
HAL Id: hal-01714520
https://imt-mines-albi.hal.science/hal-01714520

Submitted on 3 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

18th International configuration workshop : proceedings
of the 18th International configuration workshop within
CP 2016 conference, Toulouse, France, from September

05-06, 2016
Élise Vareilles, Lars Hvam, Cipriano Forza, Caroline Becker

To cite this version:
Élise Vareilles, Lars Hvam, Cipriano Forza, Caroline Becker. 18th International configuration work-
shop : proceedings of the 18th International configuration workshop within CP 2016 conference,
Toulouse, France, from September 05-06, 2016. EMAC, 123 p., 2016, 979-10-91526-04-3. �hal-
01714520�

https://imt-mines-albi.hal.science/hal-01714520
https://hal.archives-ouvertes.fr

18th International Configuration Workshop

Proceedings of the 18th International Configuration Workshop
within CP 2016 Conference

Edited by
Élise Vareilles,

Lars Hvam, Cipriano Forza and Caroline Becker

September 5-6, 2016
Toulouse, France

Organized by
Centre Génie Industriel, Mines Albi, France

2

ISBN: 979-10-91526-04-3

École des Mines d’Albi-Carmaux
Campus Jarlard
Route de Teillet
Albi 81013 Cedex 09
France

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

3

18th International Configuration Workshop
Chairs

Élise Vareilles, Mines Albi, France
Lars Hvam, Technical University of Denmark, Denmark

Cipriano Forza, University of Padova, Italy
Caroline Becker, PROS Toulouse, France

Program Committee

Michel Aldanondo, Mines Albi, France
Andres Barco, Mines Albi, France
Caroline Becker, PROS, France

Jean-Guillaume Fages, COSLING S.A.S., France
Andreas Falkner, Siemens AG, Austria

Hélène Fargier, IRIT, Université de Toulouse, France
Alexander Felfernig, Graz University of Technology, Austria

Cipriano Forza, Universita di Padova, Italy
Gerhard Friedrich, Alpen-Adria-Universitaet Klagenfurt, Austria

Paul Gaborit, Mines Albi, France
Luis Garcés, Mines Albi, France

Chiara Grosso, Universita di Padova, Italy
Albert Haag, SAP SE, Germany

Alois Haselboeck, Siemens AG, Austria
Lothar Hotz, HITeC e.V. / University of Hamburg, Germany
Lars Hvam, Technical University of Denmark, Denmark

Dietmar Jannach, TU Dortmund, Germany
Manuel Korell, Finja AB / Achoice, Denmark
Thorsten Krebs, encoway GmbH, Germany

Katrin Kristjansdottir, Technical University of Denmark, Denmark
Matthieu Lauras, Mines Albi, France

Sara Safie, Technical University of Denmark, Denmark
Abdourahim Sylla, Mines Albi, France

Juha Tiihonen, University of Helsinki, Finland
Élise Vareilles, Mines Albi, France

Markus Zanker, Alpen-Adria-Universitaet Klagenfurt, Austria
Linda Zhang, IESEG School of Management, France

Special Thanks

Paul Gaborit, Mines Albi, France

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

4

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

5

Contents

Foreword . 7

Recommendation for product configuration: an experimental evaluation. Hélène Fargier, Pierre-François Gimenez and
Jérôme Mengin. 9

Recommending and Configuring Smart Home Installations. Gerhard Leitner, Alexander Felfernig, Seda Polat Erdeniz,
Arda Akcay, Anthon Fercher, Klaus Isak and Michael Jeran. 17

Concurrent configuration of product and process : moving towards ETO and dealing with uncertainties. Sylla
Abdourahim, Élise Vareilles, Michel Aldanondo, Thierry Coudert, Laurent Geneste and Paul Pitiot. 23

Assessing configurator user need for social interation during the product configuration process. Chiara Grosso, Cipriano
Forza and Alessio Trentin. 29

Improved Performance and Quality of Configuration Systems by Receiving Real-Time Information from Suppliers. Katrin
Kristjansdottir, Sara Shafiee, Martin Bonev, Lars Hvam, Morten Hugo Bennick and Christian S. Andersen. 39

Deriving Tighter Component Cardinality Bounds for Product Configuration. Richard Taupe, Andreas Falkner and
Gottfried Schenner. 47

Automatic Configuration of Hybrid Mathematical Models. Michael Barry and René Schumann. 55

Solving the Partner Units Configuration Problem with Heuristic Constraint Answer Set Programming. Erich Teppan. . . . 61

Towards Group-Based Configuration. Alexander Felfernig, Müslüm Atas, Trang Tran and Martin Stettinger. 69

Towards Configuration Technologies for IoT Gateway. Alexander Felfernig, Seda Polat Erdeniz, Arda Akcay, Paolo
Azzoni and Charalampos Doukas. 73

Towards Modularization and Configuration of Services – Current Challenges and Difficulties. Thorsten Krebs and
Aleksander Lubarski.. 77

Determining New Components for Open Configuration. Linda Zhang and Xiaoyu Chen. 81

Benchmark for configuration and planning optimization problems: Proposition of a generic model. Paul Pitiot, Luis
Ignacio Garcés Monge, Élise Vareilles and Michel Aldanondo. 89

Optimal Feature Selection via Evolutionary Algorithms and Constraint Solving. Yibo Wang and Lothar Hotz. 97

Interactive Configuration of Insulating Envelopes. Andrés Felipe Barco Santa, Élise Vareilles, Michel Aldanondo and
Philippe Chantry. .105

StudyBattles: A Learning Environment for Knowledge-based Configuration. Alexander Felfernig, Amal Shehadeh,
Christian Guetl, Michael Jeran, Trang Tran, Müslüm Atas, Seda Polat Erdeniz, Martin Stettinger, Arda Akcay and Stefan
Reiterer. .109

Finding pre-production vehicle planning using Max-SAT framework. Marcel Tiepelt and Tilak Raj Singh.117

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

6

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

7

Foreword

Product configuration is the task of composing product models of complex systems from parameterizable components in the
mass-customization business model. This task demands for powerful knowledge representation formalisms and acquisition
methods to capture the great variety and complexity of configurable product models. Furthermore, efficient reasoning methods
are required to provide intelligent interactive behavior in configurator software, such as solution search, satisfaction of user
preferences, personalization, optimization, diagnosis, etc.

The Configuration workshop is of interest for both, researchers working in the various fields of Artificial Intelligence as well as
for industry representatives interested in the relationship between configuration technology and the business problem behind
configuration and mass customization. It provides a forum for the exchange of ideas, evaluations, and experiences especially
related to the use of Artificial Intelligence techniques in the configuration context.

This year’s workshop is organized within the International Conference on Principles and Practice of Constraint Programming
(CP2016). It is still a two-day event that continues the series of 17 successful Configuration Workshops started at the AAAI’96
Fall Symposium and continued at IJCAI, AAAI, and ECAI conferences since 1999.

A total of 17 papers has been selected for presentation on the Configuration workshop 2016. The 18th International
Configuration Workshop continues the concept of Best Paper Award introduced in the last edition. As it was done in 2015, the
best paper is selected in a two-phase audience vote during the last session.

Élise Vareilles
July 2016

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

8

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Recommendation for product configuration: an
experimental evaluation

Hélène Fargier1 and Pierre-François Gimenez2 and Jérôme Mengin3

Abstract. The present work deals with the the recommendation of
values in interactive configuration, with no prior knowledge about the
user, but given a list of products previously configured and bought by
other users ("sale histories"). The basic idea is to recommend, for a
given variable at a given step of the configuration process, a value
that has been chosen by other users in a similar context, where the
context is defined by the variables that have already been decided,
and the values that the current user has chosen for these variables.
From this point, two directions have been explored. The first one is
to select a set of similar configurations in the sale history (typically,
the k closest ones, using a distance measure) and to compute the best
recommendation from this set - this is the line proposed by [9]. The
second one, that we propose here, is to learn a Bayesian network
from the entire sample as model of the users’ preferences, and to use
it to recommend a pertinent value.

1 Introduction
In on-line sale contexts, one of the main limiting factors is the diffi-
culty for the user to find product(s) that satisfy her preferences, and
in an orthogonal way, the difficulty for the supplier to guide potential
customers. This difficulty increases with the size of the e-catalog,
which is typically large when the considered products are config-
urable. Such products are indeed defined by a finite set of compo-
nents, options, or more generally by a set of variables (or "features"),
the values of which have to be chosen by the user. The search space is
thus highly combinatorial. It is generally explored following a step-
by-step configuration session: at each step, the user freely selects a
variable that has not been assigned yet, and chooses a value. Our is-
sue is to provide such problems with a recommendation facility, by
recommending, among the allowed values for the current variable,
one which is most likely to suit the user.

The problem of providing the user with an item that fulfills her
preferences has been widely studied, leading to the content-based
and the collaborative filtering approaches, and every variation in be-
tween [1, 22, 17]. However, these solutions can’t deal with config-
urable products, e.g. cars, computers, kitchens, etc. The first reason
is that the number of possible products is huge – exponential in the
number of configuration variables. For instance, in the car configu-
ration problem described in [4] the definition of "Traffic" delivery
vans involves about 150 variables, and an e-catalog of 1027 feasible
versions. The second reason is that the recommendation task consid-
ered in interactive configuration problem is quite different from the
one addressed in classical product recommendation: the system is

1 IRIT, CNRS, University of Toulouse, France, email: fargier@irit.fr
2 IRIT, CNRS, University of Toulouse, France, email: pgimenez@irit.fr
3 IRIT, CNRS, University of Toulouse, France, email: mengin@irit.fr

not asked to recommend a product (a car) but a value for the variable
selected by the user4. Finally, the third reason is that we cannot as-
sume any prior knowledge about the user, nor about its buying habits
- complex configurable products, like cars, are not bought so often by
one individual. So we have no information about similarity between
users (upon which collaborative filtering approaches are based) nor
on the preferences of the current user (upon which content-based fil-
tering approaches are based).

The present work deals with the the recommendation of values
in interactive configuration, with no prior knowledge about the user,
but given a list of products previously configured and bought by other
users ("sale histories"). The basic idea is to recommend, for a given
variable at a given step of the configuration process, a value that has
been chosen by other users in a similar context, where the context
is defined by the variables that have already been decided, and the
values that the current user has chosen for these variables. From this
point, two directions can be explored. The first one is to select a set
of similar configurations in the sale history (typically, the k closest
ones, using a distance measure) and to compute the best recommen-
dation from this set - this is the line proposed by [9]. The second
one, yet not explored is to learn a from the entire sample a model of
the users’ preferences, e.g. a Bayesian net, and to use it to propose a
pertinent value.

The paper is structured as follows: the basic notations are pre-
sented in Section 2. The next two sections present the two families
of approaches that we have explored: Bayesian nets in Section 3 and
k-closest neighbors in Section 4. They are experimentally compared
and discussed in Section 5.

2 Background and notations

A configuration problem is defined by a setX of n discrete variables,
each variable X taking its value in a finite domain X . A complete
configuration is thus a tuple o ∈ ∏

X∈X X; we denote by X the set
of all of them.

If W is a tuple of variables, W denotes the set of partial configu-
rations

∏
X∈W X; we will often denote such a partial configuration

by the corresponding lower case letter w. Also, if W and V are two
sets of variables, and if w ∈ w, then w[V] is the projection of w onto
V ∩W . Furthermore, if w ∈ W , w is said to be compatible with v
if w[V ∩W] = v[V ∩W]; in this case we write w ∼ v. Finally, in
the case where w and v are compatible, we denote by w.v the tuple

4 Note that we are not concerned here with the choice of the variable – this
choice is under the control of the user, not under the one of the recom-
mender system. It is worthwhile noticing that the fact that the variables are
considered and assigned in a free order forbids the use of techniques based
on decision trees.

Hélène Fargier, Pierre-François Gimenez and Jérôme Mengin. 9

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

that extends w with values of v for variables in V \W (equivalently,
wv extends v with values of w for variables in W \ V).

Not all combinations represent feasible products, because of some
possible feasibility or marketing constraints; let P be the subset ofX
that represent feasible products. In practice, the set P is still a huge
set.

In interactive configuration problems, the user builds the product
she is interested in through a variable by variable interaction. At each
step, let Assigned be the set of variables for which she has already
chosen values, u be the tuple values assigned to these variables and
UnAssigned the set of free variables ; then the user freely selects
the next variable to be assigned (we denoted Next this variable). The
system then has to:

• Compute the set of admissible values for Next: it is the set of
values v ∈ Next such that there is at least one feasible product
o ∈ P with this combination of values, that is o[Next] = v and
o[Assigned] = u. The computation of this set has been studied
elsewhere [3, 15, 16, 6].

• Propose a recommended value for Next, chosen among the ad-
missible values.

The computation of a pertinent recommendation is the topic of the
present work.

The recommendation of feature values, when any, is often limited
to the proposition of a default value, generally the one advised by the
seller in a static way or through a set of rules. Other approaches are
based on similarity measures and propose to determine the k-nearest
neighbor configuration that are similar to the current set of user re-
quirements. These type of approaches support the idea that the user
sets her most important requirements and let the system complete
the configuration but seldom takes place in a process of interactive
configuration (the reader shall consult [13] for a survey about recom-
mendation technologies for configurable product).

In the context considered by this paper, sales histories are avail-
able, on which the system can rely to base its recommendation. For-
mally, a sale history is a (multi) set H ⊆ X of complete configura-
tions that correspond to products that have been bought by past users
(thus they are feasible, i.e. belong to P). In the sequel, for a partial
configuration u, #(u) will denote the number of configurations inH
that extend u.

3 Recommendation with Bayesian networks
Users have different preferences, depending on the taste and the en-
vironment of the user, which make them prefer different products -
hence a large variety of products in the histories. We do not have any
information about their taste, nor do we use any information about
their environment. Instead, it can be assumed that there is a ground
probability distribution p over the set of complete configurations (i.e.
the space of all feasible products), indicating how likely it is that each
object is the one that the current user prefers. This probability may
depend on her personality, and on her current environment, but it can
be assumed that the sales history gives a good approximation of that
probability distribution: the configured products eventually bought
by the past users are the one they prefer.

Therefore, if Next is the next variable to be assigned a value, and
if u is the vector of values that have been chosen for the variables
already decided, we propose to estimate, for each possible value
v for Next, the marginal conditional probability p(Next = v |
Assigned = u): it is the marginal probability that Next has value v
in the most preferred product of the current user, given the choices

that she made so far; hence we can recommend the most probable
value (among the admissible ones):

argmax
v∈Next

p(Next = v | Assigned = u).

The idea of our work is that the sale history is a sample of X
according to the unknown distribution p, that we can use to estimate
probabilities. A first, naive method to compute p(v | u) would be
to count the proportion of v within the sold products that verify u.
Even if this idea works for small u’s, after a few steps the number of
products that verify u would be too low and the computations would
not be reliable enough (and even impossible when no product in the
history verifies u). Hence the idea of learning, off-line, a Bayesian
network from the data set and to use it, on-line, during the step-by-
step configuration session: the user defines a partial configuration
u by assigning some variables and chooses a variable Next ; the
recommendation task consists in computing the marginal p(Next |
Assigned = u) and recommending the user with the value of Next
that maximizes this probability.

3.1 Bayesian networks
A Bayesian network (BN) [21] over set of variablesX is defined by a
directed acyclic graph (DAG) over a X , and a set of local conditional
probability tables (CPT), one for each variable of X . If N denotes
a Bayesian network, for X ∈ X we denote by PaN (X) the set of
parents of X in the graph; the local probability table associated to X
specifies the probability pN (X = x | u) for every x ∈ X and every
u ∈ PaN (x); if U denotes the parents of X , we denote the table
associated to X by ΘN (X | U).

A Bayesian networkN uniquely defines a probability distribution
pN over X : the probability of a complete configuration o ∈ X is

pN (o) =
∏

X∈X
ΘN (o[X] | o[PaN (X)]) =

∏

X∈X
ΘN (X, o).

Example 1. Consider following Bayesian network:

A C E

FDB

The probability of a configuration abcdef can be computed as:

Θ(a)Θ(c | a)Θ(e | c)Θ(f)Θ(d | cf)Θ(b | ad)

and Θ(D, abdcf) is defined to be Θ(D | cf).

In the sequel, we will often omit the subscriptN when there is no
ambiguity.

3.2 Learning a Bayesian network
The learning of Bayesian networks from data proceeds in two steps:
finding the structure of the network, i.e. of the DAG underlying the
Bayesian network and then its parameters, i.e. the conditional prob-
abilities table. Both aim at maximizing likelihood estimates, i.e. the
probability of observing the given set.

Since learning the most probable a posteriori Bayesian network
from data is an NP-hard problem [7], heuristic strategies had to be
found. There are two main families of approaches in structure learn-
ing: the score-based ones and the constraint-based ones.

10 Recommendation for product configuration: an experimental evaluation.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

The formers search for a network that maximizes a score pointing
out to what extend the network fits the data [8]. The score may be
a Bayesian function, such as Bayesian Dirichlet scores (analysed in
[12]), or come from information theory, such as the Bayesian Infor-
mation Criterion [23] or the Akaike Information Criterion [2].

The latter approach looks for conditional independences, through
independence tests, assuming the faithfulness of the network to learn.
An early example is the Inductive Causation algorithm of Pearl [27]
; a more recent one is PC [25].

Finally, hybrid method exist, such as MMHC [26], that learns the
undirected structure of the network with a constraint-based approach
(named MMPC) and then orients the edge of the DAG with a score-
based method. Another example is Sparse Candidate (SC) [14].

3.3 Computing marginals
The computation of the posterior marginal probability p(Next |
Assigned) is a classical task of Bayesian inference. In gen-
eral, it is broken down into computations of two separate prior
marginals, since, by definition p(Next | Assigned) = p(Next ∧
Assigned)/p(Assigned).

Recall that, for a given configuration o, p(o) is defined to be the
product of local, conditional probabilities that correspond to o in the
CPT’s of the network. Then, given a variable X ⊆ X and a partial
configuration x ∈ X , the marginal probability p(x) is the sum of the
probabilities of the complete configurations that extend x:

p(x) =
∑

w ∈ X
w[X] = x

=
∑

w ∈ X
w[X] = x

∏

Y ∈ X
Θ(w[Y] | w[PaN (Y)]).

Computing such prior marginals is known to be an NP-hard prob-
lem when p is represented by a Bayesian network [10]– the size of
the formula can grow exponentially fast with the number of vari-
ables. Exact inference algorithms, such as variable elimination [28],
value elimination [5], jointree algorithms [19], cutset conditioning
[20], recursive conditioning [11], work by breaking down this sum-
product formula, into sub-sums and sub-products. These algorithms
have a worst-case time complexity exponential with respect to the
treewidth of the network. Variable elimination and jointree methods
[19] are costly in space while recursive conditioning allows an any-
space inference and can be polynomial in space. Even if they target
a NP-hard task, the algorithms are efficient enough on real world
benches to allow an on-line use.

3.4 Recommendation using Naive Bayesian
Networks

In a Naive Bayesian network, one central variable (the one on which
inference is to be made) is targeted and the others are assumed in-
dependent from each other conditionally to this variable of interest.
A naive Bayesian network is therefore a Bayesian network the struc-
ture of which is a tree, and where the variable of interest (in our case,
Next) is the parent of every other variables (in our case, the vari-
ables in Assigned). For any value v of Next and any assignment u
of Assigned, we know that P (v|u) is proportional to P (vu); under
the strong assumptions of the naive Bayesian network:

P (vu) = P (v)
∏

X∈Assigned

P (u[X] | v)

So we will recommend the value v that maximizes

P (v|u) ∝ P (v)
∏

X∈Assigned

P (u[X] | v)

Since the variable we are recommending a value for depends on
the configuration process, we would need a naive Bayesian network
for every variable: to recommend a value for Next, we would use
the naive Bayesian network for which Next is the variable of inter-
est. The computation of the networks is preprocessed: (all) the prior
distributions P (X) and (all) the conditional tables P (Y |X) (i.e., po-
tentially all the naive Bayesian networks) are computed off line, be-
fore the configuration process, from the sample:

P (X = x) =
#(x)

|H| for each X ∈ X

P (Y = y|X = x) =
#(x.y) + 1

#(x) + |Y | for each pair X,Y ∈ X

The (pre)computation of n prior tables and n2 conditional proba-
bility tables are thus sufficient to make a prediction for any variable
at any moment.

The strong assumptions of naive Bayesian networks is generally
inconsistent: when we want to recommend a value for Next, we as-
sume that all the variables in Assigned are conditionally independent
given Next. In spite of this naive and strong assumption, they are ef-
ficient enough for some applications. Among their qualities, they are
easy to learn and easily scalable, requiring a number of parameters
quadratic in the number of variables.

4 k-nearest neighbor
In [9], three algorithms are proposed that are based on the selection
of a neighborhood: rather than computing the preference from the
entire sample, the system should focus on sold configurations that are
similar to the present one - i.e. use the k nearest neighbors. All the
methods proposed in [9] are based on the Hamming distance; namely,
given an assignment u of Assigned, and a complete configuration
w, d(u,w) counts the number of variables in Assigned on which the
two configurations disagree:

d(u,w) = | {x ∈ Assigned | u(x] 6= w[x]} |
At each step, these methods first selects the set N(k, u) of the k-

nearest neighbors of the current partial configuration u, and compute
the recommendation on this basis.

4.1 Weighted Majority Voter
The simplest algorithm is the Weighted Majority Voter, which pre-
dicts the value of Next on the basis of a weighted majority vote of
the k nearest neighbors. The weight of a configuration w in N(k, u)
is set equal to the degree of similarity between this configuration and
the current one, u, i.e. the number of variables that are given the same
value by both:

weight(u,w) = | {X ∈ Assigned | u[X] = w[X]} |
The recommended value for Next is chosen among the ones that

are authorized by the constraints by maximizing:

vote(v) =
∑

w ∈ N(k, u)
w[Next] = v

weight(u,w)

Hélène Fargier, Pierre-François Gimenez and Jérôme Mengin. 11

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

4.2 Most Popular Choice
Most Popular Choice predicts the most popular (actually, the most
probable) extension of the current configuration, u, from the knowl-
edge of the closed neighbors and recommends the value supported
by this configuration. It holds that, for any full configuration uw that
extends u, P (uw) = P (u|w).P (w). [9] make the assumption that
the variables that have not been assigned are mutually independent,
and that the ones that are assigned are independent from one another
given w. Hence we have:

P (uw) = ΠX∈X\AssignedP (w[X]) . ΠX∈AssignedP (u[X]|w)

The probabilities are estimated from the k nearest neighbors of u:

• for X ∈ X \Assigned and x ∈ X :

P (x) =
1

k
|{w′ ∈ N(k, u), w[X] = x}|;

• forX ∈ Assigned and x ∈ X , letN(k, u, w) be the set of neigh-
bors of u that agree with w on Assigned: N(k, u, w) = {w′ ∈
N(k, u), w′[Assigned] = w[Assigned]}, then P (x | w) is the
fraction ofN(k, u, w) that has value x, with a kind ofm-estimate
correction since N(k, u, w) may be empty:

P (x|w) =
|{w′ ∈ N(k, u, w)|w′[X] = x}|+ 1

|N(k, u, w)|+ k

The value recommended for variable Next is the one prescribed
by the w that maximizes P (uw). The drawback of this method is
that nothing guarantees that the value computed is compatible with
u according to the constraint.

4.3 Naive Bayes Voter
The Naive Bayes Voter is similar to the Naive Bayes method pro-
posed in Section 3.4, with the difference that it uses the k nearest
neighbors to build a naive Bayes network. Since these neighbors de-
pends on the current configuration, is not possible to preprocess the
computation of the probability table - this approach may be much
slower than the classical naive Bayes.

Next

X1 X2
. . . Xk

Figure 1. The naive Bayesian network built by Naïve Bayes Voter. Next is
the variable of interest.

The recommended value for Next is chosen among the ones
that are authorized by the constraints by maximizing P (v|u) ∝
p(v)

∏
X∈Assigned p(u[X] | v), where:

• p(v) = 1
k
|{w ∈ N(k, u)|w[Next] = v}|

• for every X ∈ Assigned and every v ∈ Next, let N(k, u, v) be
the set of neighbors of u that have value v for Next, then

p(u[X] | v) =
|{w ∈ N(k, u, v)|w[X] = u[X]}|+ 1

|N(k, u, v)|+ k

5 Experiments
The approaches proposed in this paper have been tested on a case
study of three sales histories provided by Renault, a French automo-
bile manufacturer 5. These data sets, named “small”, “medium” and
“big”, are genuine sales histories - each of them corresponds to a
configurable car, and each example in the set corresponds to a con-
figuration of this car which has been sold:

– dataset “small” has 48 variables and 27088 examples.
– dataset “medium” has 44 variables and 14786 examples.
– dataset “big” has 87 variables and 17724 examples.
Most of the variables are binary, but not all of them.
We used the R package bnlearn to learn the Bayesian networks

[24] - more precisely, we used Hill Climbing (HC) to learn the two
datasets of about 50 variables (small and medium) and MMHC to
learn the big dataset of about 90 variables. The average number of
parents of a node in the obtained BN is about 1.17, 1.02 and 0.98
- for small, medium and big, respectively. As to Bayesian inference,
we used the jointree algorithm provided by the library Jayes [18]. We
implemented the Naive Bayes approach and the algorithms based on
the k nearest neighbors (k is set to 20 in the experiments reported
here; other values of k do not improve the results).

5.1 Experimental protocol
We used a two-folds cross-validation: each dataset has been cut by
half, an algorithm learns with one half (which constitute the sale his-
tory) and is tested with the other (which can be view as a set of on-
line configuration sessions).

The protocol is described in Algorithm 1. Each test is a simu-
lation of a configuration session, i.e. a sequence of variable-value
assignments. In real life, a genuine variable ordering was used by
the user for her configuration session and the different sessions gen-
erally obey different variable orderings. Unfortunately, the histories
provided by Renault describe sales histories only, i.e. sold products,
and not the sequence of configuration in each session. That is why
we generate a session session for each product P in the test set
by randomly ordering its variable-value assignments. Then, for each
variable-value assignment (X,x) in this sequence, the recommender
is asked for a recommendation for X , say r: r may be equal to x;
or not, if r more probable than x according the inference process ;
then X is set to x. We consider a recommendation as correct if the
recommended value is the one of X in the product P (i.e. if r = x).
Any other value is be considered as incorrect.

The recommendation algorithm is evaluated by (i) the time needed
for computing the recommendations and (ii) its success rate, obtained
by counting the number of correct and incorrect recommendations.

5.2 Oracle
In order to easily interpret the results of the cross-validation, we pro-
pose to compute the highest success rate attainable for the test set.
If we where using an algorithm that already knows the testing set,
it would use the probability distribution estimated from this testing
set. Therefore it would recommend for the variable Next, given the
assigned values u, the most probable value of X in the subset of
products, in the test set, that respect u. More precisely, for any x
in the domain of Next, it would estimate p(x|u) as #(ux)/#(u).
Notice that #(u) is never equal to zero, since the test set contains

5 available at http://www.irit.fr/~Helene.Fargier/BR4CP/
benches.html

12 Recommendation for product configuration: an experimental evaluation.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Algorithm 1: Protocol for evaluating value recommendation in
interactive configuration

Input: The training set Htr and the testing set Htest
Output: The success rate
main :

1 learning of Htr
2 success ← 0
3 error ← 0
4 Assigned ← ∅
5 for each P ∈ Htest do
6 session ← randomly order the variable-value assignments

in P
7 Assigned ← ∅
8 for each (Next, x) ∈ session do
9 r ← recommended value for Next given Assigned

10 if r = x then increment success by 1
11 else increment error by 1
12 Assigned ← Assigned ∪ {(Next, x)}

13 return success/(success + error)

at least one product consistent with u: the one corresponding to the
current session. It is an algorithm overfitted to the testing set.

We call this algorithm “Oracle”. Its success rate is higher than
the one of any other strategy. Its success rate isn’t 100% since there
is an intrinsic variability in the users (otherwise only one product
would be sold . . .). The success rate of the “Oracle” is generally not
attainable by the other algorithms, because the “Oracle” has access
to the testing set, what is obviously not the case of the algorithms we
evaluate.

5.3 Results
The experiment have been made on a computer with a quad-core
processor i5-3570 at 3.4Ghz, using a single core. All algorithms are
written in Java, and the Java Virtual Machine used was OpenJDK.

Success rate

Figures 2, 3 and 4 give the success rate of the pure BN-based ap-
proach (BN and Naive Bayes) on the one hand, and of the methods
based on k closest neighbors on the other hand, on our configuration
instances. The experiment is completed with the application of the
configuration protocol on classical Bayesian networks benchmarks
[24] 6. The oracle is given as an ideal line.

It appears that on the configuration instances, the pure naive based
approach, which makes very strong independence assumptions, has
a low success rate (this error rate is bad also on classical BN bench-
marks). This is not surprising, since the variables are not independent
from one another, at least because of the constraints. The indepen-
dence assumptions at work in the methods based on the k closest
neighbors are in a sense less drastic, since the distance used to select
the neighborhood implicitly captures some dependencies.

On configuration problems, 3 methods are have very good results:
Classical Bayes Net, Naive Bayes Voter and Most Popular Choice.
Their success rate is very good (only a few points from the Oracle).
The gap with the Oracle gets larger when the number of assigned

6 On these benchmarks, the protocol remains the same but has another inter-
pretation: the assignment of a variable corresponds to the conditioning of
the knowledge base by an observation; the "recommendation" then corre-
sponds to the inference of the most probable value for a variable of interest

variables increases: the Oracle’s performance becomes less and less
attainable. Indeed, the prediction of the Oracle relies on the testing
sample, that includes the product of the ongoing configuration. When
few variables are instantiated, the Oracle uses a rather big subsample
to make its estimation. When a lot of variables are instantiated, the
Oracle uses a small subsample, so small that sometimes it contains
only the ongoing configuration. In this case, the Oracle can’t make
a bad recommendation. This can be interpreted as overfitting, since
the Oracle is tested on the sample it learned. This phenomena is es-
pecially visible with the dataset “big”, because it has more variables
that “small” or “medium”.

