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Digital Image Correlation

6.1. Background

Digital Image Correlation or DIC, which appeared in the early 1980s [LUC 81,
BUR 82, SUT 83, SUT 86] has a major impact in the field of the Mechanics of Solids
and Structures. Nowadays, it is still undergoing very spectacular developments.

The challenge is to measure displacement fields of surfaces (or in volumes) of
stressed specimens and structures from images acquired at different stages of loading.
A specific advantage of this tool is that it exploits numerical images, which are usually
acquired by optical means. Imaging devices have made significant progress not only
in terms of quality and definition, but also (lower) cost. These imaging means are
inherently contactless, non intrusive, tolerant to aggressive conditions (e.g., tempera-
ture, chemical environment), easy to use, efficient and cheap, many of these features
that can only be appealing in the context of mechanical tests.

DIC can easily be used at different scales of space and time to the extent that
it relies on principles applicable to pictures obtained by very different imaging sys-
tems. It is nowadays possible to use images shot by fast and ultra-fast cameras at
time scales down to the microsecond or less [SCH 03a, SCH 03b, SIE 07, TIW 07,
BES 08, BES 10], acquired by a scanning electron microscope (SEM) [DOU 00a,
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DOU 00b, SOP 01, DOU 03, TAT 05, SUT 06, SUT 07a] or an atomic force mi-
croscope (AFM) [CHA 02, CHO 05b, CHO 07a, CHO 07b, HAN 10] at nanomet-
ric scales, but also satellite images at geophysical scales [SCA 92, LEP 07]. Multi-
camera systems give access to 3D shapes and displacement fields of surfaces of an ob-
served object (see Subsection 6.4). Three-dimensional images obtained by computed
(micro)tomography [BAY 99, BOR 04, LEN 07, BAY 08, RAN 10] or magnetic res-
onance imaging [NEU 08, BEN 09] can also be utilized to measure 3D displacement
fields in the bulk of various (optically opaque) materials.

The wealth of kinematic data obtained allows not only for a quantitative exploita-
tion through identification techniques (see following chapters), but also to validate this
identification, to enrich or degrade it according to the needs. By specifying appropri-
ate forms of the displacement fields to be measured, image correlation can directly
address this identification step (see Subsection 6.2.8).

6.2. Surface and Volume Digital Image Correlation

DIC techniques can be applied indifferently to classical two-dimensional or to
volumetric images to which recent imaging tools give access. As a consequence, the
term “pixel” will refer to in the following as the elementary discrete datum of a digital
image defined in a two- or in a three-dimensional space. We detail in this section the
algorithms providing evaluations of the apparent mechanical transformation Φa that
links two images of the same mechanical system under two different configurations.

After a first subsection devoted to guiding principles and ingredients common to
all presented algorithms, the discussion then will focus on so-called “local” image
correlation techniques, which evaluate the transformation Φa piecewise, through a
large number of independent analyses on sub-images, called “correlation windows”
or “domains.” Various flavors of the more recent “global” approaches, which may
be enriched by some a priori mechanical information suited to each problem dealt
with, will subsequently be described. The main sources of uncertainties and their
quantification will be discussed in Section 6.3.

6.2.1. Images

The input data of the analysis are positive integers, called gray levels, of the image
of the first configuration, known as the “reference image”, noted fI , and those of the
second one, called the “deformed image”, noted gI , where the subscript I refers to
a pair of integers (column, line) in the case of 2D images or to a triplet (column,
line, plane) if 3D images are considered. These integers vary between 0 and some
maximum value related to the digitization or encoding depth (or dynamic range) of the
image sensor (e.g., 256 levels for 8-bit images, 4096 for 12-bit images). Indices I vary
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in planar or volumetric domains, whose extension characterizes the image definition

(e.g., [0; 1023]× [0; 1023] for a one-megapixel 2D image), and in which it is possible
to define continuous positions, with real-valued coordinates x 1. The two images can
be extracted from a temporal sequence comprising a large number of images, of which
any can be selected as the reference image or the deformed image. However we do
not address in the following the algorithms that process such a sequence globally.

The images fI and gI result from a complex acquisition chain, today evermore
various. It is essential to consider this acquisition process in the final interpretation of
the estimated transformation, and to wonder about the presence of biases that could
result from it. In particular, the analysis of this chain would make it possible to specify
the link between some physical quantity continuously varying in space, denoted by f̃ ,
and the discrete gray level fI that this quantity induces through the imaging system at
position I in the image. Because of space limitation, this aspect will not be developed
herein.

DIC principles rest on the essential assumption that the physical quantity that leads
to the image is associated with some physical property of the matter that constitutes
the analyzed system, and, as a consequence, is transported by the sought apparent
mechanical transformation Φa. Noting g̃ the continuous physical quantity associated
with the deformed image, this assumption writes

g̃(Φa(x)) = f̃(x). (6.1)

6.2.2. Texture of images

As will be made more specific later on, DIC exploits a texture that must be the
signature of each surface (or volume) element, simply transported, according to Equa-
tion (6.1), by the displacement field, without any other deterioration. Moreover, the
gray levels representing this texture in the images need to exhibit a broad dynamic
range that covers as much as possible the available encoding depth of the images,
i.e., from 8 to 16 bits, without however showing saturation. Lastly, it is desirable to
have strong contrasts from one pixel to the next to be able to be sensitive to small
displacement amplitudes.

The simplicity of the implementation of the method would recommend to rely on
the natural texture of the studied material. This is sometimes possible, as illustrated in
Figure 6.1. However, the correlation function of the texture will then dictate the per-
formances of the analysis. Thus, for the example of the steel shown in the Figure 6.1a,
the various phases revealed by a selective chemical etching have an orientation that
will allow a good estimate of the displacement along the horizontal direction but a

1. In the following, x(I) is the point with integer coordinates I .
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worse one in the perpendicular direction. In this context, the surface topography of
silica observed by AFM (Figure 6.1c) does not lead to a strong sensitivity. Conversely,
the phase image of the same zone (Figure 6.1d) can lead to a much better resolution.
The selection of an appropriate mode of observation, associated, when required, with
an adequate surface preparation, is thus an essential element for the use of natural
contrast in DIC.
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Figure 6.1. Examples of natural image textures suitable for digital image

correlation. a) 304L stainless steel (1 pix. = 3.2 µm); b) Silicon carbide (1 pix.

