Fig. 16. This comparison can improve a first advan-
tage of using the adaptive process to avoid excessive mesh
refinement, and present a good filling of the die matrices.

The numerical results presented in Fig. 16 show the effi-
ciency of the adaptive remeshing process. In fact, from the
beginning of the simulation to the end, a good quality of
elements is proved with the adaptive strategy. However, a
severe mesh distortion is observed without mesh adaptation.
With the adaptive process, the simulation ends with zero ele-
ment distortion compared to 6325 distorted elements without
remeshing.

As it was noted above, each element size can be considered
as optimal only if the procedures of successive mesh adapta-
tion give modification coefficient are close to 1. So, the
remeshing iteration is repeated many times until the total num-
ber of optimal elements does not exceed a given threshold. For
this metal forging simulation, the target threshold of optimal
elements number is selected as 75% and more strict area of
modification coefficient is chosen 3/4 ≤Re ≤ 5/4 compared to
the reference coefficient proposed by Ladevèze [17] which is

2/3 ≤Re ≤ 3/2 Fig. 17 shows that the both simulations start
with the same number of optimal elements. With the standard
process, the percentage of optimal element decrease after each
load displacement step until the end of simulation. In this
stage, only 23% of elements are conformed to the target error.
However, with the adaptive process if the percentage of opti-
mal element is above the given threshold 75%, the previous
FE simulation will be continued. Else, the mesh is then mod-
ified automatically according to the constant change of phys-
ical fields and geometrical shape. Another strong point of the
presented process is that for each time step, the number of
remeshing-iterations is not fixed, but it is automatically
adapted, as shown in Fig. 17. This characteristic can avoid
the useless iteration and reduce time cost. For example for
the first meshing step four iterations are performed; for the
second and third meshing step two iterations; for the fourth
meshing step only one iteration is used.

The evolution of numerical load–displacement curves with
and without adaptive remeshing is compared in Fig. 18. At the
beginning of simulation both EF simulations give similar re-
sults. However, it is not the case at the end of test. This

Fig. 18 Comparison of load–displacement curves of forming tests with
and without mesh adaptation

Fig. 17 The evolution of the percentage of optimal element with and
without mesh adaptation



difference may be caused by the presence of excessive mesh
distortion in the standard test (without adaptive remeshing).
As can be seen in Figs. 16 and 19, these mesh distortions
favors the displacement of elements in the second direction
compared to the first one. In other words, the contact area
between the rigid tool and the workpiece will not be the same
especially in the second zone (II), which have a strongly effect
on the normal load.

Conclusion

In this paper, an automatic adaptive remeshing method based
on local mesh modification has been presented to simulate
various 3D metal forming processes in large elastoplastic de-
formations. This process has been implemented with a small
test displacement step by step in order to adapt automatically
to the constantly changing physical fields and geometrical
shapes. At each time-step, the remeshing iteration is repeated
many times until the total number of optimal elements does
not exceed a given threshold. This characteristic can avoid the
useless iteration and reduce time cost. To avoid numerical
diffusion during the mapping of variables, data transfer error
is examined using analytical functions such as linear, quadrat-
ic, trigonometric and exponential with volumetric L2 error
norms and surface one. The results show that these techniques
illustrate different efficiency. So, in order to combine the ad-
vantage of these methods the SPR technique will be used to
transfer the variables inside the domain and the SPR-P tech-
nique will be used to transfer the surface ones. Without equil-
ibrate process, the numerical load-displacement curves under
large displacement and/or high deformation rate show that
after each remeshing step the system is not in mechanical
equilibrium anymore. In fact, the numerical curves show a
small fluctuation in the load-displacement response after each
remeshing step. But with the proposed equilibrated process a
good agreement with experimental data has been observed
and the imbalance fluctuations are reduced significantly.

Also, a good quality of elements is proven with the adaptive
strategy, where a severe mesh distortion is observed without
mesh adaptation which can significantly reduce the efficiency
of numerical result. Finally, the overall results are very encour-
aging and show the efficiency and robustness of the proposed
strategy to avoid mesh distortion and to simulate more com-
plex geometry levels with a better filling of the die matrices
compared to the standard approach. However, several points
can be improved such as damage evolution.
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