Classical Bayes is the more accurate method on BN instances we
tested (hailfinder, alarm, child, insurance, see e.g. Figure 5 for the in-
surance bench), which is not surprising either, because the network
learnt precisely captures the indepedencies (the sample is perfectly
faithful to the BN). But the Naive Bayes Voter and Most Popular
Choice do not perform so bad on these instances, from which it can
be concluded that these approaches capture a great part of the depen-
dencies, even not explicitly.

CPU time

The CPU time (see Figures 2, 3 and 4) clearly breaks the set of algo-
rithms in two groups: the ones that learn, off-line, the dependencies
from the entire data set and the ones that compute a new neighbor-
hood at each step.

The former group of method are one order of magnitude quicker
than the latters on the small and medium instances (and some times
two: Weighted Majority voter, which has good performances in terms
of prediction, is much slower). This is explained by the time needed
to extract the k best neighbors before computing the recommenda-
tion. On the other hand, this time is not too sensitive to the size of the
problem - it remains low on the big instance.

One can check that on this data set, which corresponds to a real
world application, the CPU times of all the method tested are com-
patible with an on line use, with less than 10 ms in any case. Un-
surprisingly, the approximation by a naive Bayesian net is the one
that run the fastest (less than 0.05 ms in any case). The time need by
Classical Bayesian Nets is in the same order of magnitude, less than
0.1 ms, for the small and medium data set. It stays under 0.25 ms for
the big data set.

Influence of the sample’s size

The drawback of the methods based on a neighborhood is that their
performances seem to depend on the size of the original sample: the
greater, the better the prediction but the higher the time needed to
make it. To confirm this, we performed another experiment, varying
the size of the sample (from the full sample to a sample containing
only 1

64

th of the original one).
This of course leads to an improvement of the performances in

terms of CPU and space, but also to a a strong degradation of the
accuracy. As a matter of fact, on the small data set, the handling by
Most Popular Choice of a sample of 1

32
of the original one needs

twice less time, but the error rate stay over a 9% line (instead of an
average of 4%). Naive Bayes Voter and Classical Bayesian Networks
are more resistant: for Naive Bayes Voter the time for handling a
sample of 1

32
of the original one is divided by 3, with an error rate

staying over a 8% line (instead of an average of 5%).

Hélène Fargier, Pierre-François Gimenez and Jérôme Mengin. 13

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Figure 2. Average error rate and time on dataset “small”

Figure 3. Average error rate and time on dataset “medium”

Figure 4. Average error rate and time on dataset “big”

14 Recommendation for product configuration: an experimental evaluation.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Figure 5. Average error rate and time on dataset “insurance”

Figure 6. Average error rate and time of Most Popular Choice on dataset “small”, varying the size of the sample

Figure 7. Average error rate and time of Naive Bayes Voter on dataset “small”, varying the size of the sample

Hélène Fargier, Pierre-François Gimenez and Jérôme Mengin. 15

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

6 Conclusion

This paper has proposed the use of Bayesian nets as a new approach
to the problem of value recommendation in interactive product con-
figuration.

Our experiments on real world datasets show that Bayesian Nets
are compatible with an on-line context. Classical Bayesian Nets have
a success rate close to the best possible one. The naive Bayes ap-
proximation is average (about 10 % of error, i.e. twice the minimal
error) but very quick. The other approaches proposed by the literature
(Naive Bayes Voter and Most Popular Voter) have a success rate sim-
ilar to the one of Classical Bayesian Nets, and a CPU time that is in-
dependent on the size of the instance (1 to 5 ms) - but strongly depend
on the size of the sample. They are outperformed by Bayesian net on
configuration instances on reasonable size and of course on classical
Bayesian benches. We shall thus conclude in favor of the approach
based on Bayesian net learning for problems with a large sample but
a limited memory resource keeping in mind that naive Bayes shall be
an alternative on situations involving very big instances and a very
limited memory resource. When it is possible to explicitly memorize
the sample, the high accuracy of methods based on a a subsample of
close neighbors constitute a simple and accurate solution.

References

[1] Gediminas Adomavicius and Alexander Tuzhilin, ‘Toward the next
generation of recommender systems: A survey of the state-of-the-art
and possible extensions’, IEEE Trans. Knowl. Data Eng., 17(6), 734–
749, (2005).

[2] Hirotugu Akaike, ‘A new look at the statistical model identification’,
IEEE transactions on automatic control, 19(6), 716–723, (1974).

[3] Jérôme Amilhastre, Hélène Fargier, and Pierre Marquis, ‘Consistency
restoration and explanations in dynamic csps application to configura-
tion’, Artificial Intelligence, 135(1-2), 199–234, (2002).

[4] Jean-Marc Astesana, Laurent Cosserat, and Hélène Fargier,
‘Constraint-based vehicle configuration: A case study’, in 22nd
IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2010, pp. 68–75, Arras, France, (2010).

[5] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi, ‘Value elim-
ination: Bayesian inference via backtracking search’, in Proceedings
of the Nineteenth conference on Uncertainty in Artificial Intelligence
(UAI’02), pp. 20–28, (2002).

[6] Christian Bessiere, Hélène Fargier, and Christophe Lecoutre, ‘Global
inverse consistency for interactive constraint satisfaction’, in Principles
and Practice of Constraint Programming - 19th International Confer-
ence, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings,
pp. 159–174, (2013).

[7] David Maxwell Chickering, ‘Learning bayesian networks is np-
complete’, in Proceedings of the Fifth International Workshop on Ar-
tificial Intelligence and Statistics, AISTATS, pp. 121–130, Key West,
Florida, US, (1995).

[8] Gregory F Cooper and Edward Herskovits, ‘A bayesian method for the
induction of probabilistic networks from data’, Machine learning, 9(4),
309–347, (1992).

[9] Rickard Coster, Andreas Gustavsson, Tomas Olsson, Åsa Rudström,
and Asa Rudström, ‘Enhancing web-based configuration with recom-
mendations and cluster-based help’, in In Proceedings of the AH’2002
Workshop on Recommendation and Personalization in eCommerce, pp.
30–40, (2002).

[10] Paul Dagum and Michael Luby, ‘Approximating probabilistic inference
in bayesian belief networks is np-hard’, Artificial Intelligence, 60(1),
141–153, (1993).

[11] Adnan Darwiche, ‘Recursive conditioning’, Artificial Intelligence,
126(1-2), 5–41, (2001).

[12] Cassio Polpo de Campos and Qiang Ji, ‘Properties of bayesian dirich-
let scores to learn bayesian network structures’, in Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010,
Atlanta, Georgia, USA, (2010).

[13] Andreas A. Falkner, Alexander Felfernig, and Albert Haag, ‘Rec-
ommendation technologies for configurable products’, AI Magazine,
32(3), 99–108, (2011).

[14] Nir Friedman, Iftach Nachman, and Dana Peér, ‘Learning bayesian
network structure from massive datasets: the «sparse candidate «algo-
rithm’, in Proceedings of the Fifteenth conference on Uncertainty in
Artificial Intelligence (UAI’99, pp. 206–215. Morgan Kaufmann Pub-
lishers Inc., (1999).

[15] Tarik Hadzic and Henrik Reif Andersen, ‘Interactive reconfiguration in
power supply restoration’, in Principles and Practice of Constraint Pro-
gramming - CP 2005, 11th International Conference, CP 2005, Sitges,
Spain, October 1-5, 2005, Proceedings, pp. 767–771, (2005).

[16] Tarik Hadzic, Andrzej Wasowski, and Henrik Reif Andersen, ‘Tech-
niques for efficient interactive configuration of distribution networks’,
in IJCAI 2007, Proceedings of the 20th International Joint Conference
on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pp.
100–105, (2007).

[17] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard
Friedrich, Recommender Systems - An Introduction, Cambridge Uni-
versity Press, 2010.

[18] Michael Kutschke, ‘Jayes - bayesian network library under eclipse pub-
lic license’, (2013).

[19] Steffen L Lauritzen and David J Spiegelhalter, ‘Local computations
with probabilities on graphical structures and their application to expert
systems’, Journal of the Royal Statistical Society. Series B (Method-
ological), 157–224, (1988).

[20] Judea Pearl, ‘A constraint-propagation approach to probabilistic rea-
soning’, in UAI ’85: Proceedings of the First Annual Conference on
Uncertainty in Artificial Intelligence, Los Angeles, CA, USA, July 10-
12, 1985, pp. 357–370, (1985).

[21] Judea Pearl, Probabilistic reasoning in intelligent systems - networks of
plausible inference, Morgan Kaufmann, 1989.

[22] Recommender Systems Handbook, eds., Francesco Ricci, Lior Rokach,
Bracha Shapira, and Paul B. Kantor, Springer, 2011.

[23] Gideon Schwarz, ‘Estimating the dimension of a model’, The Annals of
Statistics, 6(2), 461–464, (1978).

[24] Marco Scutari, ‘Learning bayesian networks with the bnlearn R pack-
age’, Journal of Statistical Software, 35(3), 1–22, (2010).

[25] Peter Spirtes, Clark N Glymour, and Richard Scheines, Causation, pre-
diction, and search, MIT press, 2000.

[26] Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis, ‘The
max-min hill-climbing bayesian network structure learning algorithm’,
Machine Learning, 65(1), 31–78, (2006).

[27] Thomas Verma and Judea Pearl, ‘Equivalence and synthesis of causal
models’, in Proceedings of the Sixth Annual Conference on Uncertainty
in Artificial Intelligence (UAI ’90:, pp. 255–270, (1990).

[28] Nevin L Zhang and David Poole, ‘A simple approach to bayesian net-
work computations’, in Proceedings of the Tenth Canadian Conference
on Artificial Intelligence, (1994).

16 Recommendation for product configuration: an experimental evaluation.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Recommending and Configuring
Smart Home Installations

Gerhard Leitner1 and Anton Josef Fercher1 and Alexander Felfernig2 and Klaus Isak3

and Seda Polat Erdeniz2 and Arda Akcay2 and Michael Jeran2

Abstract. In this paper the Casa Vecchia smart home planning and
configuration system is presented. This knowledge-based application
was developed with the goal to support inhabitants of private house-
holds in the technical enhancement of their homes. The Casa Vec-
chia project, in the context of which the presented system was de-
veloped, was a longitudinal field study in the research area of active
and assisted living (AAL). In a four years period 20 households of
elderly people in the rural area of Carinthia, Austria were equipped
with smart home technology and the inhabitants’ experiences with
the technology were researched. Results from the project with regard
to needs and requirements for household smartness motivated the de-
velopment of the system presented in this paper. The system is con-
sisting of a recommender component which demonstrates the possi-
bilities and benefits of smart home technology on a general level, and
a configurator component which is able to deal with specific charac-
teristics of living environments allowing for an individual and custom
design of smart home systems.

1 Introduction

Fast technological progress has an impact on all areas of life, also
in the residential sector and the average dweller is overwhelmed by
the possibilities to enhance a home with smart technology, these are
systems or components which provide an enhanced level of function-
ality. They can be, for example, remotely controlled, programmed,
combined with other components and integrated into other systems.
Today a multitude of smart devices for the home is available, but as
[19] points out, a decision is not easier by default, when the num-
ber of alternatives to choose from is high. Considering the potential
dangers, such as having to deal with a patchwork of incompatible
subsystems, which [14] labeled the remote control anarchy, it is not
surprising that the spread of smart technologies in the private res-
idential sector stays behind expectations up to now. In the profes-
sional building sector, smart technology has been more successful.
This is probably related to a crucial difference between the public
and the private building sector. In the public and industrial building
sector, initial installations, changes and enhancements of smart com-
ponents are typically neither decided and planned nor installed by
the users themselves. The basic infrastructures are in the responsi-
bility of professionals, and maintained by qualified personnel, tak-
ing into consideration suitability, compatibility issues, etc. Decisions

1 Alpen-Adria Universität Klagenfurt, Austria, email: {gerhard.leitner, an-
tonjosef.fercher}@aau.at

2 Graz University of Technology, Austria, email: {alexander.felfernig, spo-
later, aakcay, mjeran}@ist.tugraz.at

3 SelectionArts, Austria, email: klaus.isak@selectionarts.com

about technical enhancements of private homes are typically made by
the inhabitants or they are at least involved in them. But in general,
this group of people is characterized by a low level of expertise and
knowledge with regard to state-of-the-art technology and by a limited
willingness to invest efforts, both contributing to bounded rationality
[21]. This problem domain therefore constitutes a promising appli-
cation area for recommendation and configuration technologies [6].

In regard to the problem raised, home owners or tenants today are
in a difficult situation. If they are interested in the possibilities of
smart technology, they have to collect information which typically
is distributed over online and offline resources. To be able to under-
stand if such technology is applicable to their own needs and living
circumstances, the existing resources are not appropriate. They are,
for example, based on simulations of possible functions and features
demonstrated by generic depictions of living environments. It is dif-
ficult for technical lay persons to map the presented features to their
own needs. To get more precise and serious information, experts have
to be consulted. The related efforts could involve inestimable costs,
either in terms of financial investments, expenditure of time or both.
An appropriate software tool could, on the one hand, support users
in learning about the potential benefits and costs of smart home tech-
nology. This could be based on, for instance, general examples of
what the technology is capable of and in this way support preference
construction [20]. This is partly covered by existing sources. What
is missing is, on the other hand, a tool that is able to demonstrate
benefits and possibilities of smart technology to a user in an individ-
ualized and customized manner.
To be able to cover both aspects, an appropriate tool has to con-
sist of two parts, whereas the general benefits of smart technology
can be conveyed by recommender technology. To illustrate possibil-
ities for particular living environments, configuration technologies
can be used, which are able to deal with, for example, custom prod-
uct features and connectivity issues. The approach presented in this
paper is emphasising the necessity of a combined approach to sup-
port users in questions and problems related to smart technology for
their homes. It is an outcome of Casa Vecchia [12], a research project
performed in the domain of active and assisted living (AAL). Casa
Vecchia constituted a longitudinal field study focusing on the possi-
bilities of smart home technology in a specific field of application.
Within the project it was investigated if and how smart technology
can support elderly people in rural areas to manage their lives more
independently and with an enhanced level of comfort. Around twenty
households in the federal state of Carinthia, Austria, inhabited by el-
derly people in different family constellations were part of the project
for the period of four years. The households were equipped with sets
of smart components, the participants were observed in using them

Gerhard Leitner, Alexander Felfernig, Seda Polat Erdeniz, Arda Akcay, Anthon Fercher, Klaus Isak and Michael Jeran. 17

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

and also frequently interviewed regarding their experiences. In order
to equip the participants’ households with appropriate smart technol-
ogy, contextual inquiries [2] were conducted and numerous planning
and design meetings were carried out. The involved efforts, the plan-
ning, design and installation of the customized smart systems could
only be realized in a small number of locations. This led to the idea to
automate and computerize the process to have the possibility to ad-
dress broader shares of prospective users in the future. The result was
an initial version of the Casa Vecchia home planning and configura-
tion system developed with the goal to support the systematic plan-
ning of a smart home system for private households, considering the
individual requirements of inhabitants as well as the infrastructural
characteristics and constraints of their respective living environment.

The remainder of this paper is organized as follows: In Section 2
we discuss work related to the application of intelligent systems in
the context of smart homes. In Section 3.1 we introduce basic func-
tionalities of the recommender part of the system and also present
examples of the corresponding user interface. Thereafter, in Section
3.2 we provide a detailed insight into our smart home configuration
tool. With Section 4 the paper is concluded.

2 Related Works on Intelligent Systems in Smart
Homes

Decision support systems or recommendation technologies are al-
ready used in a variety of contexts. Different approaches are the ba-
sis of concepts such as collaborative filtering [18], content-based fil-
tering [15] and knowledge-based recommender systems [4]. How-
ever, only a few research works address recommendation technol-
ogy in the context of smart homes, for example [10] propose the us-
age of collaborative filtering in (professional) building automation.
Knowledge-based approaches, cf. e.g. [8], have been used to support
users in smart homes by recommending actions based on historical
activity data, [13] illustrate the possibilities of recommender tech-
nologies to manage digital contents and services. The applicability of
a specific type of recommender technology, however, depends on the
problem to be solved. A hybrid approach to address this aspect was
proposed by [11], which is based on the combination of different rec-
ommendation technologies that can be individually applied depend-
ing on the problem at hand. For example, advises for saving energy
can be given on the basis of collaborative filtering whereas critical
incidents (such as the detection of smoke or fire) are resolved with
knowledge-based methods. Summarizing, related work has a strong
focus on the application of recommendation technology as enhance-
ment of smart home systems that are already available to their users.
The problem domain addressed in this paper is the phase of planning
and designing such a system.

Collaborative and content-based filtering approaches are not ap-
plicable to this domain due to the fact that the required rating data
are not available in an appropriate granularity. Typically, people do
not install smart home equipment very frequently. For this reason
a knowledge-based approach was chosen which calculates recom-
mendations on the basis of a predefined set of recommendation rules
(constraints) rather than on the basis of rating information. One of
the challenges is the variety of smart home systems and components,
which has to be considered in the development of such knowledge
base. This challenge could be addressed by the identification of com-
monalities of smart systems and components available on the market,
for example, in regard to the needs the systems are covering. A ba-
sic taxonomy was created by forming categories on the basis of such
needs. Related work to build upon has been done, for example, by

[16]. The classes of needs the authors differentiate are entertainment,
surveillance and access control, energy management, home automa-
tion, assistive computing, and health care. In the work of [9] comfort,
autonomy enhancement, and emergency assistance are differentiated
and [1] distinguish between the quality of living, reducing costs, or
providing services for health care. Based on the related work the fol-
lowing categories of needs were seen to be relevant in regard to smart
technology:

• Controllability: Remote control, combined switching of devices
to support certain scenarios, e.g. watching TV (close blinds, dim
lights, switch on TV).

• Cost saving: Reduction of energy consumption by identifying de-
vices currently not in use. Automatic control of devices based on
time parameters or sensor data (e.g., no activity recognized for 10
minutes→ switch off lights in the respective room).

• Health support: Controlling devices which are hard to reach,
specifically of interest for people with movement restrictions. Re-
mote health status monitoring by the observation and analysis of
activity data.

• Improving Safety/Security: Access control by auto-lock mech-
anisms. Automatic switch-off of potentially dangerous devices
(e.g., electric stove, iron). Alerting functions when inhabitants are
not at home but activity is recognized.

The second dimension used for forming categories is based on the
characteristics of components smart home systems are consisting of.
Although providing a high variety of functions and being based on
different technical features (e.g. connection via radio, bus or power
line) and form factors, the components can be condensed into basic
categories based on their features. The categories presented in the
following are based on a scheme proposed by [7]:

• Sensors: Measuring data or status in the environment they are in-
stalled in, e.g. motion sensors.

• Actuators: Triggering events on the environment they are installed
in, e.g. remote controls.

• Input Devices: Providing the possibility to interact with the system
on a higher level, e.g. desktop computers, tablets, smart phones.

• Output Devices: Enabling the observation of the system’s status
and the notification of users, for example, embedded computers
or environmental displays.

• Gateway Components: Building a central point of communication
with and between other devices and offering the possibility of pa-
rameterization, configuration, and programming.

The features of the two categorization schemes are included in
the knowledge base [4] and cross-linked. For example, if a user is
interested in enhancing security (need category: Security), this can
be managed by observing corresponding devices.

3 Overview of the Smart Home Installation System

The Casa Vecchia smart home planning and design system consists
of a recommender and a configurator part. The user is guided through
the problem domain, whereas the first (recommender) part is fo-
cused on informing the user about the general possibilities of smart
home technology and the elicitation of preferences. Based on the pre-
selections made in these initial steps, the configurator enables users
to customize a smart home system for their individual living circum-
stances and needs.

2

18 Recommending and Configuring Smart Home Installations.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

3.1 Casa Vecchia Recommender
After a welcome screen explaining the goal and introducing the up-
coming dialogue, the users have to select smart features which are
of highest interest for them (see Figure 1). The aspects the recom-
mender part of the system deals with are related to the categories
described above and consisting of the following elements:

• Major interests/goals: Security, energy, control
• Technical Requirements: Stability, emission, ease of installation,

installation costs, maintenance efforts.
• Building characteristics: Apartment or detached family house,

one or more floors.
• Scope of planned efforts: Initial installation in a new building,

comprehensive renovation, partial modernization, do-it-yourself
enhancement.

The recommender takes into account the elements, rules, and con-
straints in the knowledge base and assures that only information ap-
propriate to the context is presented. The initial dialogue is - depend-
ing on the selections made in the previous steps - consisting of 5 steps
on average. The primary goal of this stage is to point out potentials
of smart home technology in general, to elicit needs and to support
the construction of preferences in the sense of [20].

The selections made by the users influence the procedures in the
back end of the system and the components recommended at the end
of the process. For example, if the user states that his living environ-
ment only has one floor, stair elements are not shown in the configu-
ration phase.

In this phase the selection of criteria is not limited, potential con-
flicts are pointed out but not corrected. This is because the user can
always change settings during the dialogue. If conflicts persist until
the end of the dialogue, they are explained and resolved.

3.2 Casa Vecchia Configurator
After having completed the recommendation part the user is guided
to the configuration part of the system. The transition is visually
emphasized by a change from a text-based to a graphical interface,
the latter enabling the users to sketch the floor plan of their living
environments with drag&drop (see Figure 2). The users can use
simplified design elements to sketch a variety of rectangular floor
plans. In this way rooms, hallways and stairs can be sketched and
doors or windows can be positioned. After having finished sketching
the floor plan with the basic elements and having labeled the rooms,
the next step is to position devices that are currently present in
the user’s home (3. This constitutes an important advantage of our
approach. It is not necessary for the user to identify whether a smart
component is available or appropriate for his or her purposes, but the
configurator automatically identifies appropriate smart components
on the basis of the user’s preferences (energy saving, safety, etc.), the
floor plan and the devices the user has positioned. This functionality
is based on rules implemented in the knowledge base. Examples for
such rules are:

On Building Level:

Electric smog is an issue (=yes) ⇒
smart-home-system-type (=wired)

Low price relevant (=yes) ⇒ smart-home-system-type

(=wireless)

if Electric smog is an issue (= yes) and Low price

relevant (= yes) =⇒ conflict

Figure 1. Example screens of the recommender part of the system,
illustrating the criteria that can be selected by the user. The pop-up depicted

in the third screen shows an example of a potential conflict.

3

Gerhard Leitner, Alexander Felfernig, Seda Polat Erdeniz, Arda Akcay, Anthon Fercher, Klaus Isak and Michael Jeran. 19

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Figure 2. Example screens of the configurator interface. In the top part of
the figure, the first screen of a user tutorial is shown. In the tutorial the
essential steps of the configurator are demonstrated. The second screen

shows a help pop-up which can be accessed via the question mark symbol
positioned next to each element. Screens three and four on the bottom show

different stages of floor plan design.

On Room Level (e.g. Kitchen):

Goal.Security (=yes) and Electric stove (=yes) ⇒
stove-sensor (=yes) and

stove-actuator (=yes)and kitchen-smoke-detector (=yes)

Goal.Support (=yes) and Fridge (=yes) ⇒
fridge-door-contact (=yes)

Goal.Comfort (=yes) and Automated Lights (=yes) ⇒
lights-actuator (=yes) and motion-sensor (=yes)

In the phase of configuration potential conflicts are identified and
advises to resolve them [5] are given. As an example, the require-
ment of high stability leads to the recommendation of a wired system
whereas requiring a low price would result in the recommendation of
a wireless system. In this case the user is informed about the con-
flict as well as possibilities to resolve it. Other possible conflicts /
constraints that can occur are, for example:

Conflict 1: Remote control AND saving energy
Remote control requires the system running 24/7 which contradicts
the need of energy saving. This can be resolved in different ways,
either totally (remote control or energy saving) or partly (permanent
operation of specific components only, e.g. heating).

Conflict 2: No electric smog AND low price
Low emission can only be ensured with a wired system. This is more
expensive than the wireless alternative and causes higher installation
costs. This could be resolved by either accepting a higher emission
or higher costs.

Conflict 3: Remote support AND privacy/security concerns
Support from outside can be provided only if the system is allowed
to distribute data. If privacy is important, this form of support might
be problematic. The conflict can be resolved, for example, by em-
phasizing that transferred data is encrypted and only available to a
predefined group of persons.

4 Conclusions and Future Work

In this paper, the Casa Vecchia smart home planning and configura-
tion system was presented which constitutes a combination of rec-
ommendation and configuration technologies. The target user group
is private home owners or tenants who could, due to missing domain
knowledge, benefit from a system supporting profound decisions re-
lated to the technological enhancement of the home. Such a system
has to provide both, an adequate knowledge base which is able to
match user needs to the functional range of smart home components
and the possibility of customizing smartness to an individual living
environment. The prototype system presented in this paper was ini-
tially developed by [17] and is implemented in HTML5 and other
state-of-the-art web technologies and can therefore be used on con-
ventional computers as well as on tablets and smart phones.

Another difference to first implementations is that the new version
is rather based on graphical interaction than on textual dialogues. An
outcome from the evaluations of the first prototype has been, that
questions regarding the numbers and positions of devices present in
a household, such as TVs, are more difficult to answer in a textual
manner than by positioning them on a sketch of a floor plan. The
graphical representation enabling drag & drop significantly increases
the acceptance, usability, and convenience of the system.

The presented recommender/configurator combination has many
advantages. Beside end users, other stakeholders could also benefit
from such an approach, for example, service providers. The results
generated by the system represent a structured and more precise de-
scription of user needs which could lead to lower costs for the prepa-

4

20 Recommending and Configuring Smart Home Installations.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Figure 3. Example screens of the drag & drop interface of the configurator
in the top part of the figure. On the top a final floor plan sketch is shown
which contains rooms, a hallway, and stairs. By double-clicking on the
respective room shape (in this case the ”l-shaped” room located bottom

right) a detail view of the room is opened which enables the positioning of
devices. The user can choose different electric devices as well as installation
components (e.g. faucets) and furniture and drag them on the room shape.

When the user has finished the selection, he gets back to the floor plan
overview and the devices just positioned in the respective room are shown as
miniature symbols. The bottom figure shows the result page with the list of
smart components the system finally recommends, with the possibility to

edit and change in case of existing conflicts.

ration and adaption of offers, more cost efficient installations due to
clearer requirements (in the form of a floorplan), and a reduction of
errors in the planning as well as in the installation phase. On the side
of the customer, easier preference elicitation and a better understand-
ing of the system and its components can be expected. A detailed em-
pirical evaluation of the presented smart home planning environment
is the central focus of future work.

REFERENCES
[1] A. Aztiria, A. Izaguirre, R. Basagoiti, J. Augusto, D. Cook. Automatic

Modeling of Frequent User Behaviours. In: Intelligent Environments.
In: Proc. of IE, pp 7–12, 2010.

[2] H. Beyer and K. Holtzblatt. Contextual Design. Interactions, 6(1), pp.
32–42, 1999.

[3] R. Burke. Hybrid web recommender systems,In: The adaptive web, pp
377–408. 2007.

[4] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. An Integrated
Environment for the Development of Knowledge-based Recommender
Applications, Int. Journal of Electronic Commerce, 11(2), pp 11–34,
2006.

[5] A. Felfernig, M. Schubert, C. Zehentner. An Efficient Diagnosis Algo-
rithm for Inconsistent Constraint Sets, Artificial Intelligence for Engi-
neering Design, Analysis, and Manufacturing (AIEDAM), 26(1):53-62,
2012.

[6] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen. Knowledge-based
Configuration - From Research to Business Cases, Elsevier/Morgan
Kaufmann, 1st ed., 2014.

[7] M. Hitz, G. Leitner, H. Groß(Hsg.): Das Haus als Gegenstand inter-
disziplinärer Forschung. Profil Verlag, 2012.

[8] N. Kushwaha, M. Kim, D. Y. Kim, and W.-D. Cho. An intelligent agent
for ubiquitous computing environments: Smart home ut-agent. In: Proc.
of SEUS, pp 157–159, 2004.

[9] T. Kleinberger, M. Becker, E. Ras, A. Holzinger, P. Müller. Ambient
Intelligence in Assisted Living: Enable Elderly People to Handle Future
Interfaces, LNCS 4555, pp 103-112, 2007.

[10] M. LeMay, J. J. Haas, and C. A. Gunter, Collaborative Recommender
Systems for Building Automation, In: System Sciences, 2009. HICSS
09., pp 1–10, 2009.

[11] G. Leitner, F. Ferrara, A. Felfernig, C. Tasso. Decision Support in the
Smart Home. in: Decisions@RecSys’11, Chicago, IL, 2011.

[12] G. Leitner, A. Felfernig, A. Fercher, M. Hitz. Disseminating Ambient
Assisted Living in the Rural Area, Sensors Journal, 14(8):13496-13531,
2014.

[13] S. Mennicken, J. Vermeulen, and E.M. Huang, From Todays Aug-
mented Houses to Tomorrows Smart Homes: New Directions for Home
Automation Research, Proc. 2014 ACM Intl Joint Conf. Pervasive and
Ubiquitous Computing, 2014, pp. 105115.

[14] J. Nielsen. Remote control anarchy. https://
www.nngroup.com/articles/remote-control-anarchy/

[15] M. J. Pazzani, D. Billsus. Chapter Content-based recommendation sys-
tems, In: The adaptive web. pp 325–341, 2007.