= 1.85 µm); c) Topographic AFM image of a silica glass (1 pix. = 2 nm); d)

Phase AFM image (same area as in c)

The existence of such a contrast is not guaranteed. A possible way to circumvent
this difficulty is to deposit an artificial texture on the surface of the studied samples as
illustrated in Figure 6.2. The pulverization of fine droplets of black paint on a white
background (or conversely) is a process called “speckle painting” that can be used on
many materials. The airbrush allows to form an aerosol whose droplets size can be
adjusted by an adapted nozzle. For the largest scales (for example for civil engineering
structures) marking can be done with a stencil key set. A limitation can emerge from
the strong deformability of materials as in the example of Figure 6.2c which is an
elastomer. It is difficult for a painting to follow deformations of large amplitude. In
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this case, a powder deposit (talc in this example) allows for a good stability of texture
up to several hundreds percent of strain.

The deposition of particles on the surface can also be used in the context of scan-
ning electron microscope (SEM) imaging [SCR 07]. Electron lithography techniques,
in particular in their simplified version that can be implemented without expensive
equipment other that the SEM itself [ALL 94], make it possible to mark surfaces by
means of microgrids with a step varying from a few tens of micrometers to less than
one micrometer, by metal deposition or chemical engraving. The periodicity of the
obtained local contrast requires however some minor adaptations of the correlation
algorithms to avoid offsets of one or several grip steps in the evaluation of the dis-
placement field. An advantage if this type of marking is that it does not hide the
microstructure and thus facilitates the micromechanical analyses of heterogeneous
materials [DOU 00a, HER 07]. However the analysis cannot be as dense as with a
fine speckle painting.
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Figure 6.2. Examples of artificial image textures suitable for digital image

correlation

Lastly, when three-dimensional images of computed tomography are to be ex-
ploited, a texture in the bulk of the studied material needs to be relied on (Figure 6.3).
Some materials are then privileged, like most rocks [LEN 07], stonewool [HIL 09b],
nodular graphite cast iron [RAN 10], or foams [ROU 08], whose micro-pores, inclu-
sions or heterogeneous microstructure behave as a speckle painting. In the absence
of such contrast or within the framework of an analysis at a finer scale, it is some-
times possible to reinforce it artificially (for example by diffusion of a heavy element
to mark grain boundaries, or by addition of fine markers during the processing of the
material [BOR 04]) but the difficulty is then to make sure that this marking does not
introduce any modification of the mechanical properties, or to take into account the
modified microstructure of the material in the interpretation of the results.
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Figure 6.3. Examples of sections through 3D X-rays computed tomography

images; a) Cast iron with spheroidal graphite modules; b) Polymeric foam;

c) Stonewool

6.2.3. Guiding principles

The aim of the exposed methods is to evaluate the apparent transformation Φa on a
Region Of Interest (ROI) R of the reference image starting from the knowledge of the
gray levels fI and gI . This essentially is an ill-posed problem insofar as the available
information (i.e., the gray levels of the pixels) is insufficient to uniquely determine a
vectorial displacement at each pixel. It is thus imperative to regularize the problem by
restricting this determination to a particular family of transformations Φ0(α, ·), pa-
rameterized by N scalars, α, written here in vector form. Image correlation methods
can then be given the following general formulation

αmin = Argmin
α∈Vα

C(Φ0(α, ·), R, [f ], [g]) (6.2)

where the correlation coefficient C is a scalar that measures the similarity 2 between
the ROI R of the image [f ] (i.e., the set of the pixels fI ) transformed by Φ0(α, ·)
and the corresponding region of the image [g]. The parameters α belong to a certain
domain Vα of RN . The numerical resolution of this minimization problem leads to an
evaluation Φ0(αmin, ·) of the sought transformation Φa(·).

The various available image correlation algorithms derive from specific choices
of the expressions of the correlation coefficient C (section 6.2.4), of the considered
family of transformations and its parameter setting, which distinguish in particular the
local methods (Section 6.2.6) from the global ones (Section 6.2.8), as well as of the
minimization algorithms in use. Moreover, the evaluation of a continuous transfor-
mation from the knowledge of discrete values of gray levels provided by the input

2. By convention, one considers here that the similarity is larger when C is smaller, although the reverse
could be adopted (by changing the sign of C for example).
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images, requires to recourse to some interpolation method at some stage of the mini-
mization problem. The various ways to do so define additional alternatives to specify
image correlation algorithms (Section 6.2.5). These interpolation algorithms make it
possible to evaluate the local displacement field with a resolution notably lower than
one pixel, known as subpixel accuracy. For the sake of simplicity, the discrete nature
of the input data will be ignored in the following presentation, except in Section 6.2.5
where this question is explicitly addressed. This simplification consists in assuming
the pixels infinitely small with respect to the spatial gray level fluctuations, so that
discrete gray levels fI and gI can be represented by continuous functions f(x) and
g(x).

6.2.4. Correlation coefficients

The simplest and most classical similarity criterion is the sum of squared differ-
ences between the images 3

C1 =

∫

R

[f(x)− g(Φ0(x))]
2
dx =

∫

R

[f(x)− g(x+ u0(x))]
2
dx (6.3)

This quantity is clearly positive. It vanishes when the transformation Φ0 coincides
with the apparent transformation Φa and when the conservation condition (6.1) is
exactly satisfied not only for the physical quantities f̃ and g̃ at the origin of the gray
levels in the images, but also for the continuous gray levels f and g. The choice of
a squared difference induces some operational advantages but may be replaced by an
absolute value or any other measure of discrepancy.

Some imaging systems (e.g., SEM) do not make it possible to guarantee the stabil-
ity of the conversion into gray levels fI of the physical quantity f̃ at the origin of the
image contrast and convected by motion according to Equation (6.1). One can then
choose a less demanding similarity measure such as

C2 = min
a,b

∫

R

[f(x)− (a g(Φ0(x)) + b)]
2
dx (6.4)

that consists in seeking the best linear regression between the gray levels of the two
paired images. The optimized coefficients a and b can be interpreted as changes in
contrast and brightness, respectively, of the image between the two configurations 4.
The optimization in Equation (6.4) is straightforward and leads to a =

∫

R
(f − f̄)(g−

ḡ) dx/
∫

R
(g− ḡ)2 dx and b = f̄−aḡ, where f̄ and ḡ are the averages of f and g ◦Φ0

3. For the sake of ease of notation, the various arguments of C are omitted in the following definitions.

4. If these changes can be quantified independently, it is possible not to carry out optimization, and to
apply the criterion C1 to the image f and the rescaled image a g + b.