[16] T. Perumal, A.R. Ramli, C. Y. Leong, S. Mansor, and K. Samsudin.
Interoperability for Smart Home Environment Using Web Services, Int.
Journal of Smart Home, vol. 2, no. 4, Oct., pp 1–16, 2008.

[17] M.Pum. Configurator-Umgebung fr die Unterstützung der Erstellung
individualisierter Smarthome Systeme. Diploma Thesis, Alpen-Adria
Universität Klagenfurt.

[18] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. Chapter Col-
laborative Filtering recommender systems, In: The adaptive web, pp
291–324. 2007.

[19] B. Schwartz. The Paradox of Choice: Why More Is Less. Ecco, 2004.
[20] P. Slovic. The Construction of Preference. American Psychologist,

50(5) pp 364–371. 1995.
[21] T. Wittmann, R. Morrison, J. Richter, T. Bruckner: A Bounded Ratio-

nality Model of Private Energy Investment Decisions, in: Proc. of the
29th IAEE, Potsdam, 2006.

5

Gerhard Leitner, Alexander Felfernig, Seda Polat Erdeniz, Arda Akcay, Anthon Fercher, Klaus Isak and Michael Jeran. 21

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

22 Recommending and Configuring Smart Home Installations.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Concurrent configuration of product and process :
moving towards ETO and dealing with uncertainties.

A. Sylla1,2, E. Vareilles1, M.Aldanondo1, T. Coudert2, L. Geneste2, P. Pitiot1,3

 Abstract - Product configuration is a well-known
technique that allows safe and reliable customization of
products in assembly to order (ATO) or make to order (MTO)
industrial situations. When dealing with engineer to order
(ETO) situations, the required design activities cannot be
handled by conventional configuration techniques. The first
goal of this paper is to show how constraint based
configuration techniques can be extended towards ETO
situations for both product or system and their realization
process. As ETO situations requires some design activity, the
confidence in the configured item or offer proposed to the
customer is lower compared with ATO-MTO situations. The
second goal of this paper is to propose a set of indicators that
characterize the confidence of the supplier in the configured
system and process and therefore in the offer provided to the
customer.

Keywords – Configuration, ATO-MTO-ETO, Constraint
satisfaction problem, Confidence, TRL, SRL

1. INTRODUCTION

The proposed paper concerns the assistance of a supplier
in a customer/supplier relationship. More accurately, it aims
at aiding the definition of a commercial offer for both system
(product, system or service) and realization process. The
presented contribution belongs to the stream of works that
deals with the set-up of knowledge-based tools aiding the
system-process definition (that can include some design
activities) and supporting the quotation of performance, cost
and cycle time [1].

In this offer definition context, the system-process
definition can vary from a very routine activity up to a highly
creative and so far much less routine one [2]. For example let
us consider a computer system or a truck, the definition of an
offer consists mainly in selecting some options and
components in a catalogue, checking their consistency and
computing a cost and a standard delivery time. At the
opposite, the definition of an offer for a crane or for a specific
machine-tool can require significant engineering or creative
design activities for both system solution and realization

process. Given these elements, the customer/supplier
relationship can be characterized, according to [3], as:
 very routine assembly-to-order (ATO) or make-to-order

(MTO) offer definition,
 much less routine engineer-to-order (ETO) offer definition.

For 20 years now, configuration software have been

recognized as very efficient tools for aiding suppliers in their
offer definition activity in ATO-MTO situations [4]. When
dealing with ETO, it is less the case because the design
activity is more consequent and thus Computer Aided Design
software must be used. It is important to note that ATO-MTO
or ETO is not a binary issue. A system composed of three
sub-systems can have two of them in ATO-MTO and one of
them in ETO. For instance, a crane can have its engines in
ATO-MTO while its structure is in ETO.

In an ATO-MTO situation, all design problems for both
system solution and realization process have already been
studied and solved in advance before launching the activity of
the offer definition. Therefore, the level of uncertainty in the
offer characteristics is rather low and the supplier feels very
confident in the fact that the defined offer matches the
customer’s expectations (including price and due date). When
the situation begins to move from ATO-MTO towards ETO,
design or engineering activities are more significant. Two
kinds of approaches can be seen in companies for the offer
definition activity.
 The first one relies on a detailed design of offers for both

system solutions and realization processes. Thus
uncertainties are low and supplier’s confidence is high but
this approach is time and resources consuming.

 On the opposite, the second one tends to just clarify the
main ideas or concepts about offers avoiding detailed
design, but leaving a great deal of uncertainty and a scant
confidence.

Given these elements, the goal of this paper is to propose

a theoretical approach and a knowledge-based tool aiding
suppliers to define promising offers:
 for “rather” routine design situation in order to be able to

collect knowledge,
 for situation “between” ATO-MTO and ETO, when more

than 50% of system sub-assemblies and process tasks are
entirely defined,

 that avoids the entire detailed design of offers by saving
time and resources’ commitment,

 and strengthens the confidence in the main ideas or
concepts about system-process offers.

1 University Toulouse – Mines Albi, France, emails: first-
name.family-name@mines-albi.fr

2 University Toulouse – ENI Tarbes France, emails: first-
name.family-name@enit.fr first-

3 3IL – CCI Aveyron, France, , email : p.pitiot@cci-aveyron.fr

Sylla Abdourahim, Élise Vareilles, Michel Aldanondo, Thierry Coudert, Laurent Geneste and Paul Pitiot. 23

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Our main and original contribution is to add a new
characteristic or indicator to system-process offers that can
quantify a kind of “confidence level” (in a similar sense as
the one proposed by [5]). This means that each sub-assembly,
each realization process activity and resulting system-process
is characterized with its own “confidence level”. This new
indicator allows the supplier to compare competing solutions
on: performance, cost, lead time but also, and we have never
seen that in the scientific literature, confidence. The suppliers
feel now more self-confident to decide about the offer to
propose to the customer whatever the stage of its
development.

The remaining of the paper is organized in three sections.
In a second section, the main ideas about concurrent
configuration of system and process for ATO-MTO and ETO
situations are recalled and the support provided by the
Constraint Satisfaction Problem (CSP) framework is
explained. The third section is dedicated to the proposition of
the “confidence level” indicator with various aggregation
mechanisms for both system solutions and realization
processes. A crane example runs all along the paper.

2. CONFIGURATION IN ATO-MTO AND ETO

SITUATIONS

In a first sub section, we draw the parallel between the
product configuration [4] and systems configuration and we
extend ATO-MTO situations towards ETO situation.

2.1 – Configuration in ATO-MTO: Products to Systems

When dealing with concurrent configuration of product
and process problem, [6] or [7] have shown that the product
can be considered as a set of components and its production
process as a set of production operations (dotted lines in Fig
1). According to the customer’s expectations, the
configuration of a product is achieved either by selecting
components in product families (as an engine in a catalogue)
or choosing values of descriptive attributes (power and
weight of an engine) represented with dotted lines in left part
in Fig 1. Of course all combinations of components and
attribute values are not allowed (a low power engine is
incompatible with a high crane). Thus, as explained by many
authors [8] or [9] the product configuration problem can be
considered as a discrete constraint satisfaction problem
(CSP), where a variable is a product family or a descriptive
attribute and constraints (solid line in Fig 1) specify
acceptable or forbidden combinations of components and
attribute values. Some kind of product performance indicators
can characterize the product, thanks to some mixed
constraints (symbolic and numerical domains) that link the
most important product characters (for example : crane
performance function of crane height and acceptable load).

For process configuration, a similar approach is proposed
by [10] or [11]. According to the configured product
characteristics (selected components and attributes values),
the resources for each production operation can be selected in
families of resources (small assembly-table for a small crane
in a list of assembly tables), and in some case a quantity of

resource can be specified too (2 operators for a large crane, 1
for a small one). Of course, selected components and values
(for products) and selected resources and quantities (for
operations) impact operation durations and therefore the
production process delivery time or cycle time of the
configured product. As for product, process configuration can
be considered as a CSP, where each operation gathers
variables corresponding to resource families, resource
quantities and operation duration. Constraints (solid line in
Fig 1) restrict possible associations.

For both product and process, all variables can be linked

to cost indicators (one for product and one for process). With
the previous problem descriptions, [11] suggested (i) to
gather these two problems into a single concurrent problem
and (ii) to consider this concurrent problem as a CSP.
Considering this problem as a CSP, allows the use of
propagation or constraint filtering mechanisms as an aiding
tool. Each time a customer’s expectation is inputted (mainly
in the product and less in the process), constraints propagate
this decision and prune variables values for all problem
variables. For a detailed presentation with an easy to
understand example, we deeply suggest to consult [11].

This kind of problem modeling is the ground basis of
configuration problems. All commercial websites and
conventional configuration software that run interactive
configuration or customization processes rely on such
problem models. The key point is that all possible solutions
have been studied in advance, the configuration process is
infinitely routine and there is absolutely no design or creative
task. Thus the supplier is fully confident in his/her ability to
achieve his/her commitments, with no unnecessary stress.

Moving from products to systems is not a big deal. We

assume for systems: (i) a system is a set of sub-systems (ii) a
sub-system is represented by a set of descriptive attributes
and one family of technical solutions (equivalent to a
component family). For processes, the model is absolutely the
same. Same indicators, performance, cycle time and cost are
kept. From now, we will speak only of configuration of
systems (and not only products) and processes.

24 Concurrent configuration of product and process : moving towards ETO and dealing with uncertainties.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

2.2 – Configuration: from ATO-MTO to ETO

Our goal is to update the previous problem and solution in
order to handle ETO system and process configuration.
Moving from ATO-MTO to ETO means that some
engineering activities either to design new sub-systems or to
finalize the design are necessary in order to satisfy the
customer’s requirements.

For the system side, moving from ATO-MTO to ETO
means that the system has never been designed completely
because: (1) at least, one of its sub-systems has to be
designed (Value-new) in order to answer to the customer’s
requirements, leading to a new system or (2) the system is
composed of a set of existing sub-systems which have never
been assembled together, leading to a new system. Let us
focus only on the first point, as the second one works exactly
the same but for the system level.

Let go back to the crane example. In this example, only

the sub-system jib moves from ATO-MTO to ETO. Assume
that until now only four jib technical solutions (Jts-1, Jts-2,
Jts-3, Jts-4) corresponding with two lengths (4 and 8 meters)
and two load capacities (low-load, high-load) have been
already designed, manufactured, integrated in a crane and
supplied to a customer (upper part of Fig 2). If the supplier
wants to satisfy a customer that requires a high-load crane
with a jib length different from 4 and 8, the configuration
model should be updated with a new possible value for the
descriptive attributes jib-length (Value-new) and a new
technical solution (Jts-new) in the family of jib technical
solutions (lower part of Fig 2). In the two models in Fig 2, the
solid lines represent allowed combinations of descriptive
attributes and technical solutions.

For the realization process side, moving from ATO-MTO

to ETO means that some engineering activities have to be
carried out in order to design or finalize the design of the
system therefore: (1) new engineering activities can be added
to the realization process and tuned or (2) the process
durations (design and production activities) can be updated
(Value-new) to take into account the engineering activity. Let
us consider the crane example. On the left side of Fig 3, a
conventional ATO-MTO process model gathering two

processing tasks (noted Sourcing and Production). Each task
is characterized by a resource family and duration, resource
quantities are unary. A very simple constraint modulates
duration according to the selected resource. On the right side
of Fig. 3, an ETO model with a new engineering task (noted
Engin.). The existence of this task is triggered according to
the selection of a new technical either for a system or a sub-
system. Any operation can have: (i) its duration, (ii) its
resource, (iii) its resource quantity, updated by the user
according to his/her knowledge about the creative level of the
new technical solution. Fig 4 just show duration possible
update (with “value-new”), f or simplicity, constraints (i)
between system and process (ii) computing process cost and
(iii) computing process lead time are not shown.

2.3 – Conclusion

We have shown how the problem of concurrent
configuration of systems and processes can be extended from
ATO-MTO towards ETO situations with respect to the
constraint satisfaction framework. This extension leads to the
generic model of Fig 4 that shows the different kinds of
variables and their valuation domains. This allows mixing
ATO-MTO and ETO sub-systems with relevant production
process in a conventional interactive constraint based aiding
tool. Thus, this can be used to assist the offer definition in a
customer/supplier relationship. Next section deals with
confidence issues of offer definitions in ETO situations.

Sylla Abdourahim, Élise Vareilles, Michel Aldanondo, Thierry Coudert, Laurent Geneste and Paul Pitiot. 25

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

3. OVERALL CONFIDENCE DEFINITION

The third section is dedicated to the definition of the offer
overall confidence indicator. We propose that this new and
original indicator relies on two pair of specific indicators, one
pair characterizing the system solution, and the other one, the
realization process. Each pair of indicators is composed of
one objective indicator and its pre-defined scale whereas the
second one is much more subjective and supplier-dependent.
First, objective indicators are presented for the system and
process sides, then, are the subjective ones. This section
finishes with the first aggregation mechanisms in order to
compute the offer overall confidence, and how this
information can help supplier in decision making.

3.1 – Objective Indicators for Solution and Process

Objective indicators give reliable unbiased information on
system solutions and realization processes and characterize
the readiness of technology used for the system solution and
the risks handling for the realization process. We propose to
add to each sub-system of the system solution and each
activity of the realization process, these new objective
indicators.

 Let’s start with the system side. The offer overall
confidence relies at least partially on the readiness of
technology used in the system solution. Indeed, the
technology readiness level or TRL indicates how much a
system is ready to be deployed. TRL is a systematic
metric/measurement developed by [12] (at US NASA) for the
measure of the maturity of technologies. TRL is based on a
scale from 1 to 9 with 9 being the most mature, as shown in
Table 1. In our proposal, for each sub-system, we associate to
each technical solution (of its family of technical solutions) a
TRL. Therefore, selecting a technical solution for a sub-
system leads to the identification of the correct TRL.

Table 1. TRL Scale

Level	 TRL	

9	 Actual system proven through successful mission operations

8	 Actual system completed qualified through test demonstration

7	 System/sub prototype demonstration in a relevant environment

6	 System/sub model demonstration in a relevant environment

5	 Component and/or breadboard validation in relevant
environment

4	 Component or breadboard validation in laboratory environment

3	 Analytical and experimental critical function and/or
characteristic proof of concept

2	 Technology concept and/or application formulated

1	 Basic principles observed and reported

Let’s now move to the process side. The offer overall

confidence relies also on the risks taken by the supplier in
case of success, meaning that he/she has won the tender.
Indeed, every business is exposed to risks all the time and
such risks can directly affect day-to-day operations, decrease
revenue or increase expenses. Their impact may be serious
enough for the business to fail. As far as we know, there is no

way to characterize the risk handling level for each activity of
a realization process. Therefore, based on the CCMI
(Software Engineering Institute) and TRL, we propose a first
version of ARL, for Activity Risks Level, based on a nine-
level scale. This nine-level scale is dedicated to the main risk
of an activity and relies on (i) risk probability of occurrence
(high or low), (ii) risk impacts (serious or marginal) and (iii)
risk treatments (existence of action plans or not). Table 2
presents the nine levels of ARL. In our proposal, for each
activity, we associate an ARL. Depending on the model and
knowledge, ARL can be modified by the selection of
adequate resources and valuation of their quantity.

Table 2. ARL Scale

Level ARL
9	 Risk with low probability, marginal impact and treatments

8 Risk with high probability, marginal impact and treatments

7 Risk with low probability, serious impact and treatments

6 Risk with high probability, serious impact and treatments

5 Risk with low probability, marginal impact and no treatment

4 Risk with high probability, marginal impact and no treatment

3 Risk with low probability, serious impact and no treatment

2	 Risk with high probability, serious impact and no treatment

1 No risks management

3.2 – Subjective Indicators for Solution and Process

Subjective indicators reflect more the supplier feelings
about the offer and rely on his/her skill, expertise and point of
view on the whole situation as well as his/her risk aversion.
Indeed, the fact that all the technologies selected for the
system solution are ready to be deployed does not guaranty
that the system solution matches customer expectations.
Moreover, certainly, not all sub-systems need a maximum
readiness level as a prerequisite for an application and
inversely, a given readiness level is not sufficient for
selecting a technical solution. Following the same reasoning
for the process, the fact that all the activities of the realization
process have their main risk at level 9 with low probability of
occurrence, marginal impact and plenty of treatments does
not guaranty that the realization process will run correctly,
without any hazard and any delay or additional cost. We
therefore propose a first version of SFL, for Supplier Feeling
Level, with a three-level scale. This scale corresponds to the
feeling (bad, neutral or good) of the supplier about the offer.
Table 3 presents the three levels of SFL. In our proposal, we
associate an SFL to each sub-system of the system solution
and each activity of the realization process.

Table 3. SFL Scale

Level	 SFL
3	 Good: customer’s requirements seem achievable with no difficulty

2	 Neutral: difficulty to make a decision on the requirements
achievement

1	 Bad: customer’s requirements seem unachievable

26 Concurrent configuration of product and process : moving towards ETO and dealing with uncertainties.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

3.3 – Aggregation Mechanisms

The offer overall confidence relies at the same time on
TRL and SFL of the system side and ARL and SFL of the
process side. Some aggregation mechanisms are needed at
each level of the bill-of-material for the system solution, for
the complete set of activity for the realization process and for
the overall offer.

Let’s start with the system side. When a system is
composed of several sub-systems, its readiness level (SRL)
depends on the TRL of each of it sub-systems and of the
readiness of their integration or IRL. Several SRL calculation
methods have been proposed in the literature and the most
used is the one proposed in [13] or [14] and it is the
calculation method adopted in this paper. This method leads
to a five-level scale for SRL, as shown in table 4. We propose
to use the same aggregation method for the objective
indicators SFL of the system by taking into account the SFL
of each sub-system as well as the SFL of their integration.

Table 4. SRL Scale

Level	 SRL	

9	 Execute a support program that meets operational support
performance requirements [0.9-1]

8	 Achieve operational capability that satisfies mission needs [0.8-

0.89]

7	 Develop a system or increment of capability; reduce integration
and manufacturing risk [0.5-0.79]

6	 Reduce technology risks and determine appropriate set of
technologies into a full system [0.2-0.79]

5	 Refine initial concept; develop system/technology development

strategy [0.1-0.19]

Let’s continue with the process side. After determining

the ARL of each activity of the realization process, the risk
level of the whole realization process or PRL has to be
computed. It is important to recall here that the phenomenon
of integration as described in a system does not exist in the
realization process as there is not yet any decomposition of
activity into sub-activities. As a first stage, we propose to use
an average method based on ARL to compute the PRL as
well as its subjective indicators SFL of the activities.

Let’s finish with the offer overall confidence. The offer
overall confidence relies on both system solution and
realization process and therefore should weight them equally.
Therefore, as a first stage, we propose a two-step approach to
compute the offer overall confidence. First, the objective
indicators SRL and ARL are modulated by the subjective
ones SFL: a good feeling increases the indicator, a bad
feeling decreases it and a neutral one has no impact. The
supplier has to specify how much it goes up and down.
Second, the offer overall confidence is computed as the
average of the modulated indicators.

3.4 – Offer Overall Confidence and Decision Making

When an offer is defined, the proposed original indicators
(TRL, ARL, SFL) together with the proposed aggregation
mechanisms allow a company to quantify a confidence that

characterizes the offer. This new indicator associated with the
traditional ones (cost, lead time and performance) enable the
supplier to select the most promising offers with less stress
and a better confidence.

The complete offer definition process is formalized as a
constraints satisfaction problem. The use of filtering
algorithm makes it possible to see the impacts of each choice
on the whole offer. These choices can be for the system side,
the selection of a technical solution or the valuation of an
attribute, and for the process side, the selection of the
adequate resource and its quantity. As previously said,
choices have a direct impact on the TRL of the system
solution and on the ARL of the realization process activities.

In addition, as constraints do not have any orientation, it is
possible to force the observance of the customer’s
requirements, such as a minimal level of readiness for the
technologies used in the system (TRL greater than 6 for
instance), a maximum cost and the maximum lead time for
the whole offer.

4. CONCLUSIONS

In this paper, we have proposed the first ideas in order to
assess confidence in offers while bidding, from the supplier
or bidder point of view. Our proposals are based on the
extension of configuration process from ATO-MTO towards
ETO situation. This extension is necessary as some
configurations have never occurred and require to be
specifically designed then produced. In order to cope with
ETO situation, specific values have been added to the
configuration models with a specific meaning.

Then, we have proposed the three new indicators to
measure the degree of confidence in the overall offer. Two of
them are objective and independent of the supplier (TRL and
ARL). They characterize the readiness level of each sub-
system and the risk level of each activity and are both based
on a nine-level scale. The last one is more subjective and
relies on the supplier feelings (SFL) about the offer and rely
on his/her skill, expertise and point of view on the whole
situation as well as his/her risk aversion.

Aggregation mechanisms have been proposed in order to
compute the SRL of the system solution, the PRL of the
whole realization process and the SFL for both system and
process. In order to compute the offer overall confidence,
objective indicators SRL and PRL are modulated by their
respective SFL. Then, the offer overall confidence is
computed as the average of modulated SRL and PRL.

Our proposals have been confirmed by several companies
in system and service sectors, even the relative simplicity of
the aggregation mechanisms. We have now to test it on real
cases and to improve it with much more sophisticated
aggregation methods. The use of Case-Based Reasoning and
experience feedbacks could surely help the supplier in the
valuation of the subjective indicators and the model updates.

Sylla Abdourahim, Élise Vareilles, Michel Aldanondo, Thierry Coudert, Laurent Geneste and Paul Pitiot. 27

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

REFERENCES

[1] W. Verhagena, P. Bermell-Garciab, R. van Dijkc, R. Curran - A
critical review of Knowledge-Based Engineering: An
identification of research challenges – Adv. Engin. Informatics
Vol. 26, n° 1, pp 5–15, 2012.

[2] B. Chandrasekaran - Design problem solving : a task analysis. In
Artificial Intelligence Magazine, Vol. 11, pp 59-71, 1990

[3] J. Olhager - Strategic positioning of the order penetration point –
Int. J. of Prod. Economics – Vol. 85, n° 3, pp 319–329, 2003.

[4] A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen - Knowledge-based
Configuration From Research to Business Cases, Morgan
Kaufmann, 2014.

[5] MR Endsley, D.G Jones – Chapter 7 Confidence and Uncertainty
in situation awareness and decision making - Designing for
situation awareness, Taylor & Francis, pp 113-121 – 2004.

[6] S. Mittal, F. Frayman - Towards a generic model of
configuration tasks, in: Proceedings of IJCAI, pp. 1395–1401,
1989.

[7] M. Aldanondo, E. Vareilles - Configuration for mass
customization: how to extend product configuration towards
requirements and process configuration – J. of Intel.
Manufacturing, Vol 9, n° 5, pp 521–535, 2008.

[8] T. Soininen, J. Tiihonen, T. Mannisto , R. Sulonen - Towards a
general ontology of Configuration - AIEDAM Vol 12 n°4, pp
357–372, 1998.

[9] D. Sabin et R. Weigel - Product configuration frameworks - A
survey - IEEE Intell. System, Vol 13, n°, pp 42-49, 1998.

 [10] L.Zhang, E.Vareilles, M.Aldanondo - Generic bill of functions,
materials, and operations for SAP2 configuration - IJPR, Vol.
51, n°2, pp 465-478, 2013.

[11] P.Pitiot, M.Aldanondo, E.Vareilles - Concurrent product
configuration and process planning : Some optimization
experimental results - Computers in Industry, Vol. 65, pp 610-
621, 2014

[12] J.C. Mankins - Technology readiness level : A White Paper -
Advanced Concepts Office - NASA April 6, 1995

[13] BJ Sauser, D. Verma, J. Ramirez-Marquez, R. Gove - From
TRL to SRL: The Concept of Systems Readiness Levels. Conf.
on Syst. Engineering Research, April 7-8, Los Angeles, 2006.

[14] W. Tan, B.J. Sauser, and J. Ramirez-Marquez - Analyzing
component importance in multifunction multicapability systems
developmental maturity assessment, IEEE Trans Eng
Management, Vol 58, n° 2, 2011

28 Concurrent configuration of product and process : moving towards ETO and dealing with uncertainties.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Assessing the configurators user need for social interaction
during product configuration process

Chiara Grosso*, Cipriano Forza*, Alessio Trentin*

Abstract. Commercial websites, including online sales
configurators, are increasingly implementing technologies that
enable social interactions, in order to provide users with social
interaction possibilities that characterize retail shopping. One of
these implementation strategies refers to connecting commercial
websites to social software. Social software are web-based
applications that support web users in social networking,
interacting, sharing content and thus, in collecting feedback from
various referents (e.g. user's online contacts, other web users,
company representatives). Given the variety of possible
connections between social software and configurators, mass
customizers need to choose which connection(s) to implement, if
any, to fulfil the configurator user need for social interaction. To
make this choice, it is useful to be able to: (a) identify the various
facets of the social interaction as user/consumer's navigation
behaviour (b) measure the strength of configurator users’ need for
social interaction. Being able to assess the user need for social
interaction could help mass customizers enhance the proactive
support provided to the user during his/her configuration process.
Accordingly, this study presents an exploratory analysis (a) by
examining various facets of the social interaction need and
subsequently (b) by proposing a multi-item scale to measure the
social interaction need. The present paper aims at contributing
research into the key role of feedback delivered to users from
different referents during the configuration process and sheds
further light on new online customers’ needs.

1 INTRODUCTION

The social characteristic of the Web [1-3] is pushing companies to
adopt selling strategies coherent with the social dimension of
shopping on the web. Online vendors face a significant challenge
in making their virtual storefronts socially rich [4-5]. However
there are multiple ways of increasing sociability through the web
interface of commercial web sites to positively impact consumer
attitudes towards online shopping [6].

To engage consumers in an interactive and socially rich online
shopping experience, commercial Web sites are implementing
technologies that enable social interactions [7]. Social interaction
refers to all action involving two or more people in which the
behaviour of each person is in response to the behaviour of the
other [8].

In particular, commercial web sites are increasingly using a set
of web-based technologies called social software applications
(hereafter addressed SocSW). Social software applications are
defined as web-based software applications that enable people to
connect, collaborate, create online networks and manage contents
in a social and bottom-up fashion [9].

*Università degli studi di Padova, Dipartimento di Tecnica e Gestione dei
sistemi Ind.li, Vicenza, Italy. Corresponding author: C.Grosso, Ph.D.,
e.mail: chiara.grosso@unipd.it

The same interest in social software application is increasingly
growing between mass customizers that sell their product through
online configurators and have started to connect their configurator
to SocSW. The configurators are connected to social software
applications in different modalities. Each modality enables various
social interaction tools (e.g. text messages, image sharing, chat)
that support the user enabling them to receive social feedback
during his/her configuration process [10].

The importance of feedback during the configuration process
has already been investigated in literature [11-13]. In particular,
previous research showed the importance of peer feedback during
the configuration process [11]. Also, research has shown that
feedback influences the feeling of regret or satisfaction deriving
from decision outcomes [14-16]. People are motivated to avoid
post-decisional regret. The risk is that if the need for feedback is
not identified and satisfied, it can lead the client to abandon the
shopping process, in the online environment where the customer is
more sensitive to small obstacles that can cause the termination of
the shopping process, thus the configuration process [17].

The strength of the configurator user need for feedback has not
been investigated yet. To what extent the implementation of
SocSW responds to the user need for social interaction and which
connection modality (if any) better fulfils the user’s need for social
feedback, is still unexplored. To understand the usefulness of the
social interaction support provided by the configurator-social
software connection, it raises the question of assessing how strong
the need is for social interaction experienced by the user. In
particular, to investigate the need for social feedback experienced
by a user during the configuration process. A measure to evaluate
the user’s social interaction need is still missing.

This study presents an exploratory analysis in order to
understand in more detail which factors are linked to the user’s
need for social interaction, and consequently, proposes a multi-
item scale to measure this need. The aims of the present paper are
both (i) to move forward understanding of customer’s behavior in
the specific shopping process via online configurators and (ii) to
provide MCs with insights to evaluate if and to what extent
configurator-SocSW connections fulfil the user’s need for social
interaction.

2 THEORETICAL BACKGROUND

2.1 Consumer interaction behavior while shopping

2.1.1 Factors that drive the customer to shop

Consumers' behaviour research studies three distinct activities: (i)
shopping, (ii) buying, (iii) consuming [18]. The literature on
consumer behavior underlines that shopping is driven by different
factors. More specifically, there are two class of factors that impact
on customer intention to shop: functional and non-functional [18-
21]. Functional factors are linked to product acquisition (actual

Chiara Grosso, Cipriano Forza and Alessio Trentin. 29

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

buying of products) for example: time, place and product
possession needs. Non-functional factors refers to the satisfaction
of additional non product-related needs, for example social,
emotional and epistemic needs [19-20]. The present study is
interested in non-functional factors. Non-functional factors are
divided into two categories: personal and social factors which drive
the customer to shop [18-20].
Personal factors refer to customer-specific factors that determine
the customer's intention to shop across a wide range of product
types. Personal factors manifest the customer's shopping style, for
example: economic shopper, personalizing shopper, ethical
shopper style [19]. Personal factors: (a) Individual role playing: a
factor determined by the customers’ interest to act conforming to a
certain position or role in society. (b) Diversion from the routine of
daily life: a factor determined by customers’ interest in recreation
and diversion from daily life. (c) Self-gratification: a factor
determined by customers’ interest in buying something just for the
pleasure of rewarding him/herself. (d) Learning options about new
trends: a factor determined by customers’ interest to learn and get
new ideas about trends and symbols related to specific products. (e)
Physical activity: a factor determined by customer’s interest in
doing physical exercise (e.g. go for a walk in a shopping street). (f)
Sensory stimulation: a factor determined by customers’ sensory
benefits while shopping (for example background music, video or
visual stimuli, even scent) [18,20].