7



over R. As
∫

R
(f − f̄)2 dx does not depend on Φ0, optimizing C2 is then equivalent

to minimizing

C3 = 1−
∣

∣

∫

R
(f − f̄).(g − ḡ) dx

∣

∣

√

∫

R
(g − ḡ)2 dx

∫

R
(f − f̄)2 dx

(6.5)

which can be interpreted as the correlation coefficient of a linear regression and varies
from 0 (perfect similarity) to 1 (no link between images) 5.

The definition of these criteria leads immediately to the definition of the im-
age of residuals, whose gray levels defined on R are given by f(x) − g(Φ0(x)) or
f(x)−(a g(Φ0(x))+b), depending on which correlation criterion is considered. The
qualitative or quantitative analysis of these residuals is a means of evaluating the rel-
evance of the optimal transformation with respect to the actual unknown transforma-
tion. In case the registration would be perfect, and the residuals would contain nothing
but image noise. It is worth noting that in this case and under the assumption of a mod-
erate noise level, the criterion C3 is equal at its optimum to (1/2)(σ(f ′)/σ(f))2 where
σ(f) et σ(f ′) are the standard deviations of the noiseless image f and of its noise f ′

on R. With an optimal contrast occupying the full dynamic range of the gray levels
and a noise level of about 1% of the latter, as often observed with images of conven-
tional optical cameras, the minimum of the C3 coefficient might become as small as
10−3. This concept of residuals will again be discussed in Section 6.2.8.

The above list of criteria is not exhaustive [CHA 11], but gathers those most com-
monly used for quantitative analyses in mechanics. Other similarity measures might
be used within other image registration applications (e.g., satellite or medical imag-
ing), in particular when the condition of convection of the gray levels is not well
satisfied, because for instance of high noise levels [BOR 04] or of a too strong change
of image contrast between the various configurations.

6.2.5. Sub-pixel interpolation

All DIC algorithms need to specify the interpolation method required to access
a resolution in displacement notably less than one pixel. One should be aware of
the fact that the associated technical choice might have strong consequences on the
measurement accuracy.

The computation of the correlation coefficient, whatever the formulation kept
among those presented in Section 6.2.4, needs to face the discrete nature of the images.
The integration in equations (6.3)-(6.5) is in practice replaced by a summation over a

5. When suppressing the absolute value of the numerator of this expression, the criterion varies between
0 and 2, the maximum value corresponding to a “perfect inversion” of the contrast.
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set of pixels in the reference image and requires to specify how the gray level in the
deformed image at point Φ0(x(I)) is calculated. This point has in general non integer
coordinates and its gray level can only be evaluated by means of some interpolation
scheme making use of the gray levels of surrounding pixels. There are numerous pos-
sible choices to do so, namely, evaluation by the gray level of the nearest neighbor,
bilinear interpolation making use of the 4 first neighbors (8 neighbors for a trilinear in-
terpolation in 3D), bi-cubic interpolation (various possible formulations) based on the
16 first neighbors (64 in 3D), spline functions to various orders, Fourier transforms on
windows of adjustable size, or even wavelets. A high order interpolation will ensure
the continuity of the correlation coefficient and of its derivative to various orders with
respect to the kinematic parameters α, required by some optimization techniques, but
will be greedier in computation time.

The errors induced by this interpolation takes the form of an over- or under-
estimation of the displacement components, which depends, on average, on its frac-
tional part, expressed in pixels, as a consequence of the periodicity of the sensor be-
havior. The average of these errors is thus a function of this fractional part, which
exhibits a symmetry with respect to the half-pixel displacement, and is often referred
to as the “S-shaped” systematic error curve [CH0 97, SCH 00]. The precise shape
and amplitude of this curve express the more or less good efficiency of the used in-
terpolation scheme to restore the evolution of gray levels in an image induced by a
real sub-pixel translation. This error needs to be quantified and, if possible controlled
when small strains are to be analyzed, by means of the selection of an interpolation
scheme adapted to the actual texture of the image, or conversely, by means of a modi-
fication of the latter [YAN 10], which depends on the marking of the sample but also
on the parameters of the optical system.

Various procedures have been proposed to determine this S-shaped curve. One
can for instance generate an artificial translated image from some real reference im-
age and compare the results of the DIC analysis to the prescribed translation. How-
ever the representativity of the virtually translated image with respect to a real one
itself depends of the used numerical translation procedure. A Fourier-based trans-
lation [SCH 00, HIL 06], consisting in a multiplication in Fourier space by a phase
term, eikδ , for each wave number k, is a particular procedure that leads to a C∞ in-
terpolation of the reference image, which exhibits some satisfactory properties with
respect to this question. Another possibility is to numerically simulate the integration
of the optical signal by the sensor [BOR 09, DUP 10] with now the difficulty to define
a good numerical model of the sample texture. A last option consists in analyzing
a pair or a sequence of real images corresponding to a well known transformation.
This can be done but is delicate in practice for a pure translation [WAN 09], but can
easily be achieved with out-of-plane motions that induce homogeneous apparent de-
formation gradients [YAN 10, DAU 11]. Recent analysis have also shown that this
systematic error is strongly sensitive to image noise [WAN 09], at least for some al-
gorithms [DUP 10].
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It would ideally be advisable to reduce the amplitude of the systematic errors to a
level less than that of the random errors, which correspond to the fluctuations of the
measured displacements. The amplitude of the latter may also depend on the fractional
part of the displacement field. When systematic errors are appropriately monitored,
random errors constitute the actual limiting factor. This question will be addressed
again in Section 6.3.2 to discuss measurement uncertainty.

6.2.6. Local approaches

In traditional approaches the transformation Φ0 over R is decomposed into a mul-
titude of independent and local transformations, or shape-functions, parameterized by
the coefficients of their local expansion near centers x0 and used in the neighborhood
Dx0 of these centers

∀x ∈ Dx0 , Φ0(α,x)− x = u0(x) =
∑

i

[

α0

i +
∑

j α
1

ij(xj − x0

j )

· · ·+∑

jk α
2

ijk(xj − x0

j )(xk − x0

k) + ....
]

ei (6.6)

where ei is the unit vector along direction i in the image and xi the coordinates of
point x (i ∈ {1, 2} in 2D and i ∈ {1, 2, 3} in 3D). Zeroth-order methods are limited
to the translation vector α0 and were historically the first ones. First-order methods are
the most common ones and take into account the components of the first deformation
gradient αij

1. There are thus six parameters to locally describe Φ0 in 2D and twelve in
3D. Some variants include in addition the second order cross-terms (α2

112
and α2

212
in

2D, leading to a total of eight coefficients). One may also choose to restrict the local
transformation to rigid motions (i.e., two translation components and one rotation
angle in 2D, three components and three angles in 3D). Higher order expansions are
seldom used.