Social factors refer to the social situation that determines the
customer’s intention to shop, for example social situations such as
the presence of friends and relatives at the time of shopping [19].
Social factors: (a) Social experience outside the home: a factor
determined by customer interest in being engaged in social
interactions during shopping. The shopping experience provides a
specific time and place for social interaction; (b) Communication
with others having a similar interest: a factor determined by
customers’ interest for sharing the shopping experience with others
with the same interest (for example, other customers). Also,
interest in interacting with others who provide special information
while shopping (for example, sales personnel). (c) Peer group
attraction: a factor determined by customers’ interest in the
companion of peers or members from his/her reference groups
while shopping. (d) Status and authority; a factor determined by
customers’ interest in commanding attention and respect for
example, by shopping in a specific place or buying a particular
product, or choosing a brand. (e) Pleasure of bargaining: it’s a
factor determined by customers’ interest in enjoying the process of
bargaining [18,20].

Research on online consumer behavior confirmed that non-
functional factors have the same impact on consumer behavior
during shopping both off-line and online [20]. Thus, consumers
motivated by social interaction may choose to shop within a
conventional retail store format as opposed to the online context
[22]. Therefore, online retailers may find it more challenging to
attract also shoppers who may be less predisposed to shopping
online.

2.1.2. Consumer socialization process and socialization
agents

Shopping is an activity that includes social interaction with others
[23-24]. There is a strong relationship between consumer decision-
making and the consumer socialization process [25-26]. Consumer
socialization refers to the process by which individual consumers

learn skills, knowledge, and attitudes from others through
communication, which then assist them in functioning as
consumers in the marketplace [27]. Consumer socialization theory
states that communication among consumers affects their
cognitive, affective, and behavioural attitudes [25, 27-28].

The socialization process can take three forms: (i) modelling,
(ii) reinforcement, and (iii) social interaction. Each form represents
a different mechanism by which the individual is socialized. Each
socialization form has a different impact on the specific behaviour
that an individual adopts to interact with others and participate in a
social environment [29-30].
• The modelling process implies a mechanism of imitating or

mimicking socialization agents because the agent's behaviour
appears meaningful or desirable to the learner (Moschis and
Churchill 1978). Socialization agents are those who have direct
or indirect influence on an individual’s behaviour (e.g.
family, friends, peers, media, school) [29-30].

• The reinforcement process implies that the learner is motivated
to adopt (or not) some behaviour or intentions because of a
reward (or punishment) offered by the socialization agent [25,
27-29]. In particular, communication among consumers affects
their cognitive, affective, and behavioural attitudes [25].

• The social interaction process implies interactions with
socialization agents in social contexts, which may combine
modelling and reinforcement [29].

Customers are interested in engaging relationships with different
actors (socialization agents) while shopping to reduce their
availability of choice, simplify their buying and consuming tasks,
simplify information processing, reduce perceived risks, and
maintain cognitive consistency and a state of psychological
comfort [26].

Following the social learning approach, the socialization theory
suggests that a consumer develops consumption attitudes and
behaviour by learning from socialization agents through
interactions with them even while shopping [31]. Research
highlights consumer socialization agents who deeply influence the
consumers' purchase decision: family, friends, peers, reference
groups [32].

Peers are recognized as the most influencing socialization
agents, beyond family members [7,27-29,33]. Consumers learn
values, attitudes, and skills by observing others. Consumers tend to
interact with peers regarding consumption matters, which greatly
influence their attitudes toward products and services.
Communication between peers is the strongest predictor of product
placement attitudes and behaviour [30].

Beyond social interaction between customers and family,
friends, peers, reference groups, the shopping process also includes
social interaction between the consumer and company
representatives (e.g. sales persons) [22-23]. ‘Consumers have
always been interested in relationships with marketers’ [26:265].
Technological advantages, especially digital devices and social
software application are facilitating the process of engaging and
managing relationships with individual consumers [9].

2.1.3 Social software application as tools to support
consumer social interaction

New interaction possibilities for Web users are changing user
consumption behavior [34-41]. More specifically, social software
applications have changed how consumers communicate because
SocSW allow their users to interact and exchange information

30 Assessing configurator user need for social interation during the product configuration process.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

about products/services with known and unknown people
connected through social networks, virtual communities, blogs
[34,37-39, 41].

Social Software applications provide virtual spaces for users to
be connected in networks thus interaction is facilitated particularly
among reference groups and peer groups [34, 38-39]. Research
highlights that communication with reference groups and peers
through Social software applications enable a form of consumer
socialization that has a profound impact on consumer decision
making [34, 40].

The socialization process enabled by social media is based on
learning processes that simultaneously involve the three
socialization mechanisms of (i) modelling, (ii) reinforcement, and
(iii) social interaction [31, 38].
• Modelling - the ownership of a certain product or service owned

by peers enables a modelling process.Thus, the consumer can
buy the same product or avoid the product depending on whether
s/he wants to be like peers or not.

• Reinforcement - pressure from peer and reference groups
motivates the consumer to endorse a product or to purchase it
because once a purchase via social media is shared it can be a
source of rapid social rewards.

• Social interactions - SocSW provide communication tools that
make the social interaction process easy and convenient (even
costless) (e.g. blogs, instant messaging and social networking
site). For example, in virtual communities new members can
interact easily with virtual groups through electronic
communication and quickly learn task-related knowledge and
skills through their interactions with other members [42].

SocSW facilitate learning about products and trends by supporting
information exchanges among multitudes of friends or peers
(socialization agents) who provide different and numerous product
information and enable, as well, quick evaluation of products [43].

Previous research suggested implementing SocSW in corporate
websites to allow consumers not only the exchange of information
about products or services but also to engage both current and
potential consumers through participative and socializing
experiences [41].

2.2 Online configurators and social software
applications

2.2.1 Shopping experience via online configurators

One particular shopping process is shopping for personalized
products [44]. This process happens more and more through online
configurators [45]. Online configurators are defined as knowledge-
based software applications that support a potential customer, or
salespersons interacting with the customer, in completely and
correctly specifying a product solution within a company’s product
offerings [44-48]. The selling approach through configurators has
proven to be beneficial to both mass customizers [44, 48] and their
customers [49-51].

Even the purpose of configurators is to support potential
customers in choosing, within a company’s product offering, the
product solution that best fits their needs, configuration systems
often outstrip user capability to identify a proper solution [46-48].
The more complex individualization possibilities are, the more
information gaps increase [52] thus customers may experience
uncertainty during the design process or have no clear knowledge
of what solution might correspond to their needs. A customer may

find him/herself in some circumstances (e.g. choice complexity,
lack of knowledge, lack of experience) that enhance his/her
uncertainty thus the need to receive feedback. The customer may
feel overwhelmed by the number of product configurations
available and leave the configuration process before purchasing
[53]. This happens mostly when the customer find him/her self in a
condition of choice complexity.

Choice complexity is defined as the amount of information
processing necessary to make a decision and it’s one determinant
of the product variety paradox [54]. Another determinants of the
choice complexity is post-decisional regret. In addition to the
perceived risk of online shopping [55] regret aversion negatively
influences consumer decisions, because the possibility of regret is
anticipated, and subsequently experienced during decisions-
making [14].

Recent studies suggest that a promising method for
configurators to provide feedback would be to include a function
that allows users to submit their (interim) design solutions for rapid
social feedback from other users who are online [56]. The
integration of social feedback during product configuration, more
specifically, feedback from peers, stimulated favorably the
customer's problem-solving process because ‘MC toolkit users can
assist each other during the development of the initial idea and
during the design process and by giving each other constructive
feedback on interim design solutions’ [11:556].

2.2.2 Social interaction mechanisms provided for the user
by connecting configurators to social software

Previous studies observed that a growing number of social media
provide different supports to customers by sharing their created
products and the possibility to share configured product via social
media can foster customer-perceived benefits [10, 57-59].

Configurators are connected to social software through various
modalities [10,57]. The focus of this paper is on those connection
modalities integrated into the configurator. In particular, those
modalities that provide social interaction support for the user in the
configuration environment.

Table 1 reports a brief description of integrated-based
modalities (M2.1, M2.2, M2.3, M3, M4, M7.1, M8), a synthesis of
the configuration stage supported by each integrated-based
modality (columns 1-3), the characteristics of social feedback
provided to the user, in specific, from whom and when, the user is
supported by each modality in receiving social feedback (columns
4-7). We adopted technical terminology provided by Franke et al.
[11] to address three configuration stages, namely: initial idea
development; intermediate evaluation; configuration evaluation.
Accordingly, by partial product configuration, we mean a product
configuration that has not been completed. By intermediate product
configuration, we mean a preliminary product configuration that
has not yet been selected as the preferred one. By final product
configuration, we mean the product configuration that the user has
chosen, possibly after considering various intermediate
configurations. We adopted the following terminology to refer to
the individuals with whom a configurator user can interact: online
circles, that is, people that the user already knows, trusts, and is
also in connection with via SocSW; peers, that is, unknown people
of equal standing, such as other configurator users or other
customers; expert sources, that is, unknown people that the user
recognizes as experts, such as company representatives.

Chiara Grosso, Cipriano Forza and Alessio Trentin. 31

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Table 1. Synthesis of configurator –social software integrated-based
connections

Connection modalities

CONF.
stages

Social feedback
characteristics
From
whom When

1 2 3 Exp OC Peers Real
time

M2.1 Social media (SM)
icons enable user to
automatically publish the
configurator link on
his/her social profiles.
E.g. of configurator:
Puget Systems -
https://www.pugetsystems.
com/echo.php

X	 X Yes

M2.2 SM icons enable
user to automatically share
a complete configuration
in user social profile(s).
E.g. of conf: Tesla-Motors
-
http://my.teslamotors.com.

X	 X Yes

M2.3 SM icons enable
user to automatically share
a partial configuration in
users social profile(s)
while configuration is in
process. E.g. of conf.:
Nike-
http://www.nike.com/us/en
us/c/nikeid

X	 X	 X Yes

M3 Direct
browse/upload into the
configurator of files shared
in the user’s SM profile(s)
E.g. of conf.: Personal
Wine
https://www.personalwine.
com.

X	 X	 X NO

M4 Simplified
configurator embedded
into company SM profile.
E.g. of conf.: Vauxhall-
https://www.facebook.com/
vauxhall/

X	 X	 X X Yes

M7.1 Email to send
complete configuration to
user’s online circles. E.g.
of conf.: Colorware
http://www.colorware.com
/p-477-playstation-4.aspx

X	 X NO

M8 Instant message
services to connect
configurator users to
company representatives
E.g. of conf.: Ecreamery
https://www.ecreamery.co
m/create-your-own-flavor

X	 X	 X	 X	 Yes

Configuration process. 1: initial idea development; 2: intermediate
evaluation; 3: configuration evaluation.
Social-interaction characteristics. From whom: Exp.: expert sources
(e.g., company representatives); OC: online circles; Peers: otherr
configurator users or customers. When: Yes: in real time; No: not in
real time.

Support at the configuration stages. Each integrated modality
differently supports the	 configurator user at different stages of
his/her configuration process.

The support provided by M2.1, M3, and M4 focuses on the
early stages of the configuration process. M2.1 supports the user in
sharing only a configurator link on social platforms; M3 in
uploading items from online social folders into the configurator;
M4 in making the first step of configuration on social media

platforms (SM) because a basic configurator is integrated into a
dedicated page in the company’s SM profile. The support provided
by M2.2, M2.3, and M7.1 focuses on the intermediate and final
stages of configuration. M2.2 supports the user in sharing a partial
configuration and M2.3 a final configuration on social platforms;
M7.1 in sending the final configuration by email. Finally, M8
supports the user during the entire configuration process by
providing a chat channel to configurator users.

Social feedback characteristics. Integrated-base modalities
support the user in collecting social feedback from different
referents and with different timing, depending on the interaction
mechanisms enabled by each modality.

From whom. With the exception of M8, all integration-based
connection modalities support the user in interacting with his/her
online circles, thus, in receiving social feedback from already
known people. Modality M4 allows users to share information also
with peers (i.e. unknown people of equal standing) and expert
sources (i.e. company representatives).

When. With the exception of M3, which does not support social
interactions and M7.1 that supports a sharing option by email, the
feedback process enabled by the integration-based modalities can
be delivered to the user in real-time. Only M8 and M4 provide real-
time feedback in the configuration environment. M2.1-3 enable
real-time feedback delivered to the user only on social platforms.

3 RESEARCH AIMS & METHOD

In this study we first present an exploratory analysis (i) to identify
the various facets of user social interaction need and (ii) to
understand in more detail which factors are related to the need for
social interaction (e.g. social feedback, referents to interact with).
Secondly, we propose a multi-item scale to measure the need for
feedback to assess the strength of the need for social interaction
perceived by the configurator user.

Research method for exploratory analysis. A questionnaire
was submitted to a panel of 34 (24 Male, 10 Female). The
participants in the study were engineering students from the
University of Padua with experience in the design of configuration
system whom voluntary took part to the survey. The respondents
also attended tutorials on: the configuration systems and its
capabilities, the benefits a user can derives from configuration
process, the different configurator-SocSW connection modalities,
the different social interaction features enabled by each connection.
During the seminar respondents were provide with materials on the
explained topics (e.g.ppt slides, examples from previous
researches).

To run a preliminary analysis of the respondents experience of
the various facets of social interaction need, respondents perform a
configuration process in groups of three to identify if the
configurators were implemented with social software applications.
Afterwards a questionnaire with five structured questions and
multiple-choice answers, was provided to respondents. Items of
multiple-choice answers were measured by a 5-point Likert scale
(5 = totally agree, . . ., 1 = totally disagree). Positive statements
have been proposed as negatively worded questions with an agree–
disagree response format are often cognitively complex [60]. In
order to identify the various facets of social interaction needs
during the configuration process, we selected a sub-panel of 27 (20
Male, 7 female) selected for being web users always connected to
social software applications both via mobile phone or personal
computer.

32 Assessing configurator user need for social interation during the product configuration process.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Research method for measure development. The proposal of a
measure for the need for social interaction is based on both the
literature background (section 2.1 of the present paper) and the
results collected from explorative analysis previously performed
with the subsample of 27 respondents. To assess the quality of the
measure it will be considered: to adopt procedure validated in
previous research on configurator capabilities [61], to realize a
construct validity and reliability of items selected to measure social
interaction need and finally to realize a nomological analysis to test
the existence of significant relationships with variables that are
expected to be causally related to the need for social interaction.

4 RESULTS OF EXPLORATORY ANALYSIS

4.1 The level of connection of participants

From a total of 34 respondents, 27 were always connected
(hereafter addressed always-on). To identify the various facets of
social interaction need, we focus on the always-on subsample.

Always-on respondents represent the new generation of Internet
user also named, millennials. Millennials are young people who are
always connected to the web through web-connected devices (e.g.
smartphone, tablets, pc) that communicate and even work mostly
through those devices [62-64]. Young people adept at using
Internet also represent the majority of business-to-consumer sales
configurator users [51].

4.2 The view of the “always on” configurator users

4.2.1 Benefits from configurators implementing social
interaction

In order to explore the always-on respondents opinion on the
benefits deriving from configurator implement with social
software, the following question was provided: “Which benefits
can the user derive from a configuration experience on a
configurator that implements social interaction?”. The items refer
to benefits already researched in mass customization literature,
namely: creative achievement, hedonic benefits [65,50],
uniqueness and self-expressiveness benefits [49,65-66].
Distribution of the levels of agreement with the proposed answers
is reported in table 2. Percentages are grouped in three levels: 1-2
(totally and partially disagree, 3 (nor agree neither disagree), 4-5
(partially and totally agree). The 3rd point - neither agree nor
disagree - was introduced into the scale, consistent with the option
that respondents could not have a clear perception of the new
proposed scenario.

Tab. 2 – Which benefits can the user derive from a configuration
experience on a configurator that implements social interaction?

A configuration system that implements social
interaction features: 1&2 3 4&5

Could motivate the user to be more creative 19% 15% 67%

Could provide a funny experience 4% 37% 59%

Allows the user to assert his/her uniqueness 11% 41% 48%

Allows the user to express his/her own
personality 22% 37% 41%

Increases the user's pride of authorship 37% 19% 44%

Table 2 shows that there is wide consensus of benefits that can
derive from configuration experience on a configurator that
supports social interaction. Respondents agreed on the possibility
of making the configuration an experience that inspires the user
tobe more creative (i.e. creative achievement benefit). An
interesting result is the respondents’ agreement on considering the
support of social interaction as a source of fun (i.e. hedonic
benefit). Thus the user will benefit from an enjoyable configuration
experience. Excluding the 41% of respondents with no clear
preference, respondents agreed on uniqueness benefit. Similar
consensus was manifested about self-expressiveness as a benefit
that the configurator user can derive thanks to the social interaction
support. The possibility of providing pride of authorship doesn’t
achieve a well-defined consensus from respondents.

4.2.2 The request for social interactions at different stages
of the configuration process

In order to explore the respondents’ opinion on the link between
the configuration stages and the implementation of social
interaction, the following question was provided: “when can social
interaction features be a key factor during the configuration
experience?”. The items provided in the answers set refer to three
stages of the configuration process: initial idea development;
intermediate configuration evaluation; final configuration
evaluation. [11]. The answers are summarized in table 3.

Tab. 3 - When can social interaction features be a key factor during the
configuration experience?

Interaction features have to support the user in: 1&2 3 4&5
Evaluating his/her final configuration to
increase his/her confidence about the final
configured solution.

0% 26% 74%

Evaluating his/her intermediate configuration to
improve his/her configuration while it’s in
process

7% 26% 67%

Developing his/her initial configuration idea
development.

26% 26% 48%

It’s interesting to note the wide agreement expressed by
respondents on the key role played by social interaction features in
supporting the user in the evaluation of his/her product
configuration once it’s completed. High is also consensus on the
key role of social interaction features to support the user during
his/her configuration experience. Not well defined is agreement on
the stage of the development of the initial configuration idea.

4.2.3 The request for interactions with different social
actors

In order to collect the respondents’ opinions on the possibility of
interacting with different actors during the configuration
experience, the following question was formulated: “With whom
do you think the user will prefer to interact during his/her
configuration experience?” (Tab.4). Question 3 was meant to go in
deeply into the respondents’ opinion thus we propose a set of close
answers with different degrees of user interest in the interaction
options. Specifically, to explore in detail respondent preferences,
instead of the scale of agreement (1 totally disagree... 5 totally
agree) respondents were provided with a scale of interest in
interacting. The scale to measure the interest in interacting was also
from 1 to 5, where each level refers to (1) no interest in interacting
with them; (2) interest in interacting if they are the only referent
available; (3) sporadic interest in interacting with them; (4) interest
in interacting with them; (5) strong interest in interacting with
them.

Chiara Grosso, Cipriano Forza and Alessio Trentin. 33

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Tab. 4 – With whom do you think the user will prefer to interact during
his/her configuration experience?

User will prefer to interact with: 1 2 3 4&5
Other company customers because s/he
considers them as experienced consumers
of the company’s products

4% 22% 26% 48%

User's online circles because s/he is
confident about their interest in supporting
him/her and are trustworthy sources of
suggestions

0% 26% 30% 44%

Company representatives because s/he
considers them as sources of professional
feedback even if they are interested in
selling company products

11% 15% 37% 37%

Other configurator users because s/he
considers them experts of the
configuration process

0% 19% 48% 34%

As reported in columns 1 and 4-5 respondent preference is to
interact with user’s friends/online circles, similar consensus is
registered on interaction with other configurators users.
Company representatives are referents whom the user can be
interested in interacting with if they are the only referent available
or for occasional interaction or for interest.

4.2.4 The request for social interactions with different
referents

In order to explore the respondents’ preferences for interacting
with different referents the following question was provided: “How
can social interaction features be a key factor during the
configuration experience?” and answers are summarized in table 5.
Respondents evaluate the items of multiple choice answer on a 5-
point Likert scale (5 = totally agree, . . ., 1 = totally disagree).

Tab. 5 – How can social interaction features be a key factor during the
configuration experience?

If social interaction is enabled with: 1&2 3 4&5
company representatives, it has to be provided at each
stage of the configuration process

26% 22% 52%

other configurator users, it has to be provided while the
configuration is in process

19% 33% 48%

his/her online circles, it has to be provided in the
configuration environment

19% 37% 44%

his/her online circles, it has to be provided at each stage of
the configuration process

30% 48% 22%

Even if respondents have low interest in interacting with company
representatives (tab.4), answers from table 5 show that interaction
with company representatives can deploy a key role if it supports
the user at each stage of his/her configuration process. Excluding
the 33% of respondents with no clear preference, the majority of
respondents considers a key factor interaction with other
configurator users. Interactions with online circles do not constitute
a key factor if provided at each stage of the configuration process.
This percentage is consistent with respondents’ preference for
social interaction features that support the user at the final stage of
the configuration process (tab. 3). Respondents agreed on the key
role of the social interaction features if provided in the same
environment where configuration takes place (configurator
environment).

4.2.5 Sharing configuration experience with online friends

In order to explore respondents’ opinions on links between social
feedback and product sharing options with trustworthy referents,
the following question was provided: “How do you expect the

configuration experience to be on a configurator that supports the
user in sharing his/her configuration experience with online
circles?” The answers are summarized in table 6.

Tab. 6 – How do you expect the configuration experience to be on a
configurator that supports the user in sharing his/her configuration
experience with online circles ?

On a configurator that supports the user in sharing
his/her experience: 1&2 3 4&5
The configuration experience will reduce the user's
uncertainty about his/her purchase decision because the
user could receive feedback about his/her configuration
solution from people s/he knows and trusts

11% 26% 63%

The configuration experience will be entertaining 15% 22% 63%
Thanks to feedback provided by people s/he knows and
trusts the user could collect suggestions to learn about
his/her preferences about his/her configuration

15% 22% 63%

Thanks to interaction with people s/he knows and trusts
the user could collect hints to learn about the product
s/he is configuring

15% 41% 44%

The configuration experience will make the user more
confident about his/her configuration because s/he could
act in accordance with people s/he knows and trusts

26% 30% 44%

Results show the respondents’ agreement about the reduction of
user uncertainty on his/her purchase decision if s/he receives
feedback from known and trusted people. High consensus is
registered on the possibility of an entertaining configuration
experience if shared with friends/online circles. Respondents
agreed on the learning option enabled by a configuration
experience shared with friends/online circles. Consensus of opinion
is on the learning process linked to user configuration preference.
A lower level of agreement is registered for the learning process
linked to user knowledge of the configuration product.
Respondents don’t express a clear consensus on the confidence the
user can derive by acting in accordance with people s/he knows.

4.3 Results overview

Even with its limitations, exploratory analysis provides useful hints
to understand users' need for social interaction during the
configuration process. Results show various facets of social
interaction that configurator users always connected to social
media platforms, expect from the implementation of configurator
with social interaction features.

Configuration process. The implementation of the social
interaction feature could inspire the user to be more creative (tab.2)
and provide entertaining configuration experiences (tab.6). Social
interaction features could reduce a user’s uncertainty about his/her
purchase decision (tab.6) and provide the user with insights to learn
about his/her configuration preferences (tab.6)

From whom. Respondents expect the above-mentioned
outcomes whether social interaction features support the user in
collecting feedback from people s/he knows and trusts (tab.4).
Beyond online circles, users prefer to interact with peers as
experienced consumers of company products (tab.4).

When. Based on respondents’ answers, social interaction
features have to support the user in evaluating both his/her
intermediate configuration in order to improve his/her
configuration while it is in process (tab.3), and also his/her final
configuration in order to increase his/her confidence about the final
decision (tab.3). Social interaction features have to be provided for
the user while the configuration is in process, thus in real time
(tab.5)

34 Assessing configurator user need for social interation during the product configuration process.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

5 TOWARDS MEASUREMENT OF THE
CONFIGURATOR USER NEED FOR SOCIAL
INTERACTION

5.1 Identifying measure items

5.1.1 Hints from exploratory analysis for measure
development

Hints from explorative analysis on user social interaction
preferences point out that the need for social interaction is
perceived at different levels depending on the stage of the
configuration process. The need for social interaction is perceived
as a need to be satisfied at each stage of the configuration and
mainly at the final stage of the configuration experience. Thus, a
measure for social interaction need has to cover the need
experienced during the entire configuration process.

The need for social interaction is linked to possible interactions
that the user can establish with different actors (e.g. online circles,
peers, expert sources: other customers, company representatives)
during the shopping/configuration process. Exploratory analysis
showed that users prefer to interact mostly with referents like their
friends and online circles but at specific stages of the configuration
process, such as the final stage.

Exploratory analysis showed that the satisfaction of the need for
social interaction is linked to the user’s uncertainty about his/her
purchase decision, and his/her learning process about his/her
configuration preferences (see subsection 4.2.5). Thus, the measure
of the social interaction need has to consider the sharing option of
the configured product before its purchase. Also, the measure has
to consider the possibility to reduce user uncertainty and the
learning option enabled by social interaction.

5.1.2.Generation items to measure user social interaction
need

A review of previous research was undertaken to identify construct
definitions and any existing measures. Based on the review, we
identified seven items to measure social interaction need. Each
identified item characterizes the construct of social interaction.

To develop a multi-item measure we can consider the items as
defining facets of the construct [67] of social interaction. Those
facets are reflected in the need for feedback experienced by the
user during the configuration process. Whereby changes in social
interaction (latent variable) are reflected (i.e. manifested) in
changes in observable items [68]. Each item reflects (i.e.
manifests) a specific function of the latent variable (social
interaction) by considering the user's need for feedback from
different actors that can impact on consumer behaviour during the
shopping experience.

As introduced in the previous background section the consumer
prefers to interact in particular with social agents as for example:
family, friends, reference groups, peers. Items were selected in
order to measure the need for social interaction as a need for
feedback from those specific socialization agents during the
configuration process. Proposed items to measure the user social
interaction need:
• During the configuration process I felt the need for feedback to reassure

me in my choice
• Right from the beginning of the configuration process I felt the need to

see other user’s configuration choices

• During the configuration process I wanted to be able to confront my
choices with those of other users

• During the configuration process I wanted online support from an expert
operator who could guide me in decision-making

• During the configuration process I would have liked to receive feedback
from some of my contacts

• If I had gone on to purchase a configured product, in making my final
purchase decision I would have liked to confront my choices with those of
other users

• Once the configuration process was terminated I experienced the impulse
to share the product configuration I had created with other users

5.2 A proposal for validation of the measure

5.2.1. Procedures for data collection and analysis to asses
the quality of the measure

Data for measure validation could be collected through a number
of configuration experiences performed by around 50 configurator
users on roughly different configurators by using also a wider set
of product types to increase the generalization of results. Every
user could perform different experiences and every configurator
should have been used by roughly 3-4 different users. After their
experiences the users could answer questions on the social
interactions needs they perceived during their experiences.

Through construct validity and reliability analysis it will be
assessed whether the set of items proposed to measure social
interaction need similarly reflect a single underlying latent
construct. This analysis will guide researchers to deep
understanding of the construct of social interaction need during
product configuration.

In order to assess nomological validity we should test for the
existence of significant relationships with variables that are
expected to be causally related to the need for social feedback. We
can focus on choice complexity within the company’s product offer
because choice complexity is a determinant that inhibits the user
from investing the requisite time and effort in seeking the best
option for him/her and interferes in his/her evaluation of the
decision outcome itself [54, 69]. Social interaction during the
configuration-shopping experience can enable recommendation
dynamics based on interactions with others (e.g. peers, users
‘online circles, company representatives). Those dynamics can
provide the user with social feedback from trustworthy sources
[70] that guide the consumer in his/her shopping for personalized
products on configurators. Thus, social feedback can support the
user in positively concluding with his/her configuration process
and also support him/her in reducing his/her cognitive efforts
caused by determinants of choice complexity (e.g. uncertainty,
anticipated and/or post-decisional regret) [14].

CONCLUSIONS

The present study, firstly, explores the various facets of social
interaction and subsequently proposes a multi-item scale to
measure the user’s need for social interaction during his/her
configuration process. This study highlights that social interaction
need is definitely perceived by users and this need depends on
various drivers, such as: from whom social feedback is provided,
thus with whom interaction is enabled by social software connected
to configurators; when social interaction is supported (e.g. at which
configuration stage) and how interaction occurs if social software
are connected to configurators (e.g. in real-time while

Chiara Grosso, Cipriano Forza and Alessio Trentin. 35

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

configuration is in process, or not).
Based on our results the integrated-based connections M2.2 and

M2.3 present the characteristics to fulfil the user need for social
interaction with online circles while configuration is in process.
Modality M4 responds to user interest in receiving social
interaction while configuration is in process, but interactions
supported by M4 can be only between users and company
representatives. Feature research is needed to generalize results
from exploratory analysis and to validate the proposed measure.

Once validated, the proposed measure aims at supporting MCs
in assessing the configurator user need for social interaction and
also in evaluating which social software connection (if any)
implement configurators to effectively fulfill this need. By
fulfilling the users’ need for social interaction, mass customizers
could both proactively support the user and also respond to social
factors that drive customers to shop.

REFERENCES

[1] T. O’Reilly, ‘What is Web 2.0: Design patterns and business models
for the next generation of software’, Communications & Strategies,
65,17-37, (2007).

[2] T. Berners-Lee, J. Hendler and O. Lassila, ‘The semantic web,
Scientific American, 284, 28-37, (2001).

[3] I. Maignan and B. A. Lukas,‘The nature and social uses of the
Internet: A qualitative investigation’, The Journal of Consumer
Affairs, 31, 346-371, (1997).

[4] I. Benbasat and N. Kumar,‘Para-social presence and communication
capabilities of a web site: a theoretical perspective’, E-service
Journal, 1, 5-24, (2002).

[5] N. Kumar and I. Benbasat,‘Shopping as experience and website as a
social actor: web interface design and para-social presence’, ICIS
2001 Proceedings, 54, (2001).