With such a choice of local parametric description, the standard processing proce-
dure consists in defining in the region of interest R a set of points xk, often organized
into rows and columns (and planes in 3D) and usually regularly spaced, and to asso-
ciate to each of them a small local domain Dxk , in general square (or cubic in 3D),
called correlation window, subset or domain. Problem (6.2) is then decomposed into
as many independent optimizations leading to local parameters αk for each point xk,
which define local estimations of the transformation Φa over the domain Dxk , from
which in general only the value Φ0(α

k,xk) at the center is retained. The final result
is then a discrete collection of displacement vectors on a set of points xk ∈ R.

Such a description of the mechanical transformation by means of a set of local
shape-functions requires thus essentially three choices, namely, the order of the local
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transformation, the size of the correlation window and the sampling step of the ROI.
These choices are usually left to the user in classical image correlation softwares,
but they have some implications on the relevance of the kinematic measurements (dis-
placement or strain). While questions relative to experimental errors will be addressed
in detail in Section 6.3, the following aspects briefly are emphasized:

– the selection of the order of the local transformation is strongly linked with the
window size. The systematic analysis performed in reference [BOR 09] on virtual im-
ages exhibiting non uniform deformation gradients with variable characteristic lengths
demonstrates the existence of two error regimes. The first one is linked to the inap-
titude of the shape function to describe the real transformation over the whole corre-
lation window. This error is all the more important as the window is large, and that
the order of the transformation is low. The second error regime, referred to as the ulti-

mate error, coincides with the one encountered when the real transformation is a pure
translation. It is on the contrary characterized by a decrease with window size and an
increase with the order of the shape-function. This latter phenomenon is discussed in
detail in Section 6.3.2;

– sampling step and window size can be chosen independently. One often selects a
step less than or equal to the window size, so as to make use of the whole information
contained in the image. An arbitrarily fine sampling of the image can even be chosen,
at the price of an increased computation time. However one should be aware of the dif-
ference between this measurement step and the spatial resolution of the measurement
of the displacement field, which remains controlled by the correlation window size.
The displacement measurement associated with each position of the ROI sampling is
the result of some averaging process over the whole correlation window;

– the sampling step may be a parameter entering implicitly or explicitly in the
procedures used to compute strain components from the discrete values of the dis-
placement components evaluated at each measurement point. We refer to Chapter
7 for a deeper discussion of this question. Note however that the accuracy of the
measurement of the components of the deformation gradient relative to some gauge
length is inversely proportional to the latter. When low strain levels are to be quan-
tified, one should then privilege larger sampling steps or make use of differentiation
procedures based on displacements evaluated over several sampling steps [ALL 94].
Moreover, in case of overlapping correlation windows, measurements of displacement
at neighboring positions are no longer independent, which may induce some bias in
the computation of the gradient components.

– the DIC analysis results in a discrete sampling of the displacement vectors (and
their gradients) over a regular mesh of the ROI, the value at each sampling point being
itself some average of the local displacement field over the correlation window. In
order to define a displacement field at each position x in the ROI, these values need to
be somehow interpolated. There is however no systematic way to evaluate the distance
between the interpolated displacement field and the experimentally investigated field.
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To conclude this short description of local formulations, let us note that they can
also deal with an arbitrary selection of measurement points, adapted to the problem
under consideration. These points may for instance be defined as the nodes of the finite
element mesh of a structural calculation modeling the experiment [HER 07], as some
isolated points of interest when the analysis does not require a dense evaluation of the
kinematics — in such a case, the DIC techniques would operate as a markers tracking
technique — or as the only points with an appropriate local image contrast, in case of a
DIC analysis of a system with a non uniformly distributed natural local contrast. Local
formulations can also make use of arbitrarily shaped correlation windows, for instance
associated with some discrete entities of the considered system (such as the grains in
a sand sample [HAL 10]), or delimited by characteristic boundaries of the system
(such as for instance the interface between constitutive phases of a heterogeneous
material [RUP 07]). The use of image masks is useful for the practical implementation
of such alternatives of the general algorithm.

6.2.7. Optimization algorithms

At this stage, it is possible to compute C and its gradients for any set of param-
eters α. The optimisation, Equation (6.2), can then in principle be performed with
any iterative numerical algorithm. A minimization algorithm making use of gradients
(e.g., gradient descent, Newton-Raphson, Levenberg-Marquardt) or not (e.g., simplex,
Powell) will allow to converge more or less quickly towards a local minimum close to
the initializing set of parameters. In order to avoid convergence to an erroneous local
minimum, various strategies might be employed, such as the preliminary systematic
scanning of a set of displacement fields sufficiently large to contain the actual one, the
use of known displacement fields relative to a previous stage of the mechanical test,
or of the displacement of already analyzed neighboring positions, in the context of a
“propagating front” type algorithm, or even, in the most difficult cases, the assistance
of an operator. In this context, the preliminary systematic scanning is often restricted
to integer components of the translation vector α0

i , with other possible parameters set
to zero or frozen to some other value determined by some other mean. To speed up
this calculation stage, the gray level interpolation scheme may be set to a simple near-
est neighbor algorithm; an alternative is to compute correlation coefficients in Fourier
space, by means of efficient fast Fourier transform algorithms.

It is also possible to make use of these discrete evaluations of the correlation co-
efficient to interpolate this quantity by a bi-quadratic (or tri-quadratic in 3D) polyno-
mial function near its discrete optimum, making use of the 9 (or 27) discrete values
surrounding this optimum, and to analytically seek the continuous optimum of this
interpolating function. Such an algorithm allows to reach a sub-pixel accuracy at a
particularly low computation cost [WAT 01], but is restricted to the optimization of a
limited number of components of the vector α.
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Another proposed strategy to avoid local minima consists in a multi-scale algo-
rithm [GAR 01a, HIL 02]. The idea is to start with strongly low-pass filtered images
in order to artificially enlarge the well associated with the global minimum and to
avoid local trappings far away from the solution. The obtained estimate is however
not accurate as details of the image have been filtered out. The strategy consists then
in gradually restoring these details and to perform the optimization again with these
richer images, starting the algorithm with the displacement obtained on the coarser
images, until the original image is recovered. This procedure (which also applies to
the global approaches described in following section) turns out to be extremely robust
and makes it possible to benefit from an optimization by descent, while limiting the
effects of local minima.

This wide variety of options, which can be combined with each other, leads to a
very vast range of DIC algorithms, which in addition will be enriched by the global
approaches described in the following section. The selection of a particular combi-
nation of options is a compromise, whose definition depends on the available local
image contrast, the awaited level of strain, the required measurement resolution and
its spatial resolution, as well as on the numerical cost and the robustness of the algo-
rithms.

6.2.8. Global Approaches

The main difference between local and global approaches is the choice of the dis-
placement basis used to account for the transformation Φ0 and its spatial definition.
The local approach results in an independent calculation of the transformation on each
correlation (small) window. However, no specific regularity of the displacement field
is exploited. Conversely, it is possible to make the choice of a continuous transforma-
tion basis in a global approach. The displacement field is expressed as

u0(x) = Φ0(α,x)− x =
∑

i

αiψi(x) (6.7)

where the fields ψi form the chosen kinematic basis that can be defined over the whole
region of interest. There is no restriction at this stage for the definition of this basis.
The superposition of different displacement fields throughout domain R makes inter-
dependent the sought amplitudes α, hence the term global to address this problem.
The determination of α is performed as above, namely, via the minimization of the
sum of squared differences, C1(Φ0(α, ·), R, [f ], [g]). A Newton-Raphson scheme,
which resorts to successive linearizations, is implemented to determine the solution,
provided the amplitudes of the displacement fields are sufficiently small. As men-
tioned above, a multi-scale strategy can significantly relax this requirement [BES 06],
and large displacements can be measured.

Unlike interpolated fields obtained with a local approach, each pixel is directly
confronted with the value of the displacement field at this point and no interpolating
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Figure 6.4. Three-dimensional residue field showing the concentration of

errors on the support of the crack (after [RAN 10])

step is required. The correlation residual normalized by the dynamic range of gray
levels is comparable to that encountered in local approaches, i.e., of the order of
one percent. As mentioned in Section 6.2.4, the residual field allows the correlation
errors to be spatially located. This property allows the user to quickly check for the
good convergence of the algorithm, and especially to possibly correct / extend the
chosen basis of fields. For example, if a fractured medium is observed and the chosen
displacement basis is continuous, then the residual error will focus on the support of
the kinematic discontinuity. This is a very effective way of precisely locating the crack
front in all its geometric complexity [RAN 10] as shown in Figure 6.4.

The nature of the kinematic basis was not specified beyond its overall character.
Great latitude exists for this choice. Sometimes some specific information (or assump-
tions) on the expected displacement field are available, and this is a valuable guide in
the choice of this basis. Let us cite some examples:

– Without any specific information on the kinematics, the representation of the dis-
placement field by shape functions of finite elements is a convenient possibility that
will enable for an easy and direct interface with numerical simulations. So-called Q4-
elements in two dimensions [BES 06], or C8-elements in three dimensions [ROU 08]
(i.e., four-noded quadrilaterals with bilinear interpolation (2D) or 8-noded cubes (3D)
with trilinear interpolations) are very well adapted to the discretization of the im-
age. An example of a displacement field obtained with Q4 elements is shown in
Figure 6.5(left). It is also possible to work with an unstructured mesh [LEC 09] or to
use different shape functions [RET 09a]. Specific finite elements can then be consid-
ered with an enriched kinematics as in the extended finite element method (X-FEM)
framework [RET 08] to add discontinuities in a given mesh (see Chapter 14). Last,
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the fact that discretizations of the displacement field are shared with numerical mod-
eling makes the coupling direct and seamless between image correlation on the one
hand with e.g., an elastic calculation on the other hand (see [RET 09b] for such an
example).

– The test can be analyzed with an analytical expression for the displacement field
in the context of an elastic behavior. This solution can be an element of the selected
kinematic basis. It is generally supplemented by additional degrees of freedom (such
as rigid body motions). An example of this approach is the analysis of diametral
compression (i.e., ‘Brazilian test’ [HIL 06]) or a point force loading (i.e., Flamant’s
problem [ROU 05]). Note however that the solution involves the Poisson’s ratio ν
of the material. If it is not known, the general solution can be split into two terms,
one dependent on ν, and the other not. Similarly, the amplitude of the displacement
field (except rigid body motions) is proportional to the ratio of the mechanical loading
level to the shear modulus of the material. Thus by measuring the amplitudes of the
basic fields, associated with the knowledge of the load level, allow to directly assess
the elastic properties of considered medium [ROU 05]. Beyond the pure kinematic
measurement, we begin to see the identification of mechanical properties (elastic in
that case) without additional work via global digital image correlation.

– A particularly important case concerns cracks [ROU 06, ROU 09]. A family
of analytical solutions exists, namely, Williams’ series [WIL 57], which satisfies the
cancelation of the tractions on the crack mouth. An appropriate selection of some
terms of this infinite series can account for the sought displacement field in the vicinity
of the crack tip. Among the selected fields, it is natural to include those associated
with a 1/

√
r singularity for the stresses and strains. The amplitudes of these fields

are related (via the physical size of the pixel and elastic properties of the medium) to
the stress intensity factors in modes I and II. An example of such a determination is
shown in Figure 6.5(right) for the same pair of images as that used in the left part of
the figure. However, this family of fields requires a priori knowledge of the geometry
of the crack (here assumed to be straight). The support of the crack is generally easy to
appreciate as apparent in the displacement field or in the residual field (see Figure 6.4).
The position of the crack tip is yet another issue. One solution is to use specific terms
of Williams’ series (i.e., strain and stress fields with r−3/2 singularity [ROU 09]).
The amplitudes of these fields provide information about the actual position of the
crack tip.

– When considering slender objects, beam-type models are often used. This de-
scription assumes a particular (e.g., Euler- Bernoulli) kinematics that can be taken into
account as in the displacement basis. This approach then allows to assess by image
correlation the motion of a beam or a frame in a language directly suitable for model-
ing purposes [HIL 09a]. In this context, it is possible to finely characterize nonlinear
modes (e.g., plastic hinge formation) in the framework of the strength of materials
(i.e., constitutive law of a localized mode, equivalent position of a point correspond-
ing to a localized failure mechanism, see Chapter 12). Moreover, the measurement
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Figure 6.5. Horizontal displacement component obtained on a silicon carbide

specimen with (left) Q4 finite elements (of size 32 pixels) or an integrated

approach with few closed-form solutions (right). The physical size of one pixel

is 1.85 µm. The displacements are expressed in pixels (after [ROU 09])

with an elastic kinematics over a given part of the beam gives access to the actual
loading conditions.

– Beyond elasticity, it is sometimes possible to have a priori information to define
a suitable displacement basis. The formation of shear bands in a uniaxial tensile test
results in specific fields obeying Hadamard’s conditions that can be accounted for (see
Chapter 14).