[6] K. Hassanein and M. Head, ‘Manipulating perceived social presence
through the web interface and its impact on attitude towards online
shopping’, International Journal of Human-Computer Studies, 65,
689-708, (2007).

[7] X. Wang, C. Yu and Y. Wei, ‘Social media peer communication and
impacts on purchase intentions: A consumer socialization
framework’, Journal of Interactive Marketing, 26, 198–208, (2012).

[8] H.T. Reis and L. Wheeler, ‘Studying social interaction with the
Rochester Interaction Record’, Advances in Experimental Social
Psychology, 24, 269-318, (1991).

[9] W.A. Warr, ‘Social Software: fun and games, or business
tools?’, Journal of Information Science, 34, 591–604, (2008).

[10] C. Grosso, C. Forza and A. Trentin,‘Support for the social dimension
of shopping through Web Based Sales Configurators’

[11] N. Franke, P. Keinz, and M. Schreier,‘Complementing Mass
Customization Toolkits with User Communities: How Peer Input
Improves Customer Self-Design’, Journal of Product Innovation
Management, 25, 546-559, (2008).

[12] L.B. Jeppesen, ‘User toolkits for innovation: Consumers support
each other’, Journal of product innovation management, 22, 347-
362, (2005).

[13] L.B. Jeppesen and M.J. Molin, ‘Consumers as co-developers:
Learning and innovation outside the firm’, Technology Analysis &
Strategic Management, 15,363-383, (2003).

[14] M. Zeelemberg, ‘Anticipated regret, expected feedback and
behavioral decision making’, Journal of Behavioral Decision
Making,12, 93–106, (1999).

[15] T.L. Boles and D.M. Messick,‘A reverse outcome bias: The
influence of multiple reference points on the evaluation of outcomes
and decisions’ Organizational Behavior and Human Decision
Processes, 61, 262-275, (1995).

[16] K.Taylor, ’A regret theory approach to assessing consumer
satisfaction’, Marketing letters, 8, 229-238, (1997).

[17] T. Rogoll and F. Piller, ‘Product configuration from the customer’s
perspective: A comparison of configuration systems in the apparel
industry’, In International Conference on Economic, Technical and

Organisational aspects of Product Configuration Systems, Denmark,
(2004).

[18] E.M Tauber, ’Why do people shop?’, The Journal of Marketing, 36,
46-49, (1972).

[19] J.N. Sheth, An integrative theory of patronage preference and
behavior. College of Commerce and Business Administration,
Bureau of Economic and Business Research, University of Illinois,
Urbana-Champaign, 1981.

[20] A.G. Parsons, ‘Non-functional motives for online shoppers: why we
click.’ Journal of Consumer Marketing, 19, 380-392, (2002).

[21] A.J. Rohm and V. Swaminathan, ‘A typology of online shoppers
based on shopping motivations’, Journal of business research, 57,
748-757, (2004).

[22] J. Alba, J. Lynch, B. Weitz, C. Janiszewski, R. Lutz, R., A. Sawyer,
and S. Wood, ‘Interactive home shopping: consumer, retailer, and
manufacturer incentives to participate in electronic marketplaces’,
The Journal of Marketing, 61, 38-53, (1997).

[23] M.R. Solomon, Consumer behavior: buying, having, and being,
Engelwood Cliffs, NJ: Prentice Hall, 2014.

[24] R. Dholakia, ‘Going shopping: key determinants of shopping
behaviors and motivations’, International Journal of Retail &
Distribution Management, 27, 154-165 (1999).

[25] S.Ward, ‘Contributions of socialization theory to consumer behavior
research’, The American Behavioral Scientist, 21, 501, (1978).

[26] J.N. Sheth and A. Parvatlyar, ‘Relationship marketing in consumer
markets: antecedents and consequences’, Journal of the Academy of
marketing Science, 23, 255-271, (1995).

[27] S.Ward, D.M. Klees and D.B. Wackman, ‘Consumer Socialization
Research: Content Analysis of Post-1980 Studies, and Some
Implications for Future Work’, Advances in consumer research, 17,
(1990).

[28] S.Ward, D.M. Klees and T.S. Robcnson, ‘Consumer Socialization in
Differcnt Settings: An lntemational Perspective’, Advances in
consumer research, 14, 468-72, (1987).

[29] G.P. Moschis and G.A. Jr. Churchill,’Consumer socialization: A
theoretical and empirical analysis’, Journal of marketing research,
15, 599-609, (1978).

[30] F. De Gregorio and Y. Sung, ‘Understanding attitudes toward and
behaviors in response to product placement’, Journal of Advertising,
39, 83-96, (2010).

[31] J.E. Lueg and R.Z. Finney, ’Interpersonal communication in the
consumer socialization process: scale development and validation’,
Journal of Marketing Theory and Practice, 15, 25-39, (2007).

[32] W.O. Bearden and M.J. Etzel, ‘Reference group influence on product
and brand purchase decisions’, Journal of consumer research, 9,183-
194, (1982).

[33] S. Shim, J. Serido and B.L. Barber, ‘A consumer way of thinking:
Linking consumer socialization and consumption motivation
perspectives to adolescent development’, Journal of Research on
adolescence, 21, 290-299, (2011).

[34] S. Okazaki, ‘Social influence model and electronic word of mouth:
PC versus mobile internet’, International Journal of Advertising, 28,
439-472, (2009).

[35] T. Hennig-Thurau, E.C. Malthouse, C. Friege, S. Gensler, L.
Lobschat, A. Rangaswamy and B. Skiera, ‘The impact of new media
on customer relationships’, Journal of service research, 13, 311-330,
(2010).

[36] B. Cova, R. Kozinets and A. Shankar, (2012) Consumer tribes.
Routledge

[37] P. Nambisan and J.H. Watt, ‘Managing customer experiences in
online product communities’, Journal of Business Research, 64, 889-
895, (2011).

[38] W.C. Martin and J.E. Lueg, J.E., ‘Modeling word-of-mouth usage’,
Journal of Business Research, 66, 801-808, (2013).

[39] J. Zhang and T. Daugherty, ‘Third-person effect and social
networking: implications for online marketing and word-of-mouth
communication’, American Journal of Business, 24, 53-64, (2009).

[40] T.S. Teo and Y.D. Yeong,’Assessing the consumer decision process
in the digital marketplace’, Omega, 31, 349-363, (2003).

[41] R.D. Mersey, E.C. Malthouse and B.J. Calder, ‘Engagement with
online media’, Journal of Media Business Studies, 7, 39-56, (2010).

[42] M.K. Ahuja and E.G. John. ‘Socialization in virtual groups’, Journal
of Management, 29,161-185, (2003).

36 Assessing configurator user need for social interation during the product configuration process.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

[43] A.D. Gershoff and G.V. Johar. ‘Do you know me? Consumer
calibration of friends' knowledge’, Journal of Consumer Research,
32, 496-503, (2006).

[44] F.S. Fogliatto, G.J.C. da Silveira, and D. Borenstein, ‘The mass
customization decade: an updated review of the literature’,
International Journal of Production Economics, 138, 14–25, (2012).

[45] M. Heiskala, J. Tiihonen, K.S. Paloheimo and T. Soininen, Mass
customization with configurable products and configurators: a
review of benefits and challenges, in: T. Blecker, G. Friedrich (Eds.),
Mass Customization Information Systems in Business, IGI Global,
London, UK, 1–32, (2007).

[46] A. Falkner, A. Felfernig and A. Haag, ‘Recommendation
technologies for configurable products’, AI Magazine, 32, 99-108,
(2011).

[47] J. Tiihonen and A. Felfernig,’Towards recommending configurable
offerings’, International Journal of Mass Customisation, 3, 389-406,
(2010).

[48] C. Forza and F. Salvador, ‘Application support to product variety
management’, International Journal of Production Research, 46,
817–836, (2008).

[49] C. Grosso, A Trentin and C. Forza,’Towards an understanding of
how the capabilities deployed by a Web-based sales configurator can
increase the benefits of possessing a mass-customized product’. In
16th International Configuration Workshop, 21, 81-88, (2014).

[50] A. Trentin, E. Perin, and C. Forza, ‘Increasing the consumer-
perceived benefits of a mass-customization experience through sales-
configurator capabilities’, Computers in Industry, 65, 693-705,
(2014).

[51] N. Franke, M. Schreier and U. Kaiser, ‘The ’I designed it myself’
effect in mass customization’, Management Science, 56, 125–140,
(2010).

[52] N.Franke and F.T.Piller,’Key research issues in user interaction with
user toolkits in a mass customisation system’, International Journal
of Technology Management, 26, 578-599, (2003).

[53] C. Huffman and B.E. Kahn, Variety for sale: mass customization or
mass confusion?’, Journal of Retailing, 74, 491–513 (1998)

[54] A. Valenzuela, R. Dhar and F. Zettelmeyer, ‘Contingent response to
self-customization procedures: implications for decision satisfaction
and choice’, Journal of Marketing Research 46,754–763, (2009).

[55] G. Pires, J. Stanton and A. Eckford, ‘Influences on the perceived risk
of purchasing online’, Journal of Consumer Behaviour, 4, 118–131,
(2004).

[56] N. Franke and C. Hader, ‘Mass or only “niche customization”? Why
we should interpret configuration toolkits as learning instruments’,
Journal of Product Innovation Management, 31,1214-1234, (2014).

[57] P. Blazek, M. Kolb, M. Part and C. Streichsbier C, ‘The usage of
social media applications in product con_gurators’, International
Journal of Industrial Engineering and Management, 3, 179-183,
(2012).

[58] F.T.Piller and P. Blazek (2014) Core capabilities of sustainable mass
customization. In: Felfernig A, Hotz L, Bagley C, Tiihonen J (ed)
Knowledge based Configuration From Research to Business Cases.
Morgan Kaufmann Publishers Inc., San Francisco, pp107-120.

[59] F.T. Piller, A. Vossen and C. Ih (2012) From social media to social
product development: the impact of social media on co-creation of
innovation. Die Unternehmung 65.
http://ssrn.com/abstract=1975523.

[60] F.J. Fowler (1993) Survey Research Methods. Sage Publications,
Newbury Park, CA

[61] A. Trentin, E. Perin and C. Forza, C., ‘Sales configurator capabilities
to avoid the product variety paradox: Construct development and
validation’. Computers in Industry, 64, 436-447, (2013).

[62] O. Peters and S.B. Allouch, ‘Always connected: a longitudinal field
study of mobile communication’, Telematics and Informatics, 22,
239-256, (2005).

[63] M.M. Tso, D.J. Gillespie and D.A. Romrell, ‘Always on, always
connected mobile computing’. In Universal Personal
Communications, 5th IEEE International Conference, 2, 918-924,
(1996).

[64] J. Kubátová,’Innovative managerial principles for current knowledge
economy’, Economics and Management, 17, 359-364, (2012).

[65] A. Merle, J.-L. Chandon, E. Roux and F. Alizon, ‘Perceived value of
the mass-customized product and mass customization experience for

individual consumers’, Production & Operations Management, 19,
503–514, (2010).

[66] N. Franke and M. Schreier,‘Product uniqueness as a driver of
customer utility in mass customization’, Marketing Letters, 19, 93–
107, (2008).

[67] J.R. Rossiter, ‘The C-OAR-SE procedure for scale development in
marketing’, International journal of research in marketing, 19, 305-
335, (2002).

[68] A. Diamantopoulos and J.A. Siguaw, ‘Formative versus reflective
indicators in organizational measure development: A comparison and
empirical illustration’, British Journal of Management, 17, 263-282,
(2006).

[69] G.J. Fitzsimons, ‘Consumer response to stockouts’, Journal of
Consumer Research, 27, 249–266, (2000).

[70] C.N. Ziegler and J. Golbeck, ‘Investigating interactions of trust and
interest similarity’, Decision Support Systems, 43, 460-475, (2007).

Chiara Grosso, Cipriano Forza and Alessio Trentin. 37

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

38 Assessing configurator user need for social interation during the product configuration process.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Improved Performance and Quality of Configurators by

Receiving Real-Time Information from Suppliers
Katrin Kristjansdottir, Sara Shafiee, Martin Bonev, Lars Hvam

1
, Morten H. Bennick and Christian S.

Andersen

Abstract.1 Companies providing customized products are

increasingly applying configurators in order to support the sales

and design activities. Yet, especially for engineer-to-order (ETO)

companies such activities are often divided across different

organizations, where throughout the configuration process product

specification has to be retrieved across the supply chains.

Therefore, it is required that relevant information from suppliers is

included in the configuration process, either as sub-models or by

integrating configurators across the supply chains. This study

investigates the challenges associated with including suppliers’

product specifications as sub-models and how these can be

addressed by integrating configurators across supply chains to

receive real-time information from suppliers. Based on established

literature on the illustrated technical integration of configurators

across the supply chains, this paper contributes with empirical

evidence on the overall impact of its implementation. The results

presented are based on a case study in an ETO company where it is

supported that the complexity of the configuration models can be

significantly reduced as well as the time devoted for the modelling

and maintaining the systems. Furthermore, with the ability of

receiving accurate and up-to-date information from suppliers, the

quality of the specifications can be improved, which leads to

reduced cost of the overall design.

1 INTRODUCTION

The ability to provide customized products has become more

important across a wide range of industries [1]. To effectively

guide communication with the customers and increase the quality

of the product specifications, configurators are being applied to

greater extent when defining product variants within the chosen

scope of variety [2]. Such systems utilize formally expressed

product architectures, i.e. knowledge bases, consisting of a set of

components, their relationships, and constrains to prevent

infeasible designs [3].

In engineer-to-order companies (ETO) the supply chains can be

characterized by being tailored and complex [4], where

manufacturing tends to be vertical integrated, including both

internal manufacturing processes and outsourced supply [5].

Furthermore, the dynamic and segregated character of the early

sales and engineering processes limits the availability of design

information and increases the uncertainty of project’s profitability

[6]. As a result to this there is a high dependency of receiving

1 Engineering Management Department, Technical University of Denmark,

Denmark, email: katkr@dtu.dk, sashaf@dtu.dk, mbon@dtu.dk,
lahv@dtu.dk

information across the supply chains in the early sales design

phases.

To address the complexity and the vertical integrated supply

chains in ETO companies, the configurator’s knowledge base

needs to cover up to date product information related to the

companies’ own designs and of outsourced components/modules

from suppliers. By including the suppliers’ information as sub-

models in the configurators there are some limitations, as the

information are often confidential and sensitive for sharing outside

the companies. Therefore, critical design detail and cost structures,

which are often considered as confidential information, are not

shared from the suppliers’ side. This can result in insufficient level

of detailed information being provided that can affect the overall

quality of the configuration. Furthermore, rapidly changing

components and modules supplied internally or externally

drastically increase the effort for maintaining the configurator’s

knowledge base. This increases the risk of operating with outdated

prices and variant designs and thereby decreasing the overall

quality of the systems and the generated output. This underlines

that centralized knowledge base is not desired, which emphasis the

need of having distributed configurators across the supply chains

[7].

The recent advancement of cyber-physical systems has enabled

a closer integration of supply chains relationships [8], allowing for

efficient ways of information management across multiple

organizations. However, to make such an e-business environment

possible, the established knowledge base needs to account for high

degree of tailoring and dependency from suppliers [9]. Academia

has proposed a technical approach that enables real-time

information sharing across the supply chain by integrating

configurators [7]. However, it’s successful implementation and the

actual impact from receiving the information directly from

suppliers in the configuration processes has not been addressed in

previous literature.

This paper aims to capture that research opportunity by

analysing the overall impact from establishing the supplier

integration to retrieve more accurate and up-to-date information

across the supply chains in ETO companies. This includes

description of the gained benefits, the challenges companies are

faced within the process and directions for further improvements.

Aligned with the focus of the research, the following propositions

have been developed.

Propositions 1: By integrating configurators across supply

chains, the complexity in terms of business rules, tables, parts

and values of the configurator model, and consequently the

modelling and development effort can be reduced.

Katrin Kristjansdottir, Sara Shafiee, Martin Bonev, Lars Hvam, Morten Hugo Bennick and Christian S. Andersen. 39

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Propositions 2: By integrating configurators across the supply

chains, the quality of the product specifications in terms of

increased accuracy, more detailed and up-to-date, can be

improved.

Propositions 3: The more detailed specifications from the

supplier make it possible to improve the overall designs, which

lead to cost optimization both for the component in focus and

for other related components.

Aiming to investigate the impact of integrating configurators

across the supply chains, a case study is introduced in an ETO

company, which has established this integration with one of their

supplier. The company operates globally and provides their

customers with highly engineered and complex products and is

thought to be a good representative of other ETO companies. The

results of the case study are based on the in-depth interviews with

the configuration engineers and managers at the case company as

well as related supplier.

The paper is organized as follows. First, relevant literature is

reviewed to identify the key constructs of the research model. In

the next section the results in connection with the propositions and

the managerial implications are presented. Finally, the main

findings are discussed and concluded, and directions for further

studies are elaborated.

2 LITTERATURE REVIEW

In this section the related literature is explored. The theoretical

foundation for this article consists of configurators’ main benefits

and challenges and integrative information technologies in supply

chains.

2.1 Configurators benefits and challenges

Configurators are used to support design activities throughout the

customization process, where a set of components along with their

connections are pre-defined and where constrains are used to

prevent infeasible configurations [3]. The main technical

component of the configurator is the knowledge base, which

includes a database where the different components and their

instances are stored along with the configuration logic representing

constrains how different components can be combined [10].

Configurators have been considered as one of the key success

factors in order to achieve the benefits from the mass

customization approach [11], [12]. The main benefits of using

configurators can be listed in terms of reduced lead times,

improved quality of product specifications, preservation of

knowledge, use of fewer resources, optimization of product

designs, less routine work, improved certainty of delivery, reduced

time for training new employees and increased customer

satisfaction [13]–[15].

Even though configurators have proven to be beneficial and

provide various benefits, there are some challenges concerned with

utilizing such a system. The main challenges can be described in

terms of supporting the customer in the customization process

where the configuration process should be simple and short [10].

As a result of insufficient tools and methods, it can be difficult to

guarantee consistency, completeness and formal documentation of

the models and the long term management of interfaces and data

can as well be a challenge [16]. Structuring and modelling product

information [17], product characteristics, customer relations and

long time span of the projects, and product complexity are also

considered as one of the main challenges especially in ETO

companies [18]. Lack of documentation which can lead to

confusion about the variation possibilities [16], [19] and finally

acceptance of the systems and change management as employees

might see the implementation of the configurators as a threat to

their job security [20] has also been named in relations to the

challenges related to configurators.

2.2 Integrated information technologies across
supply chains

Supply chain management involves the activities concerned with

flow information and the transformation of raw materials to the end

users [21]. In order to develop an integrated supply chain, a

detailed top down approach is important, however successful

achievement of integrated supply chain is more likely to happen

through bottom up approach through a number of stages as shown

in Figure 1 [22].

Figure 1. Achieve integrated supply chain [22]

There are a number of research that have explored the

hypothesis “the higher the degree of integration across the supply

chain, the better a firm performs” [22]–[27]. Ragatz et al. [28]

identify the linked information systems applicability as a key

success factor for integrating suppliers into the new product,

process or service development process. Tallon et al. [29] point out

that any positive impact of IT comes from its ability to coordinate

value adding activities. A linkage between integrative IT and

supply chain is a key aspect of supply chain integration. Stroeken

[30] examines the link between IT and supply chain innovation in

six industry sectors in order to show the importance of IT to

develop the process oriented structure of the supply chain needed

for the integration [30].

Mukhopadhyay and Kekre [31] quantify both strategical and

operational impacts for Electronic Integration which leads to

efficient procurement processes. The strategic benefits concerning

the supplier and the operational benefits are in respect to both

parties, or the suppliers and the customers. It should though be

40 Improved Performance and Quality of Configuration Systems by Receiving Real-Time Information from Suppliers.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

noted that the operational benefits are generated by Electronic Data

Interchange (EDI) through reengineering of the internal processes

of an organization, unlike strategic benefits, which result from

changes in the buyer-supplier trading relationship [31]. A supply

chain strategy recognizes that integrated business processes create

value for the companies’ customers if these processes reach

beyond the boundaries of the firm by drawing suppliers and

customers into the value creation process [22], [32]. Vickery at al.

[33] explain this linkage as the relationship between where one

value activity is performed and the cost or performance of another

is then introduced as the core purpose of supply chain integration

as optimizing linkages amongst value activities.

IT development can lead to process innovation, or more

broadly, supply chain integration, followed by cheaper, more

diverse and customer-specific products. By considering

organizations and markets, information processes makes the

economic role of computers clearer [34]. To be successful, firms

need to be able to adopt to computers as part of a system or cluster

for reinforcing organizational changes [35]. Additionally, the

extent clients achieve real time, or direct access to information

maintained by service providers constitutes a goal of

customization efforts efficiently and economically attainable

through newly developed Internet-based technologies [36].

Suppliers utilize information specific to client requirements for

global optimization of plans and adaptive execution of processes

and these clients integrating logistics applications, enable suppliers

to plan capacities for peak periods and exhibit requisite scalability

of operations [9].

Configurators have been proven to be useful in distributed

supply chains, where information from sub suppliers are retrieved

in the configuration processes. Ardissono et al. [7] express the

development of configuration services which offers personalized

user interactions and distributed configuration and services in the

supply chain. In Figure 2, the architecture for configurators setup

integrated to the suppliers is demonstrated. The approach suggested

is thought to support further cooperation, where the exchange of

orders, publishing of product catalogues and the billing processes

is supported in the supply chain [7].

Figure 2. Architecture overview [7]

2.3 Summary of the literature

Based on the current literature in the field, the research highlights

the importance of achieving greater integrations across the supply

chains where IT plays a key role. Furthermore, for companies

providing customized products, there is a need for having up-to-

date information across the supply chains. Therefore, by

integrating configurators across the supply chains, it allows

companies to further integrate the flow of information and at the

same time solve some of the main challenges concerned with mass

customization and configurators. However, the impact from

increased integration across the supply chains by enabling

interactions of configurators across the supply chains has not been

addressed previously in the literature.

3 CASE STUDY

3.1 Background information

The case company introduced in the study has a world leading

position in providing cement plants and equipment for the minerals

and cement industry. The company has utilized configurators since

1999 and has currently 136 operational configurators2, which

support the specification processes in the sales and the engineering

at the company. The configuration setup at the case company has

been addressed in previous researches where Hvam [37] describe

the benefits and Orsvarn and Bennick [38] provide explanation of

the overall configurations setup, integrations, output and the

benefits. Even though, the company has been very successful in

applying configurators to support their specification processes in

the past, receiving up-to-date and accurate information from

suppliers to use in the overall configuration process has proven to

be a challenge.

The case company has a great number of suppliers providing it

with customized products to be used in the overall design.

Therefore, there is a close dependency of receiving relevant

product information and prices from suppliers in the configuration

process. In many cases products are sourced from several suppliers

and it has to be considered which supplier is the most suitable one

for a particular project. The initial strategy for past years was to

include high-level product specifications from each supplier in

form of sub-models, modelled and maintained directly in the

configuration system. This additional responsibility requires a

regular follow up activity with the suppliers to ensure the

correctness and validity of the product specifications. There are

several challenges reported using this approach, as the knowledge

is not available in-house it can be difficult to access and validate it.

Furthermore, with no mechanism in place for the required supplier

updates to be communicated, the company has to compromise on

the overall configuration quality and generated specification

outputs.

In order to overcome these challenges, the company has made

an integration to one of their gear supplier’s configurator via API

web services as suggested by [7]. Through this integration,

information can be retrieved directly during the configuration

process, thereby leaving the modelling and maintenance task to

their suppliers. Through that the suppliers can obtain the

2
 A configurator is defined as model based expert system with it is own

knowledge base and inference engine.

Katrin Kristjansdottir, Sara Shafiee, Martin Bonev, Lars Hvam, Morten Hugo Bennick and Christian S. Andersen. 41

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

confidentiality of sensitive product data while increasing the level

of details and optimization and ensuring up-to-date provided

specifications.

In this chapter, first the procedure to include the suppliers’

information before the supplier integration and the main limitations

to those procedures will be elaborated. Secondly, the technical

setup and the protocols will be explained in order to give more

understanding of the overall technical setup for this specific case.

Thirdly, the impact from integrating the configurators across the

supply chains will be explained in relation with the propositions.

Finally, the suppliers’ incentives for providing the integrations and

the main organizational challenges with establishing the setup will

be addressed.

3.2 The prior documentation of the suppliers’
information

To include the suppliers’ information in the internal configurators

used at the case company, three different methods have been used

over the years. The method selected to document the supplier’s

information each time depends on the product complexity and the

availability of the product information. Following is a brief

description of those methods.

 The first method includes making a list of all possible

configuration of the supplied product. In cases where

highly complex product with great number of possible

configurations, it will become impossible to map down all

different configurations. Therefore, a limited number of

possible combinations of the products and pre-calculated

ranges of values are included in the configurator for the

product.

 The second method includes building a configuration

model based on the supplier’s documentation, which

allows covering all different configurations even for

complex products. However, the main limitations can be

traced to the knowledge not being available for the

programmers, which makes it difficult to access and

validate the models. Furthermore, changes over the time

are not always communicated, which can result in invalid

or inaccurate configurations of obsolete supplier designs.

 Finally, the third method is to integrate with .DLL3 files

provided by the supplier. The .DDL files can contain both

codes and data, which enables that the program division

into separate modules. Therefore, the .DDL files from the

suppliers can be incorporated into the configuration

system as separate components of the program. In these

cases, where .DDL files are used, it has to be assured that

in case of any changes, the supplier will send an updated

file to the company. Furthermore, the suppliers are in

most cases not willing to share company critical

information. Therefore, these files are often missing

product related information concerning the sensitive

aspect of the design and the overall cost structure.

Even though, these approaches have been used at the company

to include the suppliers’ information, they are not without

limitations. The main limitation is the insufficient level of detail of

the included product specification and its availability in an up-to-

3
 Dynamic link library (DDL)

date form. In order to overcome these limitations, the suppliers

could be contacted every time an input or a proposal from them is

required. However, that would delay the overall process, as the

lead-time for receiving input or proposal can take weeks.

Furthermore, this requires resources being available both at the

company and the supplier to request and send the information. This

scenario is therefore regarded being unfeasible or impractical. With

the current technological progress, an alternative approach to

receive up-to-date and accurate products’ information from

suppliers is to establish integration that allows data exchange in

automatic and efficient way. Here, the case company has decided

to connect its internal configurator via API web services to the

supplier’s configurator. During the configuration process input

parameters configured in prior steps are sent to the supplier’s

configurator, which calculates possible solutions within the given

criteria in 0,1 - 0,2 seconds and send back the requested product

specifications. This setup enables the company to use the correct

and up-to-date designs. Besides, suppliers have the ability to

optimize the design for the particular customer requirements with a

greater level of detail, instead of using a fixed range of pre-

calculated calculations. The technical setup used in this case study

is further described in next section.

3.3 The technical setup and the protocols at the
case company

The case company and the supplier both had operational

configurators used for internal operation to support the sales and

engineering processes. The technical setup allows the configurators

at both companies to interact (business-to-business

communication) in order to retrieve real-time and accurate product

configuration from the supplier. In Figure 3, the setup of the

supplier integration in the case company is demonstrated. The

company has currently established integration with one of their

suppliers but has planned to expand the numbers of suppliers in

close future as is shown on the figure below. By expanding the

number of suppliers it both allows expansion of the parts that can

be configured via the integration and also by including number of

suppliers providing the same product the most desirable supplier

can be found each time in automatic way, which is done manually

today.

Figure 3. The technical setup at the case company:

the supplier integration via API web services

42 Improved Performance and Quality of Configuration Systems by Receiving Real-Time Information from Suppliers.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

3.3.1 The setup for transferring data from one system to
another system

Confidential data are transferred across the companies and

therefore special security methods are required. In this specific

case, the confidential part is limited to the pricing logic as different

product designs are already accessible for customers in product

catalogues. Therefore, by establishing the integration the supplier

does not have to revile the logic behind the pricing as only the final

price for the specific configurations are reviled. In order to reduce

the risk from the supplier’s site of sharing confidential information,

several methods have been established. Those method are not only

limited to the prices but to the overall access of the information

that can be gathered from the supplier’s configurator.

In order to prevent spying collection, data tracking and men in

the middle attack, a third party is not used for transferring the data

and the data communication is directly established between the two

companies. The case company has special access rights to the

supplier’s server, which can be used without identification after

login. The initial login therefore only enables persons having

access to the configurators at the case company to access the

supplier’s configurator as the server is not accessible without the

login. In addition at the case company, the access rights are not

shared with the whole company as it is only available for the

employees, which needs to work with the specific

configuration/product model. These security methods should

therefore protect the supplier from misusages of the integration

both from the case company and from other external threats.

3.3.2 Input and output parameters

The data exchange between the case company and the supplier is

done via .XML files. The case company sends 20 design

parameters (such as min/max torque, what the reduction should be

in the gearbox, gear factors), which are defined in the previous

steps of the configuration process. The request is to find a design

within these parameters, where the supplier’s configurator, based

on their logic and business rules, find all possible design solutions,

which can be around 100 and the prices for the different designs. It

is highly unlikely that the supplier’s configurator will not be able to

find feasible solution. However, if that situation comes up either

parameters have to be changed in the configuration at the case

company or the supplier has to be contacted. The design solutions

are sorted according to prices (from lowest to highest) and sent

back on an .XML format via the web API web services. For this

specific product, the prices are most important and therefore the

cheapest solution is automatically selected by the case company’s

configurator. It should though be noted that other parameters can

be used to sort after, such as in terms of quality, lead-time etc. The

information retrieved from the supplier is then used in the further

steps of the configuration as the dimensioning of the product, will

affect the overall design under configuration at the case company.