– Last, the basis fields can be computed numerically. If one wishes to consider
several unknowns (e.g., boundary conditions, material parameters) it suffices to cal-
culate the various fields associated with changes in the parameters associated with the
unknowns of the problem and consider them as a kinematics basis. The value of the
amplitudes of these fields correspond to the best evaluation reflecting the observed
situation [LEC 09].

6.3. Errors et uncertainties

Image correlation gives access to quantitative measurements of displacement
fields. It is therefore crucial to assess the sources and levels of error and uncertainty
associated with its implementation.

6.3.1. Main Error Sources

The first source of error is extrinsic to DIC because it results from image acquisi-
tion. Among them, let us cite:
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– those related to the 3D-2D projection, which will be described in more details
in Section 6.4. In particular the out-of-plane motions can induce artificial yet quan-
tifiable displacements and strains [SUT 08b]. The use of telecentric lenses largely
restricts some of these artifacts. It is also possible to correct for variations in opti-
cal magnification induced by global motions of an object with respect to the imaging
system if one has an additional means for quantifying them [YAN 10].

– those related to the imperfect positioning of pixel coordinates. For optical im-
ages, the distortions induced by objective lenses fall within this category. For im-
ages obtained by scanning (e.g., SEM, AFM) the imperfect positioning of the locally
probed area (by the electronic spot or cantilever tip) may also introduce significant
spurious strains.

– those due to intrinsic noise in images. Two images acquired in identical condi-
tions have gray levels that differ by a random amount whose standard deviation varies
typically between a few thousandths (very good camera) and a few tenths (SEM image
acquired very quickly) of the dynamic range of the gray levels. Its impact on image
correlation [ROU 06] is detailed in Section 6.3.3.

A second category of errors is due to DIC:

– The selected basis of displacement fields is unable to describe the apparent trans-
formation Φa. This error regime has already been mentioned in Section 6.2.5 and has
been investigated in detail in Reference [BOR 09] for various softwares based on local
approaches.

– The second type of error is related to the way the gray levels (or correlation
coefficient) are interpolated in the correlation procedure when moving images for non-
integer values (Section 6.2.5).

One could also mention the errors induced by possible changes of local contrast
and brightness invalidating the basic assumption of gray level conservation (6.1). If
their modeling is accessible, it is possible to take them into account [HIL 12b] in the
correlation procedure (e.g., for the analysis of AFM images [HAN 10]). Last, when
talking about errors or uncertainties, it is important to remember that the correlation
residuals are very good indicators. They provide information on the local quality of
the registration between images. They also allow for the modification or enrichment
of the chosen kinematic basis [RET 08, RAN 10].

6.3.2. Uncertainty and Spatial Resolution

The choice of the discretization of the displacement field is crucial. Systematic
studies on virtual images show two different regimes of error occur [BOR 09]. The
first is related to the inability of the shape function to describe the actual transforma-
tion of the entire correlation window (for a local approach) or the discretized kine-
matics (for a finite-element based global approach). The second type of error, referred
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to as ultimate, is similar to that encountered for pure translation transformations. It
is characterized by a decrease of the error with the window size and increased order
of the function shapes. It is a direct consequence of the ill-posedness of the corre-
lation problem (6.2). The information contained in a small correlation window will
only identify a limited number of parameters and the increase in their number will be
accompanied by an increasing uncertainty of the value of each of them. The user is
faced with a dilemma, which is comparable in some ways to Heisenberg’s uncertainty
principle, where position and displacement cannot be fully resolved simultaneously.
Good spatial resolution (i.e., small window or element size) will be accompanied by a
high displacement uncertainty and vice versa. A way of breaking this limit is to resort
to regularized DIC [ROU 12] or Digital Volume Correlation [LEC 11].

To quantify a priori the measurement uncertainty, we restrict ourselves to the sec-
ond case by choosing a simple kinematics (i.e., uniform translation) that belongs to
the space of shape functions. We proceed as in the evaluation of the interpolation
sub-pixel error (Section 6.2.5). From the displacement field evaluated on an image
pair made of the reference picture and its translated copy, the standard deviation of the
displacement field gives an a priori estimate of the measurement uncertainty. This un-
certainty is usually much higher than the systematic error. It is customary to observe a
dependence of the standard displacement uncertainty, σu, with the size, ℓ in pixels of
the interrogation window (local approach) or elements (global approach using finite
elements) as a power law

σu = Aℓ−η (6.8)

where A is of the order of unity, and η varies between 1 and 2 as appropriate. This
allows measurement uncertainties to be evaluated (excluding other factors related to
noise or complexity of the observed displacement field) that commonly reach the hun-
dredth or the even thousandth of one pixel in the most favorable cases.

From this estimate it is also possible to evaluate the strain uncertainty when they
are obtained, say, by simple finite differences from the displacement field. It should be
noted however that the fluctuations will be observed on strains are strongly correlated
(or anti-correlated) at small scales. This is especially important for the subsequent
use of those kinematic measurements for the identification of mechanical properties
(see second part of this book) when these correlations are not taken into account.
It is therefore advised to prefer formulations of inverse problems that are based on
displacements rather than strains, or to be aware of the implicit filtering often linked
to the strain calculation (see Chapter 7).

6.3.3. Noise Sensitivity

Another limiting factor is due to the presence of noise in images. This noise can
be of different nature and therefore has very different statistical features. It can some-
times be reduced by image averaging, provided that the sample does not evolve (i.e.,
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move) between acquisitions. A good approximation is often given by white noise
(i.e., uncorrelated from pixel to pixel). Its effect can be followed up to the estimate
of the displacement fluctuations. In the case of a local approach, when the correlation
windows are not overlapping, then the displacement fluctuations exhibit no correla-
tion between different discrete estimates. However when these windows overlap, or
in the case of a global approach, the correlation matrix of the kinematic degrees of
freedom is no longer diagonal but its calculation is possible for a low noise level using
a linearized operator for the final stage of the displacement estimation [HIL 12a].

In general, the standard displacement uncertainty (i.e., its standard deviation σu)
is proportional to that of the noise images ǫ (by linearity). The amplitude will be
inversely proportional to the mean gradient of the image, and will decrease as a power
law with the number of pixels that are used to measure the considered motion. Thus,
in d dimensions, for both local and global approaches

σu ∝ ǫ

ℓd/2〈|∇f |2〉1/2 (6.9)

A more detailed discussion of this evaluation is provided in References [BES 06,
ROU 06, HIL 12a].

It is possible to take this expression as a practical recommendation on image qual-
ity and correlation parameters to use. Regarding the acquisition, it should minimize
image noise (i.e., ǫ), and to acquire images with a large depth of gray level (as long
as it is not effectively truncated by the noise level ǫ). The texture of the analyzed
images also affects the displacement uncertainty. The dependence on the gray level
gradient calls for textures having a high contrast, and secondly having a short corre-
lation length. The limit to this suggestion is the ability to interpolate gray levels at a
sub-pixel level, which instead requires a regular variation at the pixel level. A good
compromise is to deal with textures whose correlation length (radius) is of the order
of 2 to 5 pixels. Last, for the parameters of DIC itself, the size of correlation windows
should increase to reduce its sensitivity to noise, but at the cost of lower spatial reso-
lution. Again, a compromise must be made. One can also note that the sensitivity of
different correlation algorithms vis-à-vis this image noise is not identical [DUP 10].

6.4. Stereo-Correlation or 3D-DIC

The main advantage of 2D DIC techniques described in Section 6.2 is their (ap-
parent) simplicity and versatility, namely, a single camera is sufficient and the object
surface preparation (when required) can be easily done (spraying paint is an easy way
to create an appropriate speckle pattern at the surface of the object). However, some
important points need to be kept in mind:

– by using a single camera only in-plane displacements/strains can be measured
on a planar object,
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– from a practical point of view the camera and the object need to be aligned so
that the camera image plane and the planar object be parallel and remain parallel all
along the experiment,

– if the object undergoes some out-of-plane displacements they will not be prop-
erly detected and they will produce in the images false apparent strains [SUT 08b].

With the stereo-correlation technique (also called 3D-DIC) that is described here-
after all these problems can be tackled. This technique allows to measure 3D dis-
placements (in-plane and out-of-plane) and 2D strains undergone by any 3D object
(not necessarily planar) while the experimental constraints are minimized [ORT 09a].

It should be noted that stereo-correlation procedures combine two techniques:

– the DIC technique, which is an image matching technique that allows to compute
2D displacement of pixels between two images. With this technique, several images
taken at different instants with a single camera can be registered (see Section 6.2),
or two images (or more) taken at the same instant by two cameras (or more) can be
matched (see below).

– the stereovision technique, which is a triangulation-based 3D reconstruction
technique, that allows to compute the 3D position of a scene point from its stereo
projections in two images (or more).

6.4.1. The stereovision technique

Binocular stereovision is a technique for recovering the three-dimensional struc-
ture of a scene from two (or more) different viewpoints (Figure 6.6a where P is the
3-D point to be measured, p1 and p2 are its stereoprojections in the images, C1 and C2

are the optical centers of the two cameras).

From Figure 6.6a, we can see that it is possible to compute the 3D coordinates of
point P provided that:

a) the two image-points p1 and p2, which correspond to the projection onto the
images of the same physical point P, can be identified. This step is called stereo image

matching or search for stereo-correspondents. It is the critical step of the stereovision
technique (see Section 6.4.1.3).

b) the two lines C1 p1 and C2 p2 that intersect at P can be computed. This step
requires that the intrinsic parameters (focal length, size of the pixels, distortion coeffi-
cients) of each camera and the extrinsic parameters of the stereo rig (relative position
and orientation of the two cameras) be known. The intrinsic and extrinsic parameters
are obtained by using an off-line calibration step (see Section 6.4.1.2).
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Figure 6.6. (a) The principle of stereovision. (b) Picture of a stereo rig

6.4.1.1. Geometry of a stereovision sensor

A binocular stereovision sensor is made up of two cameras positioned in such a
way that their field of view intersects. Let us write Rc the reference frame associated
to the left camera, R′

c the reference frame associated to the right camera, and Rw

the so-called world reference frame in which the 3D measurements will be expressed.
T, T′ and Ts are the rigid-body transformations (a rotation matrix and a translation
vector) that link these reference frames (Figure 6.7). These three transformations are
linked by: Ts = T′ T−1. Ts is often called the stereoscopic transformation. It
represents the orientation and translation of a camera with respect to the other one.

It should be noted that the 3D measurements are often expressed in the reference
frame associated to the left or the right camera. In that case T or T′ are the identity
matrix.
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Figure 6.7. The three reference frames associated to a stereovision sensor

By modeling each camera by the classical linear pinhole model 6 and by writing K

and K′ the intrinsic parameters of the left and right camera respectively, the positions
m and m′ of the 2D image points corresponding to a 3D point M are written as 7

m̃ = KT M̃ (6.10)

m̃′ = K′ T′ M̃ = K′ Ts T M̃ (6.11)

The image registration problem mentioned in Section 6.4.1 consists in finding the
image-points m and m′ that are stereo-correspondent.

In stereovision, the epipolar geometry [HOR 95] illustrated in Figure 6.8 provides
the following important geometrical property (also called epipolar constraint):

Given a point m in the left image, its corresponding point m′ in the right image
appears to be always lying along a line of the right image entirely defined by
the coordinates of m. This line is called the epipolar line associated with m.

6. The pinhole model is based on the perspective projection. In such a model the distortions (which can
be more or less important) induced by the lenses are not taken into account. For metrology applications,
which require a high measurement accuracy, distortions need to be taken into account and more sophisti-
cated camera models need to be used [GAR 01a, GAR 01b, COR 05b, ORT 09b, ORT 09a, SUT 09].

7. To be able to write the pinhole model in a matrix form, homogeneous coordinates are used [FAU 93,
FAU 01]. m̃ are the homogeneous coordinates associated to m.
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Figure 6.8. The epipolar geometry: the epipolar lines are defined by the
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camera respectively

Thanks to this important geometrical property, inherent to any stereo imaging sys-
tem, the search for the stereo-correspondent of a given point in the left image is sim-
plified from a 2D search across the entire image to a 1D search along its epipolar line.
Using this geometrical constraint the image registration can be quicker and more ro-
bust (since possible false registration that could be found away from the epipolar line
are avoided).

6.4.1.2. Calibration of a stereovision sensor

Camera calibration is an important task in 3D computer vision, particularly when
metric data are required for applications involving accurate dimensional measure-
ments. Calibrating a camera involves determining its intrinsic parameters (matrix
K, and possibly distortion parameters). Calibrating a stereovision sensor made up
of two cameras involves determining the intrinsic parameters of each camera and the
relative position and orientation between the two cameras (Ts transformation). These
calibration data are required to compute, by triangulation, the 3D coordinates of a
point corresponding to matched pixels on the two images. For more details on the
calibration of a stereovision sensor, see References [GAR 01a, GAR 01b, ORT 09b].