3.4 The impact from integrating configurators
across the supply chains

3.4.1 Reduced complexity of the configuration model

The configurator models operated at the case company contain a

number of sub-models that in turn include parts and modules

bought from suppliers (as described in section 3.2). Outsourcing

these sub-models, the complexity of the configuration model has

been reduced. By reducing the complexity, in terms of business

rules, tables, parts and values, of the configurators’ models, the

development and maintenance effort can simultaneously be

reduced as the supplier’s configurator is accessed in the

configuration process. The supplier therefore becomes responsible

of developing and maintaining his own products’ information. In

Table 1, it is summarized how the supplier integration affects the

complexity of one of the configurator’s model operated at the case

company and the impact is has on the development time.

Table 1 Summary of reduction of complexity in the configuration at the

case company

Characteristics of

the configurator

Before the supplier’s

integration

After the supplier’s

integration

Business rules 86 0

Tables 13 0

Parts 17 1

Values 18.836 20

Development time

of the system

8+ days 2 days

Specialist time spent

on the development

8+ days 0 days

3.4.2 Improved quality of the specifications in terms of
updated and more detailed product information

An important aspect of the proposed approach is improved quality

of the products’ specification as they are based on real-time,

optimized and more detailed information. This secures a valid

solution, right dimensioning of the product under question and

exact and up-to-date prices are used in the overall configuration

process.

 For the product provided by the supplier addressed in this case

study that is gears, the numbers of possible configurations for a

product are 25-26 millions. When having so many possible

combinations, it is not feasible to include them all by using Excel

sheets or preliminary databases as it will take too long time to look

up and affect the time it takes to start up the configurators.

Therefore, for the product in question in this case study only 20

different configurations were included (out of 25-26 millions) in

the configurators before the integration. As a result to this, the

company was not using the most optimal design of the supplier’s

product (as feasible solution is selected based on limited number of

configurations). The solution that was chosen was always scaled up

to the predefined range, which means that surrounding systems

also needed to be scaled up. As if one part of the design is over

dimensioned other parts have to be adjusted accordingly, which

will cause a snowball effects in the overall design. In Figure 4 this

is demonstrated where the blue line represent the predefined

configuration that would have been selected prior to the supplier

integration and the red line represent the exact configuration,

which can be selected as a result to more detailed information

retrieved after the supplier integration was established. The

product’ dimensions for this specific product are determined based

on required kilo watts (kW).

Katrin Kristjansdottir, Sara Shafiee, Martin Bonev, Lars Hvam, Morten Hugo Bennick and Christian S. Andersen. 43

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Figure 4 Dimensioning intervals of the equipment before and after the

supplier integration

Having the precise dimensions of the supplier’s product in the

configuration process has proven to improve the accuracy of the

generated specifications and reduce over-dimensioned surrounding

systems. Therefore, the company has archived both immediate and

in-direct cost savings as a result to more detailed product

information. The immediate cost saving, for the example presented

in Figure 4, is the difference between the 4,00 kW and 2,50 kW

gear while the in-direct cost savings represent the related systems,

or the frame as the gear is positioned on and again the platform

area, weight of supporting building and etc. It is estimated that the

company saves up to 20% in material cost in the overall design by

having more detail information in the design phase.

3.5 Supplier incentive for providing integration

From a supplier perspective this approach provides additional

benefits as it allows the supplier to protect sensitive product

information, as these are considered as a secure black box in the

configuration process. The supplier also saves resources for

generating and sending proposals to their clients and thereby

drastically reducing lead-times across the supply chains. Finally,

the supplier hopes to increase their business share in long term with

the case company as when this integration has been established it

can easily be expanded to include additional products provided by

the supplier.

3.6 Challenges with the approach

The main challenges can be related to legal barriers from both

parties and to identifying suppliers that have the capabilities for the

suggested collaboration with respect to operating with

configurators.

For the companies addressed in this case study this is the new

way of doing business, which needs the management and power to

be able to execute it in a bigger scope so both parties can get some

substantial gains from it. The main challenges can therefore be

described in terms of organizational and not in terms of technical

challenges. From the technical aspect, the whole programming was

done in 2 days for the first time and afterwards for other

integrations it was even less than 1 day, which highlights that the

integration can be established without great effort.

4 DISCUSSIONS

The supplier integration used in the customization process where

configurators are connected via API web services has proven to

improve the overall process and provide substitutional benefits

both for the case company and their supplier. This can be traced to

accuracy of the suppliers’ data, where more detailed and optimize

information are provided, which are constantly up-to-date. This

has enabled the case company to save up to 20% of the overall

material cost in the overall design. Furthermore, the complexity of

the configuration models can be reduced and the time consuming

task of modelling and maintenance are delegated to the supplier.

Finally, with this setup the supplier does not have to revile the

actual logic behind the designs and the pricing strategy as the

supplier’s configurator is treated as a black box in the

configuration process.

 As the application of the configurators is constantly increasing,

this integration to supplier’s configurators becomes more realistic.

That is since the requirement for making the integration is limited

to the suppliers having operational configurators or willing to

develop a configurator, which is capable of covering the required

configurations. In addition to the integration that has been

established at the case company four other suppliers have been

identified that fulfil these requirements and have approved to

participate in the project.

Further work at the case company with this approach will

therefore include establishing the integration to greater number of

suppliers, where comparisons capabilities of the configurator are

used to identify the most suitable supplier. As for each product

bought at the company there are several suppliers able to provide

the product. For plant equipment, the aim is to have 2-3 suppliers

for each of the products and the most favourable supplier each time

will get the quote. The criterion for selecting the most desirable

supplier has to be selected in the system for different products. In

many cases the cheapest supplier would get the quote but it could

also be lead-time, quality etc. The configurations retrieved from the

suppliers are then sorted based on the selected criteria and the best

one is selected by the system. This will automate the processes of

comparing different suppliers’ offers, which is done manually in

the company today. For configurations on plant level there are

preferred suppliers and therefore this cannot be applied in these

cases. However, the comparison capabilities can be used to analyse

the impact from changing the preferred suppliers to see the effect it

has on prices, delivery-time etc.

The company has also made plans to increase the amount of

documents retrieved from the suppliers in the configuration

process. Therefore, further work will include making it possible to

retrieve documents such as, 3D models and technical specifications

as now only prices and dimensions of the product are received.

Furthermore, currently the integration is only used to receive data

as input in the configuration process, where the procurement will

then contact the supplier to make the actual order purchase. In

close future it is anticipated to automate that as well, so that the

product can be requested from the supplier via the integration.

44 Improved Performance and Quality of Configuration Systems by Receiving Real-Time Information from Suppliers.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

5 CONCLUSION

The present paper analyses the impact from having integrated

configurators in the supply chains in an ETO company. The

approach suggests the involvement of configurators that retrieve

accurate sub-product information in real-time from suppliers

during the customization process. The results indicate an improved

quality of the product specifications and reduced complexity of the

configurator model. Three propositions were developed to analyse

the impact from integrating configurator across the supply chains

to retrieve more accurate, detailed information and optimized in the

configuration processes.

The first proposition investigates if by applying this approach

the complexity of the configurator model can be reduced. The

modelling and development effort proved to be reduced at the case

company as they are not responsible for modelling the supplier’s

product information. Thereby the modelling and maintenance

effort is moved to the supplier. The findings support this

proposition as the complexity, which is defined in numbers of

business rules, tables, parts and values is reduced to almost zero.

This also effects the development time of the system which is

reduced from 8+ days to 2 and the specialist time spent on the

development has been reduced from 8+ to 0.

The second proposition questions if by integrating configurators

across the supply chains, the quality of the specifications generated

by the configurators will increase. The quality of the configurators

model in this article is defined in terms of improved accuracy as

the information retrieved via the supplier integration are optimized,

more detailed and up-to-date. The findings support this as over

dimensioning of different parts is not required as a result to

improved quality of the products’ specifications.

Finally, the third proposition is concerned with the improved

quality of the specifications will lead to cost savings at the

company. The result indicate that the company can save up to 20%

of material cost as a result to immediate and in-direct savings

gained from over dimensioning both the supplier’s product and the

surrounding systems. The results based on this study indicate that

significant benefits can be gained from increased supply chains

integrations in ETO companies where integrated configurators are

distributed across the supply chains.

REFFERNCE

[1] F. Salvador and C. Forza, ‘Configuring products to address the

customization-responsiveness squeeze: A survey of management

issues and opportunities’, International journal of production

economics, 91, 273-291, (2004).

[2] C. Forza and F. Salvador, ‘Application support to product variety

management’, International Journal of Production Research, 46,

817-836, (2008).

[3] A. Felfernig, G. E. Friedrich, D. Jannach, ‘UML as Domain Specific

Language for the Construction of Knowledge-based Configuration

Systems’, International Journal of Software Engineering and

Knowledge Engineering, 10, 449-469, (2000).

[4] P.A. Konijnendijk, ‘Coordinating marketing and manufacturing in

ETO companies’, International Journal of Production Economics,

37, 19-26, (1994).

[5] C. Hicks, T. McGovern and C. Earl, ‘Supply chain management: A

strategic issue in engineer to order manufacturing’, International

Journal of Production Economics, 65, 179-190, (2000).

[6] N. H. Mortensen, L. Hvam, A. Haug, P. Boelskifte, C. Lindschou and

S. Frobenius, ‘Making Product Customization Profitable’,

International Journal of Industrial Engineering: Theory,

Applications and Practice, 17, 25-35, (2010).

[7] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach, G.

Petrone, R. Schafer and M. Zanker, ‘A Framework for the

Development of Personalized, Distributed Web-Based Configuration

Systems’, Ai Magazine, 24, 93-108, (2003).

[8] L. Petnga and M. Austin, ‘An ontological framework for knowledge

modeling and decision support in cyber-physical systems’, Advanced

Engineering Informatics, 30, 77-94, (2016).

[9] R. Klein, ‘Customization and real time information access in

integrated eBusiness supply chain relationships’, Journal of

Operations Management, 25, 1366–1381, (2007).

[10] T. Blecker, N. Abdelkafi, G. Kreuter and G. Friedrich, ‘Product

configuration systems: State-of-the-art, conceptualization and

extensions’ in: A.B. Hamadou, F. Gargouri, M. Jmail (eds.): Génie

logiciel & Intelligence artificielle, Eigth Maghrebian Conference on

Software Engineering and Artificial Intelligence (MCSEAI), Sousse,

Tunesia, 25–36, (2004).

[11] F. Piller and P. Blazek, Core capabilities of sustainable mass

customization, 107-120, Knowledge-Based Configuration From

Research to Business Cases, (eds.) A. Felfernig, L. Hotz, C. Bagley

and J. Tiihonen, Morgan Kaufmann Publishers, Waltham, 2014.

[12] B. J. Pine, Mass customization: the new frontier in business

competition, Harvard Business Press, 1999.

[13] F. Piller, K. Moeslein and C. Stotko, ’Does mass customization pay?

An economic approach to evaluate customer integration’, Production

planning & control, 15, 435-444, (2004).

[14] L. L. Zhang, ‘Product configuration: a review of the state-of-the-art

and future research’, International Journal of Production Research,

52, 6381–6398, (2014).

[15] L. Hvam, N. H. Mortensen and J. Riis, Product customization,

Springer, Berlin Heidelberg, 2008.

[16] J. Tiihonen, T. Soininen, T. Männistö and R. Sulonen, State of the

practice in product configuration–a survey of 10 cases in the finnish

industry, 95-114, Knowledge intensive CAD, Springer US, 1996.

[17] C. Forza and F. Salvador, ‘Product configuration and inter-firm co-

ordination: an innovative solution from a small manufacturing

enterprise’, Computer in Industry, 49, 37–46, (2002).

[18] T. D. Petersen, Product Configuration in ETO Companies, 59-76,

Mass customization information systems in business, (eds.) T.

Blecker, Igi Global, 2007.
[19] T. Soininen, J. Tiihonen, T. Männistö and R. Sulonen,’Towards a

general ontology of configuration’, AI EDAM. 12, 357–372, (1998).

[20] C. Forza and F. Salvador, ‘Managing for variety in the order

acquisition and fulfilment process: The contribution of product

configuration systems’, International journal of production

economics, 76, 87–98, (2002).

 [21] R.. Handfield and E. Nichols, Introduction to supply chain

management, NJ: prentice Hall, Upper Saddle River, 1999.

[22] G. Stevens, ‘Integrating the supply chain’, International Journal of

Physical Distribution & Materials Management, 19, 3-8, (1989).

[23] R. Metters, ‘Quantifying the bullwhip effect in supply chains’,

Journal of operations management, 15, 89-100, (1997).

[24] H. Lee and V. Padmanabhan, S. Whang, ‘Information distortion in a

supply chain: The bullwhip effect’, Management science, 50, 1875-

1886, (2004).

[25] M. Frohlich and R. Westbrook, ‘Arcs of integration: an international

study of supply chain strategies’, Journal of operations management,

19, 185-200, (2001).

[26] P. Hines, N. Rich and J. Bicheno, ‘Value stream management’, The

International Journal of Logistics Management, 9, 25-42, (1998).

[27] R. Johnston and P. Lawrence, ‘Beyond vertical integration–the rise

of the value-adding partnership’, Harvard business review, 94-101,

(1991)

[28] G. Ragatz, ‘Success factors for integrating suppliers into new product

development’, Journal of product innovation management,14, 190-

202, (1997).

Katrin Kristjansdottir, Sara Shafiee, Martin Bonev, Lars Hvam, Morten Hugo Bennick and Christian S. Andersen. 45

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

[29] P. Tallon and K. Kraemer, ‘Multidimensional Assessment of the

Contribution of Information Technology to Firm Performance’,

Center for Research on Information Technology and Organizations,

(1996).

[30] J. Stroeken, ‘Information technology, innovation and supply chain

structure’, International Journal of Services Technology and

Management. 2, 269-288, (2001).

[31] T. Mukhopadhyay and S. Kekre, ‘Strategic and operational benefits

of electronic integration in B2B procurement processes’,

Management Science, 48, 1301-1313, (2002).

[32] K. C. Tan, ‘Supply chain management: supplier performance and

firm performance’, Journal of Supply Chain Management, 34, 2,

(1998).

[33] S. Vickery and J. Jayaram, ‘The effects of an integrative supply chain

strategy on customer service and financial performance: an analysis

of direct versus indirect relationships’, Journal of operations

management, 21, 523-539, (2003).

[34] J. Galbraith, Organizational Design, MA: Addison-Wesley, 1977.

[35] P. Milgrom and J. Roberts, ‘The economics of modern

manufacturing: Technology, strategy, and organization’, The

American Economic Review, 511-528, (1990).

[36] E. Brynjolfsson, L. Hitt, ‘Beyond computation: Information

technology, organizational transformation and business

performance’, The Journal of Economic Perspectives, 14, 23-48,

(2000).

[37] L. Hvam, ‘Mass customisation of process plants’, International

Journal of Mass Customisation, 1, 445–462, (2006).

[38] K. Orsvarn and M. H. Bennick, Tacton: use of Tacton configurator at

FLSmidth, 211-218, Knowledge-Based Configuration From Research

to Business Cases, (eds.) A. Felfernig, L. Hotz, C. Bagley and J.

Tiihonen, Morgan Kaufmann Publishers, Waltham, 2014.

46 Improved Performance and Quality of Configuration Systems by Receiving Real-Time Information from Suppliers.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Deriving Tighter Component Cardinality Bounds
for Product Configuration

Richard Taupe and Andreas A. Falkner and Gottfried Schenner1

Abstract. Product configuration is the task of specify-
ing products given a set of components and constraints for
their combination. Although the types of components do not
vary while solving a configuration problem, the exact compo-
nent cardinalities (i.e. numbers of components of each type)
are typically not known beforehand. Automatic configurators
benefit from tight lower and upper bounds for these cardinal-
ities, especially in large-scale domains.

In this paper, we show how to generically derive additional
constraints on component cardinalities from object-oriented
configurator models. This is achieved by utilizing information
contained in the multiplicities of associations. In order to cal-
culate tight bounds, we introduce new inequalities based on
association specialization. We show that this leads to tighter
cardinality bounds compared to earlier approaches. These
bounds can increase the performance of a constraint solver
significantly, as we demonstrate using a MiniZinc encoding of
object-oriented configuration models.

1 INTRODUCTION

Complex products consist of many components. For some of
them, the multiplicities are fixed (e.g. a car has 4 wheels),
whereas for others the number of components of a special
type is configurable, depending on technical constraints or
preceding decisions made by the user. An example of this
are railway interlocking systems. Real-world examples of such
systems often consist of hundreds of different part types and
tens of thousands of configured parts for hardware, software,
user interfaces, and communication equipment [12].

Almost all knowledge representation languages used for
product configuration allow to express constraints on cardi-
nalities. Object-oriented formalisms provide association mul-
tiplicities [21], Description Logics (OWL) offer qualified num-
ber restrictions [3], and in classical component-port models
the number of ports of a type restricts the number of con-
nected components (e.g. 4 wheel-ports for a car) [22].

In order to optimally support a user or an algorithmic solver
to find a consistent solution, it is helpful to know lower and
upper bounds on the numbers of components. These bounds
should be as tight as possible. Sometimes the cardinality infor-
mation alone is sufficient to decide if a configuration exists at
all, e.g. one cannot configure n cars with less than 4n wheels.

Most of previous work on reasoning about UML class di-
agrams has focused on their satisfiability and verification in

1 Siemens AG Österreich, Corporate Technology, Vienna, Austria
firstname(.middleinitial).lastname@siemens.com

the context of software engineering [4, 5, 11, 18]. However, a
product configurator’s fundamental reasoning task is not to
decide satisfiability but to actually find an instantiation of the
object model which corresponds to a buildable artefact in the
real world.

In this article, we show how to derive additional cardinal-
ity restrictions from a given configuration model. We assume
the configurator knowledge base to be defined in a UML-like
object-oriented formalism, i.e. component types correspond
to classes and port-to-port connections to associations.

Since we focus on UML, the basis of our analysis are as-
sociation multiplicities and additional information (e.g. sin-
gletons) found in UML class diagrams. This information is
translated to linear inequalities, thereby generating optimiza-
tion problems whose solutions correspond to the sought-after
cardinality bounds.

Furthermore, we address association specialization (i.e. sub-
set relations between associations) and necessarily empty
(“zero-zero”) associations which have not been studied before.
We show that specialized associations increase the expressive
power of UML class diagrams in terms of tightening bounds
on class cardinalities. Association specialization is frequently
used in product configuration to specify cardinalities of spe-
cific types. For example: Vehicles can have any number of
wheels, but cars have 4 wheels, bicycles have 2 wheels, etc.

This paper is organized as follows: First, we introduce a run-
ning example in Section 2. In Section 3 we propose a formal
description of a subset of the language of UML class diagrams
and explain how to extract linear inequalities from them, in-
cluding our new inequalities for association specialization. In
Section 4, we show how to compute class cardinality bounds
from the generated inequalities and how to utilize this knowl-
edge in automatic configurators. After an evaluation in Sec-
tion 5 and addressing related work in Section 6, the article is
concluded with a discussion in Section 7.

2 MOTIVATING EXAMPLE

The UML [21] class diagram in Fig. 1 constitutes a configu-
ration problem that shall serve as our running example.

The class diagram represents a company whose network in-
frastructure and real estate we want to manage. It consists
of eight classes and various associations between them. The
configuration entry class, of which exactly one instance ex-
ists, is Company . The network consists of up to 100 Devices
which are either PC s or Printers. Each PC must have a de-
fault printer. The company’s real estate consists of up to ten

Richard Taupe, Andreas Falkner and Gottfried Schenner. 47

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

PrintRoomOfficePCPrinter

<<abstract>>
Device

<<abstract>>
Room

Building<<singleton>>
Company

printers
0..1 0..1

printers

1..1 0..1pcs0 0

pcs

1..8 1..1

printers

1..1

1..*

devices

1..10..*

rooms

1..1

2..5

buildings

1..1 1..10

devices

1..1

1..100

defaultPrinter

1..1 0..*

Figure 1. Running example: Network and real estate of a company (UML class diagram)

Buildings, each of which has between two and five Rooms. A
room is either an Office or a PrintRoom. Each device knows
which room it is in. Each room contains an arbitrary number
of devices, but this number is constrained in the subclasses:
Each office contains between one and eight PCs and at most
one printer, while a print room contains one printer but no
other devices. To guarantee easy access to printers for the em-
ployees of our company, we require at least one per building.

The generalization arrows drawn between associations real-
ize the UML concept of association specialization [10], which
will be formalized in Section 3. Intuitively, this means that
the set of PC s in an Office is a subset of the set of Devices
in the same Office etc.

In the remainder of the article, class names will often be
abbreviated by only their upper-case letters.

Usually, configuration problems contain additional domain-
specific constraints. Such constraints, which are not shown
here due to lack of space, might enforce that the Printers
associated with a Building are the same ones that are associ-
ated with the building’s Rooms, or that a PC and its default
Printer must be in the same Building .

A solution to a configuration problem constitutes a configu-
ration, i.e. an instantiation of the class diagram that satisfies
all constraints (the domain-specific ones as well as the car-
dinality constraints on which we concentrate from now on).
Now imagine that, while searching for such a configuration,
one instance of PC is created. Because there exists an implicit
constraint that it must be associated with its default Printer ,
the question arises whether an existing printer should be used
or a new one should be created. If the maximum number of
devices in the company’s network is already reached or there
is a printer in the computer’s room, no new printer should be
instantiated. This is obvious to a human (at least in this toy
example), but not necessarily to an automatic solver.

3 CARDINALITY CONSTRAINTS IN
CLASS DIAGRAMS

To determine lower and upper bounds of class cardinalities
in UML class diagrams, we extract inequalities from them to
generate integer linear programs (ILPs). Solving those leads
to the desired results.

This approach was first used with Entity-Relationship di-
agrams [9, 17] and later adapted for object-oriented models
such as UML class diagrams [4]. We build upon the approach
for UML class diagrams, because this language is the de-facto
standard for describing object-oriented systems in general and
configuration problems in particular [15].

A UML class diagram2 consists of classes, binary associ-
ations and integrity constraints. A class represents a set of
individuals, called the instances of the class, sharing common
properties. Associations are relationships between classes. We
support the following integrity constraints:

• Is-a constraints (class hierarchy constraints) between
classes force the set of instances of one class to be a subset
of the instances of another class.

• Subset constraints between associations force the pairs of
class instances in one association to be a subset of the pairs
of class instances in another association. This realizes the
UML concept of association specialization [10].

• Cardinality constraints (multiplicities) defined on each side
of an association restrict the number of class instances in-
volved in the association.

We now define these notions more formally.

2 We define only a subset of the language as far as needed for
our purposes. Our definition of a class diagram is inspired by
the definition of an ER-diagram in [9]. A different set-theoretic
definition of class diagrams is provided by [5].

48 Deriving Tighter Component Cardinality Bounds for Product Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Definition 1 For our purposes, a class diagram CD is a
tuple (C, �C , A, �A, lb, ub), where

• C is a set of class symbols,
• �C ⊆ C × C is a non-circular binary relation between class

symbols representing the set of is-a constraints, the reflexive
transitive closure3 of which is denoted by �∗C,

• A ⊆ C × AS × C is a set of bidirectional associations
between two classes (AS being a set of valid association
symbols, e.g. the set of all strings over a given alphabet),

• �A ⊆ A×A is a non-circular binary relation between as-
sociations representing the set of subset constraints between
associations, the reflexive transitive closure3 of which is de-
noted by �∗A,

• lb: (A × {1, 2}) → N0 is a total function mapping each
end (1 and 2) of an association to the lower bound on its
multiplicity, which is a natural number, and

• ub: (A×{1, 2})→ N0∪{∗} is a total function mapping each
end of an association to the upper bound on its multiplicity,
which is a natural number or the asterisk.

Additionally, we define the following auxiliary functions:

• For all classes C ∈ C, their set of direct descendants is
denoted by children(C) = {C′ ∈ C | C′ �C C}.

• For all classes C ∈ C, the set including them and all their
descendants is called subfamily(C) = {C′ ∈ C | C′ �∗C C}.

• For all classes C ∈ C, the set of leaves of the generaliza-
tion tree rooting at C is denoted by leaves(C) = {C′ ∈
subfamily(C) | children(C′) = ∅}.

• For all associations A = (C1, AS,C2) ∈ A, we define the
two class access functions c1(A) = C1 and c2(A) = C2.

To illustrate Definition 1, we apply these concepts to a sub-
set of our running example (cf. Fig. 1):

C = {C ,D ,P ,PC ,B ,R,O ,PR}
P �C D ,PC �C D ,O �C R,PR �C R

A = {(R, devices,D), (O, pcs, PC), . . . }
(O, pcs, PC) �A (R, devices,D), . . .

lb((R, devices,D), 1) = 1, ub((R, devices,D), 1) = 1,

lb((R, devices,D), 2) = 0, ub((R, devices,D), 2) = ∗, . . .

An instance of a class diagram is a finite collection of in-
stances of the involved classes and associations that satisfies
the integrity constraints inherent in the diagram. Formally,
this is based on the notion of interpretation.

Definition 2 An interpretation I = (∆I , ·I) of a class
diagram CD consists of a set ∆I (the domain of I) and a
function ·I (the interpretation function of I), the latter of
which maps

• every class C ∈ C to a subset CI of ∆I and
• every association A ∈ A to a subset AI of ∆I ×∆I .

3 The reflexive transitive closure R∗ of a relation R ⊆ S × S is the
subset-minimal relation fulfilling the following three conditions:

1. R ⊆ R∗ ⊆ S × S

2. R∗ is reflexive (i.e. ∀s ∈ S : sR∗s)

3. R∗ is transitive (i.e. ∀a, b, c ∈ S : (aR∗b ∧ bR∗c)⇒ aR∗c).

The elements of CI and AI are called instances of C and
A, respectively.

Definition 3 An interpretation I of a class diagram CD is
said to be a model of CD if it satisfies the following condi-
tions:

• For all C1, C2 ∈ C it holds that C1 �C C2 =⇒ CI1 ⊆ CI2 .
• For each association A = (C1, AS,C2) ∈ A it holds that
AI ⊆ CI1 × CI2 .

• For all A1, A2 ∈ A it holds that A1 �A A2 =⇒ AI1 ⊆ AI2 .
• For each association A = (C1, AS,C2) ∈ A it holds that its

cardinality constraints are respected, i.e.

– ∀c1 ∈ C1 : lb(A, 2) ≤ |{(c1, c2) ∈ AI | c2 ∈ CI2 }| ≤
ub(A, 2) and

– ∀c2 ∈ C2 : lb(A, 1) ≤ |{(c1, c2) ∈ AI | c1 ∈ CI1 }| ≤
ub(A, 1),

where | · | denotes the cardinality of a set and n ≤ ∗ is
trivially satisfied for every n ∈ N0.

In the remainder of this paper, we assume all interpreta-
tions to fulfill these conditions.

3.1 Extracting inequalities from class
diagrams

The original motivation to derive inequality systems from
class diagrams was to check their correctness. In this sense, a
database schema without is-a constraints is strongly satisfiable
if each of its classes is non-empty in at least one instance of the
schema [14, 17]. In the presence of is-a constraints, a schema
is satisfiable if it has a non-empty model, and it is called
finitely satisfiable if it has a finite model. The latter property
is more relevant in practice because both in databases and in
knowledge representation we are interested in finite models
only [9].

Regarding UML class hierarchy concepts (cf. [4]), we re-
strict generalization sets to be complete and disjoint, because
these properties are required in all configuration problems
that we see in practice4. A generalization is complete if ev-
ery instance of the superclass belongs to at least one sub-
class; and it is disjoint if the instance sets of the subclasses
are disjoint. In Fig. 1, this means that every Device is a
PC or a Printer5 but not both, with similar constraints for
Rooms. More formally, a generalization with root C ∈ C is
complete in an interpretation I if CI =

⋃
C′∈children(C) C

′I

and it is disjoint if for all C1, C2 ∈ children(C) it holds that
C1 6= C2 =⇒ CI1 ∩ CI2 = ∅.

Also, we admit only single inheritance (in contrast to mul-
tiple inheritance), i.e. C �C P1 ∧ C �C P2 =⇒ P1 = P2.

Associations are restricted to be unique, which means that
the same pair of objects cannot occur multiple times in the
same association [11, 14]. This is trivially satisfied in our case
due to the definition of association mappings in Definition 2.

For each class C, we have a variable |C| which denotes
the class’ cardinality, i.e. |C| is a shorthand for |CI | in any

4 Where completeness does not hold, it can easily be established
by introducing an additional subclass.

5 This is additionally represented by the <<abstract>> stereotype
on the Device class.

Richard Taupe, Andreas Falkner and Gottfried Schenner. 49

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

interpretation I. Each variable’s domain is the set of non-
negative integers, i.e. |C| ∈ N0 for all C ∈ C.

The authors of [11, 14] describe a method to translate as-
sociations from UML class diagrams to linear inequations6.

lb(AB, 1) = n1,
lb(AB, 2) = m1,

ub(AB, 1) = n2

ub(AB, 2) = m2

BA AB

n1..n2 m1..m2

Figure 2. A binary association with multiplicities

In the small class diagram shown in Fig. 2, two classes A
and B are associated with each other by association AB. Each
instance of A is associated with at least m1 and at most m2

instances of B and each instance of B is associated with at
least n1 and at most n2 instances of A. Based on the assump-
tions above, the inequalities in Theorem 1 are generated.

Theorem 1 (proven in [14]7)

lb(AB, 2) · |A| ≤ ub(AB, 1) · |B| (1)

lb(AB, 1) · |B| ≤ ub(AB, 2) · |A| (2)

|A| > 0 =⇒ |B| ≥ lb(AB, 2) (3)

|B| > 0 =⇒ |A| ≥ lb(AB, 1) (4)

For (PC , pcs,O) ∈ A from our running example, we obtain
the following inequalities:

1 · |PC| ≤ 8 · |O|
1 · |O| ≤ 1 · |PC|
|PC| > 0 =⇒ |O| ≥ 1

|O| > 0 =⇒ |PC| ≥ 1

Inequalities (3) and (4) are so-called conditional inequali-
ties, i.e. the inequality to the right of the implication is only
required to hold if the condition to the left of the implication
holds. In [11], the generated inequalities are used to detect in-
consistencies as well as to construct minimal configurations.
CLEWS8 is a tool that implements this approach [20].

Object-oriented models typically allow classes to be orga-
nized in hierarchies based on a containment relation (is-a con-
straints). The presence of such constraints makes reasoning
about a schema much harder [9].

The authors of [4] also process class diagrams and suggest a
translation of is-a constraints to associations with multiplicity
1 at the parent class and 0..1 at the child class. Additionally,
they propose adding a constraint stating that the number of
instances of the parent class must be equal to the sum of in-
stances of the child classes in case the hierarchy is disjoint and
complete. This amounts to the following equation for general
class hierarchies.

6 However, slightly different notations are used in both articles.
7 (1) and (2) correspond to My ≥ nx and Nx ≥ my and (3) and (4)

correspond to xy ≥ nx and xy ≥ my in Theorem 9 in [14].
8 http://logic.at/clews/

Theorem 2

|P | =
∑

C∈children(P)

|C|, for all P ∈ C where children(P) 6= ∅

(5)

Proof 1 Equation (5) is a direct consequence of the assump-
tion that class hierarchies are complete and disjoint. �

Applying this to our running example in Fig. 1, we obtain
the following additional equations:

|D| = |PC|+ |P |, |R| = |PR|+ |O|

3.2 Increasing expressiveness through
association specialization

To ease the modeling of different multiplicities and partner
types for specialized associations in subclasses, our approach
supports association specialization. We use the class diagram
depicted in Fig. 3 to explain the general setting. The UML fea-
ture of association specialization9 [10, 21] is used to describe
subset constraints between associations. This means that the
association AB′ between A′ and B′, which are (direct or indi-
rect) descendants of A and B, specializes the association AB
between A and B, i.e. AB′ �A AB. This, in turn, means that
every instance of AB′ is also an instance of AB. Of course,
class hierarchies can be of arbitrary breadth and depth. It is
allowed that subfamily(A) = {A} and/or A′ = A (or similarly
with B).

...B’A’...

BA

AB’

AB

Figure 3. A class hierarchy featuring association specialization

As a special case, we admit so called “zero-zero” associa-
tions whose interpretation necessarily needs to be empty. This
is used to disallow certain combinations of classes to be asso-
ciated with each other10. Such an association exists between
PC and PrintRoom, i.e. no print room contains a PC.

Because of the assumptions we make on class diagrams,
only leaf classes can be instantiated. Therefore, we “propa-
gate” associations for which no specialization exists down to
the leaf classes. To define the notion of association specializa-
tion more formally, we introduce the concept of leaf associa-
tions.

Definition 4 For an association A ∈ A, the set A∗ defines
the leaf associations of A. For A = (C1, AS,C2), A∗ =

9 UML provides two additional concepts which are similar to associ-
ation specialization, called association subsetting and association
redefinition [10]. The subtle differences between these constructs
and association specialization are out of scope of this article.

10 By that, zero-zero associations have the same effect as cross-tree
constraints of the excludes type in Feature Models [6].

50 Deriving Tighter Component Cardinality Bounds for Product Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

leaves(C1)× {AS} × leaves(C2), i.e. all possible associations
between a leaf of C1 and a leaf of C2. The definitions of lb
and ub must be extended accordingly for associations A′ ∈ A∗
that are not explicitly defined in A:

• The lower bounds of such associations must be zero, because
we cannot make any claims on the minimal cardinality of
subclasses which are not part of an association: lb(A′, 1) =
lb(A′, 2) = 0.

• The upper bounds, on the other hand, can be inherited from
an association on the path to the root of the class hierarchy,
because they are valid for all descendants of their defining
class.
More formally: For a class CA′

1 ∈ {c1(A′) | A′ ∈ A∗}
that does not occur in an association specializing A (@A′ ∈
A : A′ �∗A A ∧ c1(A′) = CA′

1), we define the nearest defini-

tion of A as nearest(A,CA′
1) := A′ ∈ A s.t. A′ �∗A A and

there is no A′′ in-between (@A′′ ∈ A : A′ 6= A′′ ∧ A′′ �∗A
A∧CA′

1 �∗C c1(A′′) �∗C c1(A′)). Then, ub(A′, 1) = ub(Ā′1, 1)
where Ā′1 = nearest(A′, c1(A′)) (and accordingly for C2).

We use this to derive the additional inequalities in Theo-
rems 3 and 4.

Theorem 3 Using the symbol AB′ as an abbreviation for the
triple (A′, AS,B′) ∈ AB∗ and the symbol

∑
as an abbrevia-

tion for
∑

AB′∈AB∗ , the following additional inequations hold:

lb(AB, 1) · |B| ≤
∑

ub(AB′, 1) · |B′| (6)

lb(AB, 1) · |B| ≤
∑

ub(AB′, 2) · |A′| (7)

lb(AB, 2) · |A| ≤
∑

ub(AB′, 1) · |B′| (8)

lb(AB, 2) · |A| ≤
∑

ub(AB′, 2) · |A′| (9)
∑

lb(AB′, 1) · |B′| ≤ ub(AB, 1) · |B| (10)
∑

lb(AB′, 1) · |B′| ≤ ub(AB, 2) · |A| (11)
∑

lb(AB′, 2) · |A′| ≤ ub(AB, 1) · |B| (12)
∑

lb(AB′, 2) · |A′| ≤ ub(AB, 2) · |A| (13)

Proof 2 For every instance of A, there are at least lb(AB, 2)
different tuples in the association, i.e. lb(AB, 2) · |A| ≤ |AB|.
For every leaf association AB′ ∈ AB∗, similar inequali-
ties can be constructed, e.g. |AB′| ≤ ub(AB′, 1) · |B′|. This
can be summed up over all leaf associations, i.e.

∑ |AB′| ≤∑
ub(AB′, 1) · |B′|. Because the set of (interpreted) leaf as-

sociations defines a partition over the interpreted root associ-
ation, it holds that |AB| =

∑ |AB′|, which proves (8). The
other inequations can be proven analogously. �

Intuitively, (8) and (12) correspond to (1), and (7) and (11)
correspond to (2), where one side of the inequality is replaced
by a sum over an entire class hierarchy, respectively. In other
words: (8), for example, states that there cannot be more
instances of A than can be associated with instances of leaf
classes of B; and (6) limits instances of B by the number of
times that its leaf classes can be associated with instances of
A’s leaf classes.

The two conditional inequalities (3) and (4) could also be
adapted for association specialization, but this does not lead
to any additional information.

Theorem 4 For all A′ ∈ subfamily(A), the following addi-
tional inequations hold, where A′B∗ stands for {AB′ ∈ AB∗ |
c1(AB′) = A′}:

lb(AB, 2) · |A′| ≤ max
AB′∈A′B∗

(
ub(AB′, 1)

)
· |B| (14)

min
AB′∈A′B∗

(
lb(AB′, 1)

)
· |B| ≤ ub(AB, 2) · |A′| (15)

For all B′ ∈ subfamily(B), the following additional inequa-
tions hold, where AB ′∗ stands for {AB′ ∈ AB∗ | c2(AB′) =
B′}:

lb(AB, 1) · |B′| ≤ max
AB′∈AB′∗

(
ub(AB′, 2)

)
· |A| (16)

min
AB′∈AB′∗

(
lb(AB′, 2)

)
· |A| ≤ ub(AB, 1) · |B′| (17)

Proof 3 From the proof for Theorem 1, we know that
lb(AB, 2) · |A| ≤ |AB| holds. For any A′ ∈ subfamily(A) it
holds that |A′| ≤ |A|, thus lb(AB, 2)·|A′| ≤ |AB| holds. On the
other hand, A cannot be associated with a higher number of Bs
than any of its leaves, so |AB| ≤ maxAB′∈A′B∗ (ub(AB′, 1)) ·
|B|. Combining these findings, we prove (14). Inequations
(15) to (17) can be proven analogously. �

Applying Theorems 3 and 4 to our running example11, we
obtain the following additional inequations12:

1 · |D| ≤ 2 · |P |+ 1 · |PC| (6)

1 · |D| ≤ 9 · |O|+ 1 · |PR| (7)

0 · |P |+ 1 · |PC| ≤ 1 · |D| (10)

1 · |O|+ 1 · |PR| ≤ 1 · |D| (12)

1 · |P | ≤ max(1, 1) · |R| (14)

min(0, 1) · |R| ≤ 1 · |P | (15)

1 · |PC| ≤ max(0, 8) · |R| (14)

min(0, 1) · |R| ≤ 1 · |PC| (15)

4 DETERMINING AND UTILIZING
CLASS CARDINALITY BOUNDS

Having defined all inequalities that are extracted from class
diagrams, we now describe how they are used to find lower
and upper bounds for cardinalities of classes.

4.1 Generating and solving linear programs

As already mentioned, some information on the cardinalities
must be given. Otherwise, not much information on lower
and upper bounds can be obtained from the linear program.
For example, configuration problems are often constructed to
have a root class of which exactly one instance exists, or the
user could provide more information, e. g. that at most two
hard drives are allowed in a computer configuration. Such
information is translated to additional (in)equalities.

11 Inequations (8), (9), (11), (13), (16) and (17) are omitted here,
because they cannot contribute anything to cardinality bounds
due to the unboundedness of r devices near D. For Theorem 4,
only the inequations for A′ ∈ {P, PC} are given.

12 The inequations in the example have already been simplified.
The full version of (6) reads: 1 · |D| ≤ 1 · |P |+ 1 · |PC|+ 1 · |P |+
0 · |PC|.

Richard Taupe, Andreas Falkner and Gottfried Schenner. 51

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Table 1. Computed cardinality bounds for the running example

C D P PC B R O PR

Associations 0..∞ 0..∞ 0..∞ 0..∞ 0..∞ 0..∞ 0..∞ 0..∞
There is only one company 1..1 1..100 1..∞ 0..∞ 1..10 2..50 0..∞ 0..∞
Generalizations 1..1 2..100 1..100 0..97 1..10 2..50 0..50 0..50

Association specialization 1..1 2..100 1..50 0..97 1..10 2..50 0..50 0..50

Fixed B, PR, O 1..1 40..100 10..40 30..90 10..10 40..40 30..30 10..10

To calculate lower and upper bounds of individual classes’
cardinalities, we generate two optimization problems per
class: One maximizes the value of the variable representing the
cardinality of the class, the other minimizes it. In this step, an
external ILP solver is employed to solve the generated linear
program. We used lp solve13 and SCIP14 [1] interchangeably
in our experiments.

The conditional constraints (3) and (4) make it possible
to derive further inequalities after an optimization problem
is solved. Because of this, we solve each problem iteratively
until no further inequalities are added.

Algorithm 1 presents procedure ComputeBounds that
computes the lower and the upper cardinality bounds of a sin-
gle class. It calls ComputeBound twice, once for each bound.
The conditional inequations (3) and (4) are generated in line
6, and all unconditional inequalities in line 7. Then, itera-
tively, the linear program is either minimized or maximized
by the external ILP solver in line 10.

After being solved, the linear program is extended by the
conditional inequalities whose premises are satisfied in line 11.
When no new conditional inequations can be satisfied15, the
value corresponding to the relevant class is extracted from the
solution and returned in line 13.

Algorithm 1 Cardinality bounds computation for one class

1: procedure ComputeBounds(CD ,C ∈ C)
2: min← ComputeBound(CD , “minimize”, C)
3: max← ComputeBound(CD , “maximize”, C)
4: return (min,max)

5: procedure ComputeBound(CD , optimization, C ∈ C)
6: CI ← ExtractConditionalInequations(CD)
7: I ← ExtractUnconditionalInequations(CD)
8: repeat
9: I ′ ← I

10: S ← Solve(I ′, optimization, C)
11: I ← I ′∪ GetSatisfiedCondIneqs(CI , S)
12: until I ′ = I
13: return ExtractValue(S, C)

Table 1 shows the computed cardinality bounds for our run-
ning example (see Fig. 1). From the top to the bottom of the
table, information is successively added to tighten the cardi-
nality bounds: In the row labeled Associations, (1) to (4) are
generated for all associations, which gives us no bounds at all.
In the next row, there is one and only one company, which
makes all bounds tighter except for classes PC , PR and O.

13 http://lpsolve.sourceforge.net/5.5/
14 http://scip.zib.de/
15 Algorithm 1 is guaranteed to terminate because CI is finite and

thus I will eventually reach a fixpoint.

Next, the constraint for complete and disjoint generaliza-
tions (5) is added, which leads to several interesting new
bounds. Because we know that there are at least two rooms
and that every room must contain at least one device, the
lower bound for D becomes 2. The PC case is a bit more
complex: In case there were more than 80 PC s, we would
need at least 3 buildings to accommodate them. Since every
building needs a printer, 3 of the maximum number of 100
devices must be printers, so there can be at most 97 PC s.

When considering the constraints generated for association
specialization (cf. Theorems 3 and 4), we additionally learn
that there cannot be more printers than rooms (because every
type of room contains at most one printer).

Assuming that the physical real estate of the company is
fixed, we incorporate in the last row the user input that there
are exactly ten buildings, ten print rooms and 30 offices.
Thereby, all bounds are tightened even further.

4.2 Integrating the presented approach in
automatic configurators

We have integrated the techniques described so far in
S’UPREME, a domain-independent framework for product
configurators that is developed and used internally within
Siemens [16]. S’UPREME is a (semi-)automatic configurator,
i.e. it can be used by alternating manual and automated step
sequences.

In automatic mode, classes of the configuration model are
instantiated when an association contains too few instances,
i. e. when the implicit cardinality constraint attached to an
association is violated.

During manual configuration, a user can feed additional
knowledge about the structure of the problem to the solver.
This can be used to further constrain the cardinalities in the
knowledge base as shown in the example at the end of Table 1.

Other solvers can benefit as well by integrating the pre-
sented techniques for computing cardinality bounds during
knowledge base design. Most of the information required to
construct the linear (in)equalities presented above is con-
tained in the class diagram itself: It lies in the associations’
cardinality constraints. Most models, however, still admit in-
finite instantiations. This is the reason why we need upper
bounds on the cardinalities of at least one class to be able to
compute upper bounds for other classes from the knowledge
base alone. In configuration problems, there often exists a root
class whose cardinality is exactly one, which can already be
used as a means to this end.

Computing cardinalities already at knowledge base design
time has two advantages: First, they can be used to stati-
cally check the consistency of the knowledge base (i.e. the
domain model, consisting of the class diagram and the ad-

52 Deriving Tighter Component Cardinality Bounds for Product Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Table 2. Number of failures encountered until solution was found (maximum number of objects = 50); CC=with cardinality
constraints, D=Device, P=Printer, PC=PC, B=Building, R=Room, O=Office, PR=PrintRoom

Fixed D P PC B R O PR
objects CC CC CC CC CC CC CC

1 ∗62 ∗1 48 2 4 1 49 2 ∗171 ∗1 5 0 6 0

2 2 1 2 2 4 0 719,982 2 6 2 7 2 8 0

3 4 1 4 0 4 0 - 3 25 6 78 7 21 0

4 10 0 10 0 4 0 - 4 404 3 147 20 46 0

5 34 0 34 0 4 0 - 5 8,788 4 179 94 52 0

6 189 0 - 0 4 0 - 6 1,432,315 4 11,746 700 1,422 0

7 188 0 - 0 4 0 - 7 8,976,565 5 63,183 4,730 5,653 0

8 187 0 - 0 4 0 - 8 - 6 641,246 44,236 34,285 0

9 186 0 - 0 22 0 - 9 - 7 7,555,163 452,634 260,133 0

10 185 0 - 0 19 0 - ∗1 - 8 - 5,323,734 2,311,113 0

ditional domain-specific constraints). Second, the computed
cardinalities can later be utilized by a solver without needing
any additional computational efforts.

4.3 Integrating the presented approach in
constraint solvers

An encoding of a configuration problem in a constraint lan-
guage like MiniZinc16 [19] can also be seen as an automatic
configurator. Such an encoding needs to contain variables for
each object that may potentially be created during solving,
and it must distinguish between used and unused instances.

There are two ways for such encodings to profit from our
approach: Either, the cardinality bounds are pre-computed
as described in Section 4.1 and included in the encodings as
constants; or the generated (in)equations are directly included
in the encodings as constraints.

5 EVALUATION

For this article, we chose to feature the evaluation of the con-
straint solving approach presented in Section 4.3. The config-
uration problems were encoded in MiniZinc, using a generic
object-oriented encoding17. To evaluate the effects of the ad-
ditional cardinality constraints on MiniZinc models of a con-
figuration problem, we generated a set of random test cases
for several domains. Here, the results for our running example
are presented. Each test case was executed twice: Once with
the additional cardinality constraints, once without.

Table 2 shows the number of failures for the different test
cases encountered by MiniZinc (with Gecode solver) until a
solution is found. The maximum number of objects is 50 in
all test cases, while in each test case the cardinality of a single
class is fixed. This class and its cardinality are given in the
first row resp. column. For the cases where no solution can be
found within the time limit of 15 minutes, “-” is given instead
of the number of backtracks. Unsatisfiable cases are marked
with an asterisk. For example, finding a solution with exactly
5 printers (column PR, row 5) requires 0 backtracks when
the additional cardinality constraints (CC) are present, but
52 when they are not.

16 http://www.minizinc.org
17 The MiniZinc models and data can be found at https://github.

com/siemens/OOCSP.

Without using the generated inequalities, the test cases can
only be solved with a substantial number of failures (back-
tracks) or cannot be solved at all within the given time frame
(15 minutes). Running the same test cases with the inequali-
ties, almost all test cases can be solved with very few failures
within one minute.

Although these results were confirmed in further exper-
iments with different domains, occasionally adding the in-
equalities deteriorates the solver performance. In these cases
the additional inequalities lead the solver into a part of the
search tree where no solution can be found.

6 RELATED WORK

Using linear inequalities to decide the satisfiability of object-
oriented data models has a long history in software engineer-
ing and artificial intelligence [17]. Our approach for generating
inequalities extends the work of [4, 5, 11, 14, 18].

In [7], the correctness of UML/OCL models is verified using
constraint programming. An approach combining UML, DL
(description logics) and constraint programming is described
in [8].

A Logic for Configuration Problems, called LoCo, is intro-
duced in [2]. The authors discuss a logic-based formalism to
describe configuration problems. For this formalism, they in-
troduce inequalities that are similar to those proposed by [11].
Additionally, they introduce a concept called “one-to-many
axioms” which leads to similar inequalities as those presented
in Theorem 3, but which do not support generalization hier-
archies.

The authors of [13] describe a hybrid description logic [3]
reasoner combining an Abox tableau calculus and integer lin-
ear programming. They achieved improvements, especially in
cases where large numbers occur in number restrictions. As
far as our experience goes, few DL reasoners are capable of
efficiently dealing with number restrictions, which correspond
to association multiplicities in UML. Like in the case of UML
object models, the reason seems to be that few real-world
ontologies use specific number restrictions and closed-world
reasoning.

7 CONCLUSION

We have shown how linear inequalities can be extracted from
UML class diagrams to derive lower and upper bounds for

Richard Taupe, Andreas Falkner and Gottfried Schenner. 53

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

class cardinalities. Compared to the inequalities known from
earlier work, additional knowledge inherent in association spe-
cialization is exploited in our approach. This leads to the
derivation of tighter cardinality bounds in domains with com-
plex class hierarchies. Such constellations often occur in con-
figuration problems, an example of which is the placement of
hardware modules of various widths into hardware racks of
various types [12].

The additionally derived information can be used by au-
tomatic configurators to increase both efficiency and user-
friendliness. In this way, more configuration problems can be
solved automatically, the number of necessary user decisions
is reduced (by removing alternatives which do not lead to
an acceptable solution), and the final configuration result is
achieved faster. This holds especially for the configuration
problems we have encoded in MiniZinc in our evaluation.

7.1 Future work

Even though we have successfully applied the approach de-
scribed in this article, there are still some open questions.
In particular, we will include approaches where cardinality
bounds are precomputed (cf. Section 4) in our in-depth eval-
uation. Also, it will be interesting to thoroughly evaluate our
approach on real-world examples we encounter in practice.

ACKNOWLEDGEMENTS

This work was funded by the Vienna Business Agency (Aus-
tria), in the programme ZIT13 plus, within the project
COSIMO (Collaborative Configuration Systems Integration
and Modeling) under grant number 967327; and by the Aus-
trian Research Promotion Agency within the project HINT
(Heuristic Intelligence) under grant number 840242. The au-
thors thank Gernot Salzer and Alois Haselböck for their com-
ments on previous versions of this article.

REFERENCES

[1] Tobias Achterberg, ‘SCIP: Solving Constraint Integer Pro-
grams’, Mathematical Programming Computation, 1(1), 1–41,
(2009).

[2] Markus Aschinger, Conrad Drescher, and Heribert Vollmer,
‘LoCo - A Logic for Configuration Problems’, in ECAI 2012,
ed., Luc de Raedt, volume 242 of Frontiers in artificial intel-
ligence and applications, 0922-6389, pp. 73–78, Amsterdam,
(2012). IOS Press.

[3] Franz Baader, The Description Logic Handbook: Theory, Im-
plementation, and Applications, Cambridge University Press,
2003.

[4] Mira Balaban and Azzam Maraee, ‘Consistency of UML Class
Diagrams with Hierarchy Constraints’, in Next Generation
Information Technologies and Systems, eds., Opher Etzion,
Tsvi Kuflik, and Amihai Motro, volume 4032 of Lecture Notes
in Computer Science, pp. 71–82, Berlin, Heidelberg, (2006).
Springer.

[5] Mira Balaban and Azzam Maraee, ‘Finite Satisfiability of
UML Class Diagrams with Constrained Class Hierarchy’,
ACM Transactions on Software Engineering and Methodol-
ogy, 22(3), 24:1–24:42, (2013).

[6] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés,
‘Automated Analysis of Feature Models 20 Years Later: A
Literature Review’, Information Systems, 35(6), 615–636,
(2010).

[7] Jordi Cabot, Robert Clarisó, and Daniel Riera, ‘UMLtoCSP:
a Tool for the Formal Verification of UML/OCL Models Us-
ing Constraint Programming’, in Proceedings of the twenty-
second IEEE/ACM international conference on Automated
software engineering, pp. 547–548, (2007).

[8] Marco Cadoli, Giuseppe de Giacomo, Toni Mancini, and
Diego Calvanese, ‘Finite Model Reasoning on UML Class Dia-
grams via Constraint Programming’, in AI*IA 2007 Artificial
Intelligence and Human-Oriented Computing, eds., Roberto
Basili and Maria Teresa Pazienza, volume 4733 of Lecture
Notes in Computer Science, pp. 36–47, Berlin, Heidelberg,
(2007). Springer.

[9] Diego Calvanese and Maurizio Lenzerini, ‘On the Interaction
Between ISA and Cardinality Constraints’, in Tenth Interna-
tional Conference on Data Engineering, pp. 204–213. IEEE
Computer Society, (1994).

[10] Dolors Costal, Cristina Gómez, and Giancarlo Guizzardi,
‘Formal Semantics and Ontological Analysis for Understand-
ing Subsetting, Specialization and Redefinition of Associa-
tions in UML’, in Conceptual Modeling – ER 2011, eds.,
Manfred Jeusfeld, Lois Delcambre, and Tok-Wang Ling, vol-
ume 6998 of Lecture Notes in Computer Science, pp. 189–203,
Berlin, Heidelberg, (2011). Springer.

[11] Andreas A. Falkner, Ingo Feinerer, Gernot Salzer, and Gott-
fried Schenner, ‘Computing product configurations via UML
and integer linear programming’, International Journal of
Mass Customisation, 3(4), 351–367, (2010).

[12] Andreas A. Falkner and Herwig Schreiner, ‘Siemens: Configu-
ration and Reconfiguration in Industry’, in Knowledge-based
Configuration, eds., Alexander Felfernig, Lothar Hotz, Claire
Bagley, and Juha Tiihonen, 199–210, Morgan Kaufmann, Am-
sterdam, (2014).

[13] Nasim Farsiniamarj and Volker Haarslev, ‘Practical Reason-
ing with Qualified Number Restrictions: A Hybrid Abox Cal-
culus for the Description Logic H’, AI Communications, 23(2-
3), 205–240, (2010).

[14] Ingo Feinerer and Gernot Salzer, ‘Numeric semantics of class
diagrams with multiplicity and uniqueness constraints’, Soft-
ware & Systems Modeling, 13(3), 1167–1187, (2014).

[15] Alexander Felfernig, Gerhard E. Friedrich, and Dietmar Jan-
nach, ‘UML as Domain Specific Language for the Construc-
tion of Knowledge-based Configuration systems’, Interna-
tional Journal of Software Engineering and Knowledge En-
gineering, 10(04), 449–469, (2000).

[16] Alois Haselböck and Gottfried Schenner, ‘S’UPREME’, in
Knowledge-based Configuration, eds., Alexander Felfernig,
Lothar Hotz, Claire Bagley, and Juha Tiihonen, 263–269,
Morgan Kaufmann, Amsterdam, (2014).

[17] Maurizio Lenzerini and Paolo Nobili, ‘On the Satisfiability
of Dependency Constraints in Entity-Relationship Schemata’,
Information Systems, 15(4), 453–461, (1990).

[18] Azzam Maraee and Mira Balaban, ‘Efficient Reasoning About
Finite Satisfiability of UML Class Diagrams with Constrained
Generalization Sets’, in Model Driven Architecture – Founda-
tions and Applications, eds., David H. Akehurst, Régis Vogel,
and Richard F. Paige, volume 4530 of Lecture Notes in Com-
puter Science, pp. 17–31, Berlin, Heidelberg, (2007). Springer.

[19] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebas-
tian Brand, Gregory J. Duck, and Guido Tack, ‘MiniZinc: To-
wards a Standard CP Modelling Language’, in Principles and
Practice of Constraint Programming – CP 2007, ed., Chris-
tian Bessiere, volume 4741 of Lecture Notes in Computer Sci-
ence, pp. 23–27, Berlin, Heidelberg, (2007). Springer.

[20] Gerhard Niederbrucker, A Numeric Semantics for UML
Class Diagrams: Methods and Tools, Diplomarbeit, Techni-
sche Universität Wien, Wien, 2010.

[21] Object Management Group. OMG Unified Modeling Lan-
guage Version 2.5, March 2015.

[22] Markus Stumptner, Gerhard E. Friedrich, and Alois
Haselböck, ‘Generative Constraint-Based Configuration of
Large Technical Systems’, Artificial Intelligence for Engineer-
ing Design, Analysis and Manufacturing, 12(4), 1–27, (1998).

54 Deriving Tighter Component Cardinality Bounds for Product Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Automatic Configuration of Hybrid Mathematical
Models

Michael Barry, René Schumann
Smart Infrastructure Laboratory

HES-SO Valais / Wallis ,
Rue de Technopôle 3, 3960 Sierre, Switzerland

michael.barry@hevs.ch, rene.schumann@hevs.ch

Abstract.
In this paper we address the problems faced for automatic config-

uration of flexible hybrid models. We approach this problem with
concepts from the computer science field including object orien-
tated design and dependency injection to create a new Hybrid Model
that combines traditional modelling methods with a flexible design.
This type of model is able to drastically change its functional be-
haviour, allowing it to simulate a larger variety of scenarios of vary-
ing complexity. We then use AI methods to automatically configure
the model to reduce its complexity to the minimum while having
minimal impact on the models accuracy. A small example is demon-
strated where this method is used to configure the market environ-
ment for a hydro-power plant model, allowing us to determine which
set of markets are most profitable for any given plant configuration
. Furthermore, the use of flexible hybrid models opens up the possi-
bility for further AI methods to be used in conjunction with mathe-
matical models.

1 Introduction

The operational planning of a hydro-power station is a complex, but
well studied task. As hydro-power is a technology that has been avail-
able for a long time, the methods for using this technology are well
refined. Operation research methods (2, 6) dominate this problem
and are heavily used in industry. Such methods describe the world in
a mathematical model, including a set of constraints and an objective
function, and is then solved by a solver such as IBM’s CPLEX (1).
As these methods are so established in industry, alternative AI based
methods struggle to have an impact.

However, we have identified an interesting field for AI methods
in conjunction with existing mathematical methods. Therefore, we
investigate the problem that arise in such models from a computer
science point of view and consider these models to be a domain for
our research.

We first focus on the problems that are prominent in mathematical
methods. In many ways such models relate to legacy software or
software that was developed when computer science was in its
infancy. They are static, problem specific and extremely difficult
to maintain. Although these problems are extremely prominent in
industry, there is no easy fix. The root problem is inherent with
the process that Operations Research uses to derive their solutions,
which is shown in Fig. 1.

Figure 1. Graphical representation of the process used to create and solve
mathematical models. It should be noted that all parts of the process is

considered to be flexible except for the model structure.

The input and model structure is implemented using a model lan-
guage, creating a model instance. This model instance can then me
solved using a solver. This process does allow for flexibility, as the
model structure is independent from the data and the solver. As a re-
sult, the data and solver can be changed. However, the model struc-
ture is considered to be static, never changing between model in-
stances or during the development life cycle. This assumption limits
the models functional flexibility.