6.4.1.3. Matching of stereo images by DIC

This section is dedicated to the matching of stereo images by DIC (which leads to
the so-called stereo-correlation technique). It should be noted that stereovision can be
used without DIC-based matching. It is for instance the case when stereo images are
matched using feature matching [ORT 02, ORT 09a].
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DIC-based image matching simply consists in using the DIC technique described
in Section 6.2 in order to find stereo-correspondents. The only significant difference
is that stereo-correlation can use (it is not compulsory) the epipolar constraint in order
that the search for correspondent pixels be restricted to the epipolar line (or to a pixel
band around the epipolar line).

6.4.1.4. 3D reconstruction by triangulation

If the image-points m = (u, v) and m′ = (u′, v′) (provided by the registration)
and matrices K, K′, T and Ts (provided by the calibration of the stereovision sensor)
are known, Equations (6.10) and (6.11) lead to an over-determined system of four
equations and three unknowns that are the three coordinates of the searched 3D point
M = (X,Y, Z) [HAR 97]:
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Equation (6.12) can be written as b = HM and the 3D coordinates of point M are
determined analytically using the pseudo-inverse method

M =
[

(HT H)−1 HT
]

b

The triangulation problem can also be solved using non-linear optimization by
minimizing the distance between the measured image-points (u, v)m and the image-
points (u, v)p predicted by the camera model [SUT 09]

χ2 =
∑

(

(um − up)
2 + (vm − vp)

2 + (u′
m − u′

p)
2 + (v′m − v′p)

2
)

(6.13)

Note that Equation (6.12) implies a linear model of the camera (pinhole model). When
lens distortions are taken into account, the camera model is no longer linear. To com-
pute the 3D coordinates of point M using Equation (6.12), the image-points need to be
corrected for their distortion beforehand. If the distortion is not corrected beforehand,
then Equation (6.13) needs to be used.

6.4.2. 3D displacement measurement by stereo-correlation

Using the stereovision technique, the shape variation of an object can be measured
by analyzing a sequence of pair of stereo images. However, in experimental mechan-
ics, we are generally interested in the surface strain field, which can be obtained by
tracking the displacement of some points at the surface of an object undergoing some
mechanical or thermal loading as illustrated in Figure 6.9.
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Figure 6.9. 3D displacement field corresponding to two deformation states of

the object

The 2D technique described in Section 6.2 allows the 2D displacement field to
be computed at the surface of a planar object. By combining the stereo-correlation
technique (DIC-based spatial registration between two cameras and triangulation, to
get a cloud of 3D points) and the DIC-based temporal matching between the images
acquired by the left or the right camera at different instants, the 3D displacement
field of any object (with any complex shape) can be computed. This is illustrated in
Figure 6.10.

This measurement technique provides the 3D displacements, from which the
strains can be computed as described in the next section.

6.4.3. Computation of surface strains from 3D displacements

The stereo-correlation technique combined with temporal image matching leads
to the 3D displacement field of any object with any complex shape (not necessarily
planar). The surface strain field can be computed from the 3D displacement field by
differentiation of the 3D displacement at each point of the surface, which can be a
complex task.

From a practical point of view, the computation of the strain at a given point P of
the surface is performed through several steps [COR 05a, SUT 09]:

– first, a small contiguous collection of 3D surface points (e.g., a 7× 7 array with
center-point P) is selected from the initial surface shape,

– next, a least squares plane is fitted to this 3D position data set providing the
tangent plane,

– a local coordinate system (n,b, t) is associated with the tangent plane and cen-
tered in P,
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Figure 6.10. 3-D displacement field computation. Stereo-correlation
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– all displacement components for each point of the specimen points are converted
into the local system. A set of displacement components (dt, db, dn) is obtained and
written (dX , dY , dZ),

– the array of data points for each component of displacement is then fitted with a
least squares functions of the form g(X,Y ),

– differentiating the functional fit g(X,Y ) for each displacement component in
both the X and Y directions leads to the εXX(P), εY Y (P) and εXY (P) components
of the strain tensor at point P.

6.4.4. Applications

The stereo-correlation technique has proven to be a powerful non-contact tech-
nique for measuring 3D displacement / 2D strain fields on any 3D object surface and is
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now widely used for industrial applications in different fields of mechanics and materi-
als [SUT 09], namely, fracture mechanics [SUT 92, LUO 94, LUO 00, SUT 07b], bio-
mechanics [SUT 08a, TYS 02], for the study of different types of materials, namely,
composites [MCG 01, LOP 04, MUL 05, KAR 06], ceramics / concrete [ORT 07,
ROB 07], foams [GUA 07], elastomers [MIS 05, JON 06], tyre [MOS 07], soft mem-
branes [VIA 05]. The technique is very versatile and can be used for a large scale
of experimental mechanics problems. It was applied at micro [SCH 04] or macro
scales [HEL 03] (small or large structures), it can measure both small (a few hundreds
of micro-strains) and large strains (>200%), it can be used for high-speed dynamic
tests by using high-speed cameras [SCH 03a, SCH 03b, SIE 07, TIW 07, BES 08,
BES 10].

6.5. Conclusions

Digital image correlation, as we have seen through its many variants, in two or
three dimensions, surface and even volume, at different scales of space and time al-
lows for the measurement of displacement fields with a rich description and remark-
able accuracy especially in light of its ease of implementation. Image correlation can
exploit with great flexibility pictures acquired by different imaging means every day
better and more informative. Many tools are available to incorporate in this measure-
ment procedure any a priori knowledge that is available on the kinematics to assess
the measurement uncertainty, or the covariance matrix of the measured degrees of
freedom induced by image noise, and finally to visualize the residual field, often car-
rying very valuable information. Today’s experiments provide a number of measured
data comparable or sometimes even higher than what traditionally was the privilege
of numerical simulations.

These measurements are used, and currently more often than never before, to mon-
itor mechanical tests, whether in the context of conventional characterization, or when
used in an industrial context. The latter distinction is increasingly blurred as kinematic
measurements, in particular by stereo-correlation, can account for complex loadings
and geometries. This merger opens up outstanding perspectives in terms of quantita-
tive use of tests, and therefore relevant responses to the use of materials, structures, or
assemblies under realistic conditions, representative of their in-service life.

Last, what explains the spectacular development of this technique is probably its
coupling with numerical simulations for identification and validation purposes. The
end of the book is devoted to this broad issue. Again the classical boundary between
experimental and numerical fields gradually vanishes, thanks to measured fields. They
thus appear in different dimensions as the focal point to a particularly fruitful dialogue
between all actors interested in the mechanical behavior of materials and structures,
experimentalists and modelers, designers and users, researchers and producers.
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