Functional flexibility is the ability to change the behaviour of a
module by physically altering the models functions themselves rather
than only the input variables. Some degree of flexibility is achieved
in current models using IF statements to physically modify a func-
tion based on a condition. Although widely used and acceptable on a
small scale, it becomes chaotic for large models. Furthermore, flex-
ible aspect must be implemented manually in every function that is

Michael Barry and René Schumann. 55

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

affected. This limitation is felt in the modelling world in two ways:

• Managing the life cycle of such models becomes difficult, often
resulting in redevelopment of models rather than continues devel-
opment.

• Scenarios requiring functional flexibility are either implemented
with difficulty or are not investigated.

These problems are visible in the hydro-power industry due to the
energy transition from fossil and nuclear power to renewable power.
As the energy industry is in transition, models must adapt. However,
this is a painful transition in the modelling world, as models in the in-
dustry struggle to adapt to new functionality and struggle to consider
new scenarios which must be investigated. In many cases, models are
redeveloped rather than updated, resulting in the loss of any still rele-
vant knowledge or functionality retained within the outdated models.

In particular, we consider the configuration of the model to be a
problem. Many models are unable to be configured to manage a large
variety of scenarios. Previously, different scenarios were a matter of
using different data, such as from another time period.

However, during the energy transition, investments in Hydro-
power are crucial. To accurately calculate the impact on the operation
and profitability of a plant of an investment, models must be able to
simulate a scenario where one aspect of a plant has been updated.
This update can be in the form of a change to the topology, such
as enlarging a water reservoir or building another conduit, to using
a new technology, such as a new turbine with a different efficiency
curve. However, current models are difficult to modify and therefore
these scenarios become difficult to simulate. Each investment oppor-
tunity is extremely expensive to investigate, making combinations of
investments a near impossible task.

In this paper we approach this configuration task by using concepts
from the computer science community to introduce flexibility into
mathematical models and use a configuration method to simulate a
variety of scenarios. We describe in Section 1 the background and
related literature, in Section 2 the configuration problem that we wish
to solve, in Section 3 the method we use to solve the configuration
problem, in Section 4 our results in a small example, in Section 5 our
conclusions and in Section 6 the future research direction we will
follow.

2 Background

Problems in the model development relating to maintainability and
flexibility are well known. Such problem existed in the earlier stages
of computer science, where software was developed in an extremely
case sensitive and hardware dependant way. Similarly, modelling was
originally extremely solver dependant. Software such as the General
Algebraic Modeling System (GAMS) (4) allowed the solver to be
separated from the modelling language, allowing a model to be tested
with different solvers.

However, models are still extremely case sensitive and inflexible.
Computer science overcame such obstacles with concepts such as
object-orientated design and agile methodologies. Drawing of the
success in computer science, these concept are being introduced to
the modelling world. Many modern languages do incorporate an ob-
ject orientated design (5). However, these languages are still at an
infancy and are not widely used in industry. Tools and models that
are based on more traditional modelling are more accepted within
the modelling community.

Currently, there is a large emphasis on the development of hybrid
models (3) within the operations research community. Hybrid mod-
els combine a top down model and a bottom up model. A top down
model dissect a problem into several sub-problems, while a bottom
up model works the other way around. Hybrid models open up the
possibility of fusing a top down model design using traditional mod-
elling languages with a bottom up approach that manages the object
orientated design aspect. It allows the object orientated design to be
abstracted from the model.

3 Problem
In this section we describe the problem we address in this paper by
first describing the model used and then describing the configura-
tion problem. We consider a model that optimises the operation of a
hydro-power plant in terms of profitability with objective function Z
and a set of constraints C as shown in Equation 1 to 2 . In addition,
we have a set of scenarios S. Each scenario describes the environ-
ment that the model must simulate, such as what markets to trade on
or weather to empty the reservoirs at the end of the time interval as
shown in 3

max.
∑

i,m

Pi,mQi,m (1)

C





Qi,m = Ri,mα

Si = Si−1 + Ii −
∑
m

Ri,m

Si ≤ Smax

Si ≥ Smin∑
m

Qi,m ≤ Qmax

...





(2)

S





spot market = true, storage end = true...

spot market = false, storage end = true...

spot market = true, storage end = false...

...





(3)

Above, Pi,m is the price at time interval i for market m, Qi,m is
the produced energy for time interval i and market m, Ri,m is the
water released from the reservoir at time interval i for market m, α
is the efficiency of the turbine (the amount of energy produced per
water used), Si is the storage level at time interval i, Ii is the inflow
of water into the reservoir at time interval i, Smax is the maximum
storage level of the reservoir, Smin is the minimum storage level of
the reservoir and Qmax is the maximum production level.

Traditionally, constraints often contain conditionals such as in
Equation 4 to modify their behaviour based on the scenarios require-
ments. Here, the conditional waterloss is used to modify the equa-
tion defining the storage capacity to include a loss of water due to
leaks or condensation.

Si = Si−1 + Ii −
∑

m

Ri,m − $(water loss)Li (4)

This can also be used to enable / disable a constraint if it is re-
quired by the scenario as shown in Equation 5. Here, the boolean
storageend is used to set a minimum water level at the final time
interval.

$(storage end)Simax = Send (5)

56 Automatic Configuration of Hybrid Mathematical Models.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

We reformulate the above to allow us to separate the models
functionality from the conditionals by considering C to contain
all forms of the constraints. For example, instead C containing a
constraint in the form described in Equation 4, it exists as shown in
Equation 6 and 7.

Si = Si−1 + Ii −
∑

m

Ri,m − Li (6)

Si = Si−1 + Ii −
∑

m

Ri,m (7)

A model instance configured to match the functionality required
by the scenario is then simply a subset of C.

However, for the model instance to be valid it must be able to
compile into a meaningful model. Therefore, restrictions based on
conflicting constraints and constraint interdependence from the top-
down model must be considered.

In the traditional form, these restrictions are considered in the con-
ditional statements. However, we separate these restrictions from the
model functionality and describes them as a set of restrictions R that
determine the validity of the model.

Therefore we define the problem as creating a model instance by
selecting a subset C that contains the desired functionality of any
scenario in S and can be combined into a valid model instance by
respecting the restriction defined in R.

Next we describe a method that allows the conditional logic re-
quired by the scenarios to be separated from the mathematical model.
Traditionally, the interaction of the mathematical model and the con-
ditional logic is handled as shown in the two previous examples in
Equation 6 and 7.

Much of the problems created by using such methods on a large
model, which includes many functions, comes from having to define
the conditional statement in each function that it affects. This can be
avoided by grouping constraints that are limited by the same condi-
tions into one module. Therefore, for example, constraints that de-
scribe a pump storage technology can be grouped together in a mod-
ule and can be controlled with one conditional statement. In princi-
ple, this approach is similar to object-orientated design, that groups
related functionality into a class. Similarly, different versions of a
module may exist, each containing a different implementation of the
contained constraints.

Figure 2. Graphical representation of how sets of related constraints are
grouped together to form modules.

Therefore, the task can be simplified to selecting a set of mod-
ules to create a model instance. In essence, this method can be de-
scribed as a form of dependency injection. A configuration file that
describes a scenario can then simply contain import statements, that
define which implementations to include in the model. Therefore we
can create different configurations by selecting which modules to in-
clude for that configuration.

Figure 3. Graphical representation of how a set of modules is selected to
form a configuration.

We then must consider the interdependency and conflicts that ex-
ist between modules. First, we focus on the interdependency of the
modules. Since constraints relate to each other through shared vari-
ables, so do the modules. However, as modules relate to physical
concepts such as a market or a type of turbine, it becomes intuitive.
For example, it is impossible to create a module instance without a
module describing the behaviour of the turbine or a market to sell the
produced energy.

Therefore, we can create a dependency graph that shows how such
modules relate. A small excerpt of such a graph is shown in Figure
4, showing the interdependency of the market modules and some of
the storage modules.

Figure 4. Graphical representation of how modules are dependent on each
other. One and only one storage module can be selected at a time to avoid
conflicts. Therefore the main module is dependent only one of the set of

storage modules. However, for the market modules, one or all modules can
be selected.

Modules can be dependent on a single module or on one of a set
of modules as shown in 4.

We can then describe these dependencies with predicate logic. We
use an XOR statement, relating to the XOR logic gate, to represent
this relation as shown in Equation 8.

Michael Barry and René Schumann. 57

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

⊕(Storage Base,⊕(Storage Cond, Storage Leak)) (8)

For simplicity, we extend the XOR relation to allow for multiple
inputs as such a relation is synonymous to a conjunction of several
classical XOR logic gates. Therefore, we can redefine Equation 8 as
Equation 9.

⊕(Storage Base, Storage Cond, Storage Leak) (9)

We can then create scenarios by selecting which modules to be
used in a configuration file and then check the modules validity with
the logic described above. However, as scenarios also include data
such as inflows, the topology of the hydro-power station and market
prices, we must be able to incorporate such data into our module
based approach.

For this purpose, we utilise the concept of instantiation. For ex-
ample, a scenario may include a multi-site case, where several
reservoirs, turbines, conduits, galleries, tailraces and penstalks exist.
Reservoirs are used for storage, turbines generate the electricity, con-
duits deliver water into the hydro-power system, galleries are used to
transport water from one component to another within the system,
tailraces conduct the water coming from the turbines and penstocks
conduct the water into the turbines. An example topology is given in
Figure 5.

Figure 5. Graphical representation of the layout (topology) of an example
Hydro-Power plant

To model such a scenario, we implement modules for each of these
topology items and create multiple instances of each. These instances
then have the specific parameter settings to represent a particular el-
ement of the system.

Although the model language does not support object orientated
design or the concept of initialisation, it can still be easily imple-
mented. In essence, an instance is simply a set of parameters and
several instances can be simply described in a table. Therefore, the

instantiation can be handled by the object-orientated part of the hy-
brid model and then communicated to the mathematical model as a
set of input parameters.

The advantage of this approach is that further validation can be
implemented by design. For example, a penstock can only connect
to a turbine and a turbine can only connect to a tailrace. Further-
more, this modular approach also allows easy integration with other
systems, such as an interface for creating a topology, a system for
running systematic experiments on distributed systems or a system
for visualising the results.

The resulting hybrid model is a highly flexible and can be vali-
dated easily. Configuration of small models is simple through inter-
active configuration as we have demonstrated in our previous work
However, in large models, configuration becomes a complicated task
and opens the possibility of using AI methods for automatic con-
figuration. Some modules can be obsolete either as the underlying
constraint does not restrict the search space or the module represents
a functionality that is never used. Furthermore, some modules can
be replaced by others that have a less complex implementation and
therefore are easier to solve.

For example, in the hydro-power example, the model can be con-
figured to simulate any given hydro-power plant. The model also in-
cludes the functionality to access multiple markets. However, not all
hydro-power plants can access all markets due to technical limita-
tions or simply because it is not profitable. Therefore, it makes sense
to only include in the model instance the modules that contain the
functionality for the appropriate markets and remove any modules
representing a market that is never or rarely used. We use this exam-
ple to demonstrate our method in Section 4.

Therefore, AI methods could be used for the configuration of flex-
ible models to remove unnecessary constraints and reduce the time a
solver requires to find a solution to the optimisation problem.

4 Method
In this section we describe a proof of concept method to solve the
configuration problem. To be able to use a heuristic, we must first
define two objectives:

• Minimise the model complexity
• Minimise deviation from Z

The first objective concerns the complexity that a solver requires
to solve a configuration. Our previous work shows that there is, as
one would expect, a direct relationship between the complexity of the
model and its runtime. As a approximation of the models complexity,
we simply use the number of modules.

The second objective takes into consideration the concept that
mathematical models are considered to be inherently wrong, but
some are accurate enough to be useful. It is based on the assumption
that the more detailed the optimisation problem is described math-
ematically, the more useful is is. Therefore, we can assume that a
model configuration that utilises the maximum amount and most de-
tailed modules is the most useful answer to the Z function the model
can produce. We wish to deviate from this result as little as possible
to ensure that the model still produces useful answers. We use this
answer as a reference point. The percentage of deviation as shown in
Equation 10 is then calculated and used as an objective.

(Zref − Zi)/Zref ∗ 100 (10)

We then use the Strength Pareto Evolutionary Algorithm (SPEA2)
to solve for the above defined objectives. The SPEA2 algorithm is a

58 Automatic Configuration of Hybrid Mathematical Models.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

multi objective evolutionary algorithm that uses the concept of Pareto
optimality and a clustering technique to iteratively evolve solutions
towards the pareto front and then spread along it. Each configuration
can be easily represented by a string of binary values, representing
which modules are switched on or off. To initialise the algorithm, we
use the configuration with the maximum amount of modules and its
direct relatives.

The SPEA2 algorithm was chosen for several reasons. First, this
is a computationally expensive process, as assessing the runtime and
the deviation from Z involves actually solving the model instance.
SPEA2 can be easily implemented for a distributed system, allowing
each model instance to be solved on a separate machine and there-
fore speeding up the process considerably. Second, SPEA2 excels at
finding surprising solutions which are either not intuitive or simply
difficult to arrive to. For example, switching one module alone may
not bring a benefit, but in conjunction with others might yield a sur-
prisingly optimal configuration. Such configurations are difficult to
derive, but evolutionary algorithms have generally been successful in
such situations due to their random nature.

The algorithm produces the Pareto front between the complexity
of the model configuration and the deviation from the most accurate
result for Z. From this Pareto front it is then possible to select the
configuration with an acceptable deviation and the lowest complex-
ity. Although this process is computationally expensive, it only needs
to be used once before deployment to configure the model and reduce
the solvers runtime in the future.

The method described above was implemented using a combina-
tion of GAMS and Java. The model was implemented using standard
methods in GAMS and solved using IBM’s CPLEX solver. Scenarios
were described in Java configuration files as shown in below.

market 1 = true
market 2 = false
market 3 = true
market 4 = true
market 5 = false
market 6 = false

Such a configuration file can then used to configure a GAMS file
with all the appropriate import statements as shown below. A market
is then simply removed by commenting out an import statement.

import market1.gms
*import market2.gms
import market3.gms
import market4.gms

*import market5.gms
*import market6.gms

The SPEA2 algorithm was implemented in Java, which would cre-
ate the module instances and then use the CPLEX solver to solve
them.

5 Results
In this section we demonstrate the feasibility of our method on a
small example. We apply our method to the market configuration
for a specific hydro-power plant. As previously stated, the energy
produced by the hydro-power plant can be sold on different markets,
as shown below with their abbreviations:

• market 1: day-ahead market
• market 2: intra-day market
• market 3: primary reserve market (PRL)
• market 4: secondary reserve market (SRL)
• market 5: positive tertiary reserve market (TRL+)
• market 6: negative tertiary reserve market (TRL-)

However, some markets are rarely used and therefore the models
complexity can be reduced by identifying configurations that remove
the unnecessary markets. Therefore we apply our method and pro-
duce the results shown in Figures 6 and 7.

Figure 6. Graph showing the results of using the SPEA2 algorithm
configure different sets of active markets. The X axis represents how many
markets (or market modules) are activated in a configuration and the Y axis

represents how much percent the results to the models objective function
deviates from the most accurate answer (in this case when all six markets are

activated). The data points represent the Pareto optimal configurations,
meaning there is no configuration with a smaller deviation for the given

number of modules.

Figure 7. Graph showing the runtime for the configurations shown in
Figure 6. The runtime is measured in CPLEX ticks, which is a platform
independent measure for how much work Cplex had to do to solve the

model.

Notable in the results is that market configurations exist that only
use a subset of the available markets, but generate near identical
results. The reason for this is that some markets simply prove to be

Michael Barry and René Schumann. 59

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

less profitable than others and therefore are used only in extremely
rare circumstances. In the results shown, we have several interesting
configurations that stand out and are shown in the table below:

Active Markets Runtime % Deviation
1 1,2,3,4,5,6 413722.0 0.0000
2 1,3,4,5,6 164166.0 0.0062
3 1,4,5,6 160181.0 0.6736
4 1,3,4,5 145352.3 4.8373

Table 1. Table showing CPLEX performance for various configurations.
Notable is the the high runtime in cofiguration 1 depsite similar results

(similar deviation) to cofiguration 2 and 3. Also notable is the increase in
deviation for cofiguration 4.

6 Conclusion
Configuration 1 in the table above is the reference point. Interest-
ingly, configuration 2 and 3 only deviate from the reference point by
less than 1% and configuration 4 by less that 5%. Configuration 2,3
and 4 also show a more than 50% faster solve time. Therefore we
should consider to configure the model for this topology to ignore
markets 2 (intra-day market),3 (primary reserve market) and 6 (neg-
ative tertiary reserve market) to achieve a faster solver time. It should
also be noted that the configuration 2,3 and 4 are closely related to
each other, hinting towards favourable conditions for evolutionary
algorithms as they can derive one good configuration from another
easily through mutation and crossover operations.

To summarise, we describe an AI problem that exists for the con-
figuration of mathematical models. We apply a method for identify-
ing the Pareto front based on two objectives, one an approximation
of the models complexity and the other a measurement of how much
the models answer, and therefore its behaviour, changes. The method
was applied on a small example to identify which markets are the
least profitable and may be exclude from the model to provide a faster
runtime. Although the example is only small, it provides a proof of
concept for our method and shows how it can be applied.

7 Future Work
This work serves as a basis for our future work as we well indulge
further into the implications of flexible behaviour in a mathematical
model. In particular we will focus on the runtime prediction of such
models, as the runtime becomes more difficult to predict with high
functional flexibility. We will also focus on the turning of the mathe-
matical solver. For traditional models, it is possible to select optimal
parameters for all possible model instances. However, with a more
flexible model, the solver requires different tuning parameters for
various configurations to be optimal. Therefore, our research will fo-
cus on using knowledge from the model structure to determine ideal
model tuning parameters for each possible model configuration.

8 Acknowledgements
This work has been done in the context of the SNSF funded project
Hydro Power Operation and Economic Performance in a Changing
Market Environment. The project is part of the National Research
Programme Energy Transition (NRP70).

REFERENCES
[1] GAMS/CPLEX 10 Solver Manual, GAMS Development Corpo-

ration.
[2] Lorenzo Alfieri, Paolo Perona, and Paolo Burlando, ‘Optimal

water allocation for an alpine hydropower system under chang-
ing scenarios’, Water resources management, 20(5), 761–778,
(2006).

[3] Christoph Böhringer, ‘The synthesis of bottom-up and top-down
in energy policy modeling’, Energy economics, 20(3), 233–248,
(1998).

[4] GAMS Development Corporation. General Algebraic Modeling
System (GAMS) Release 24.2.1. Washington, DC, USA, 2013.

[5] Emmanuel Fragniere and Jacek Gondzio, ‘Optimization model-
ing languages’, Handbook of Applied Optimization, 993–1007,
(2002).

[6] Shenglian Guo, Jionghong Chen, Yu Li, Pan Liu, and Tianyuan
Li, ‘Joint operation of the multi-reservoir system of the three
gorges and the qingjiang cascade reservoirs’, Energies, 4(7),
1036–1050, (2011).

60 Automatic Configuration of Hybrid Mathematical Models.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Solving the Partner Units Configuration Problem
with Heuristic Constraint Answer Set Programming

Erich C. Teppan1

Abstract. The partner units problem (PUP) is an acknowledged
hard benchmark problem for the logic programming community
with various industrial application fields. The state-of-the-art heuris-
tic for the PUP is the QuickPup heuristic. Unfortunately, complex
domain-dependent heuristics like QuickPup could not be realized
within a declarative solving framework like constraint or answer
set programming. A new hybrid technique called constraint answer
set programming (CASP) offers the possibility to realize declarative
frameworks in which it is possible to also express complex heuris-
tics like QuickPup. In this paper we present the CASP solver AS-
CASS (A Simple Constraint Answer Set Solver) which provides
novel methods for defining and exploiting problem-dependent search
heuristics. Beyond the possibility of using already built-in problem-
independent heuristics, ASCASS allows on the ASP level the defi-
nition of problem-dependent variable selection, value selection and
pruning strategies which guide the search of the CP solver. Due to
the new possibilities for representing and exploiting complex do-
main heuristics in ASCASS, we show how to encode the PUP and
realize QuickPup in ASCASS. An evaluation reveals that due to
the QuickPup heuristic, which is not expressible in any other ASP
or CASP approach, ASCASS outperforms state-of-the-art ASP and
CASP solvers on the tested PUP instances.

1 Introduction

The partner units problem (PUP) [1] is a perfect representative of a
configuration problem in the classical sense, i.e. where certain com-
ponents have to be connected so that predefined user requirements
and technical constraints are respected [14]. Because of its generic
nature it posses many real world application domains like railway
safety, surveillance or electrical engineering [2, 17]. The PUP is
NP-complete in the general case and also for most industrially im-
portant subclasses. Furthermore, it is one of the hardest benchmark
problems participating in the ASP competitions2[19].

The PUP originates in the domain of railway safety systems. One
of the problems in this domain is to make sure that certain rail tracks
are not occupied by a train/wagon before another train enters this
track. The signals for the corresponding occupancy indicators are cal-
culated by special processing units based on the input of several ob-
serving sensors. Because of fail-safety and realtime requirements the
number of sensors respectively indicators which can be connected
to the same unit is limited (called unit capacity, UCAP). Also one
sensor/indicator device can only be directly connected to one unit.
However, a unit can be connected to a limited number (called inter

1 Universität Klagenfurt, Austria, email: firstname.lastname@aau.at
2 Further information can be found at www.mat.unical.it/aspcomp2014/

unit capacity, IUCAP) of other units. These units are called the part-
ner units of the unit. Devices (i.e. sensors and indicators) can only
communicate with devices connected to the same unit and with de-
vices connected to one of the partner units. Given the IUCAP, UCAP
and a bipartite input graph represented by edges specifying which
sensor data is needed in order to calculate the correct signal of an oc-
cupancy indicator, the problem consists in connecting sensors/indica-
tors with units and units with other units such that all communication
requirements are fulfilled and IUCAP and UCAP are not violated.
For minimizing hardware costs, a common further objective is the
minimization of the number of used units.

Figure 1. Railway track layout, PUP input and solution

Figure 1 shows a simple example for a railway track layout, the
corresponding bipartite input graph and a possible solution for IU-
CAP=2 and UCAP=2. In order to calculate the correct signal for
Indicator 3 only data from Sensor 3 and Sensor 4 is needed. If the
number of outgoing wheels counted by Sensor 4 is equal to the in-
coming wheel counts of Sensor 3 then Track 3 is empty. In order
to calculate the correct signal for Indicator 2 it is not sufficient to
only incorporate data from Sensor 2 and Sensor 5 as it is not clear
whether a wheel has headed to or is coming from Track 3. Therefore,
additional data from Sensor 3 and Sensor 4 is needed.

Erich Teppan. 61

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Several general problem solving methods have been tested on
the PUP such as Integer Programming, Constraint Programming
(CP), SAT Solving, and Answer Set Programming (ASP), among
of which ASP performed best (Aschinger et al. 2011a). However,
the real breakthrough for solving real-world instances of the PUP
was achieved by the development of the domain-dependent Quick-
Pup heuristic [18].

QuickPup is based on three major techniques:

1. Based on the input graph and a distinguished root indicator,
QuickPup produces a topological ordering of the devices, which
is basically the minimum distances from the root indicator to all
other devices. The distance to itself is zero, the distance to the
direct neighbors is one, the distance to the neighbors of the neigh-
bors is two and so forth. This reflects the (partial) ordering in
which the devices should be processed.

2. For each device, first try to place it on the next empty unit and if
this is unsuccessful try the already used units in descending order.

3. Try different root indicators, and consequently different topologi-
cal orderings, and limit search for each trial. The intuition behind
that is that not all root indicators are equally good to start search
from.

Unfortunately, also state-of-the-art general problem solvers do not
allow the formulation of complex domain-dependent heuristics like
QuickPup without external non-declarative procedures. For exam-
ple, for realizing QuickPup in CP it would afford a custom (proce-
durally programmed) propagator respectively global constraint. CP
languages like MiniZinc3 do not allow complex calculations like the
computation of a topological order in a graph. In ASP heuristics like
QuickPup are not possible as ASP is stateless in nature such that
things like ’the next empty unit’ are not expressible.

However, the new hybrid approach of Constraint Answer Set Pro-
gramming (CASP) [13] combining ASP and CP seems to be perfect
to overcome these issues. On the one hand, ASP provides language
constructs which even go beyond first-order logic. On the other hand,
CP is not stateless. Furthermore, a heuristic in CP is well contoured.
Any heuristic in CP basically consists of three components:

1. a problem-dependent variable selection strategy
2. a problem-dependent value selection strategy
3. a problem-dependent pruning strategy

For certain classes of problems like industrial-sized scheduling
CASP was already successfully applied [4]. Especially search prob-
lems with large variable domains often profit from the CASP repre-
sentation due to the alleviation of the grounding bottleneck [12].

In this paper we present ASCASS, a novel CASP solver which
uses Clingo for answer set solving and the Java framework Jacop
for CP solving. ASCASS combines and extends the heuristic possi-
bilities of state-of-the-art CASP solvers and makes them completely
available on the problem encoding level. Beyond the usage of built-
in strategies, ASCASS provides powerful constructs for the formula-
tion and exploitation of problem-dependent heuristics consisting of
variable selection, value selection and pruning strategies.

Subsequently, it is discussed in detail how to represent the Partner
Units Problem (PUP) and the QuickPup heuristic in ASCASS. In a
first proof-of-concept evaluation it is shown that due to this heuristic,
which, to the best of our knowledge, cannot be expressed within any
other ASP or CASP approach, ASCASS outperforms state-of-the-art
ASP and CASP solvers.
3 www.minizinc.org

2 Background
In this section we introduce the basic concepts of answer set and
constraint answer set programming as it is needed for the purposes
of this article. In particular, we ignore disjunctive logic rules and
classical negation in ASP for readability reasons. For information
about ASP and CASP please refer to [8], [7], [13], [15] and [3].

2.1 Syntax of ASP
in ASP, a term refers either to a variable or a constant. Strings start-
ing with upper case letters denote variables. Constants are repre-
sented by strings starting with lower case letters, by quoted strings
or by integers. An atom is either a classical atom, a cardinality atom
or an aggregate atom. A classical atom is an expression p(t1, . . . , tn)
where p is an n-ary predicate and t1, . . . , tn are terms. A negation
as failure (NAF) literal is either a classical atom λ or its negation
not λ. A cardinality literal is either a cardinality atom ψ or its nega-
tion not ψ. A cardinality atom is of the form

l ≺l {a1 : l11 , . . . , l1m ; . . . ; an : ln1 , . . . , lno} ≺u u

where

• ai : li1 , . . . , lij represent conditional literals in which ai (the
heads of the cardinality atom) constitute classical atoms and lij
are NAF literals

• l and u are terms (i.e. variables or constants) representing non-
negative integers. If not specified, the defaults are 0 respectively
∞.

• ≺l and ≺u are comparison operators. If not specified, the default
is ≤.

An aggregate literal is either an aggregate atom ϕ or its negation
not ϕ. An aggregate atom is of the form

l ≺l #op{t11 , . . . , t1m : l11 , . . . , l1n ; . . . ;

to1 , . . . , top : lo1 , . . . , loq} ≺u u

Most syntactical parts of aggregate literals are the same as for car-
dinality atoms, except that

• a head of a conditional literal is a tuple of terms ti1 , . . . , tij and
• #op is an aggregate function in {#min,#max,

#count,#sum}.
Generally, a rule is of the form

h← b1, . . . , bm, not bm+1, . . . , not bn.

where

• h, b1, . . . , bm are atoms (i.e. positive literals),
• not bm+1, . . . , not bn are negative literals,
• H(r) = {h} is called the head of the rule,
• B(r) = {b1, . . . , bm, . . . , not bm+1, . . . , not bn} is called the

body of the rule,
• B+(r) = {b1, . . . , bm} is called the positive body of the rule and
• B−(r) = {not bm+1, . . . , not bn} is called the negative body of

the rule.

A rule r with H(r) including a cardinality atom is called choice
rule. A rule r where B(r) = {}, e.g. ’a ←’ is called fact. For facts,
typically ’←’ is omitted. A rule r where H(r) = {}, e.g. ’← b’, is
called integrity constraint, or simply constraint.

Furthermore, we allow the typically built-in arithmetic functions
(+, −, ∗, /) and comparison predicates (=, 6=,<,>,≤,≥).

62 Solving the Partner Units Configuration Problem with Heuristic Constraint Answer Set Programming.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

2.2 Semantics of ASP
The semantics of a non-ground ASP program is defined w.r.t. its
grounding. A program’s grounding can be defined in terms of its Her-
brand universe and base. The Herbrand universe HUP of a program
P is the set of all constants appearing in P .

The grounding for a rule r without cardinality atoms and aggre-
gates is the set of rules obtained by applying all possible substitu-
tions of variables in r with constants in HUP . The grounding of a
rule which contains cardinality or aggregate literals is defined by
the two-step instantiation described in [16]: first produce a set of
partially grounded rules by substitution of variables occurring out-
side the cardinality/aggregate literal and then, within each partially
grounded rule, substitute each conditional literal by a set of ground
conditional literals by substituting the remaining variables inside the
cardinality or aggregate literal.

The grounding PG of a program P is the union of all rule ground-
ings. The Herbrand base HBP w.r.t P is the set of all positive NAF
literals (i.e. classical atoms) that occur in PG.

An interpretation I satisfies a (ground) positive NAF literal λ
(written as I � λ) iff λ ∈ I . A positive cardinality literal is satis-
fied by I iff the number of satisfied head literals in the cardinality
atom satisfies the lower and upper bounds l and u w.r.t. the order
relations ≺l and ≺u. Both, bounds and comparison symbols are op-
tional. By default, 0 ≤ is used for the lower and ≤ ∞ for the upper
bound. A positive aggregate literal is satisfied iff the value returned
by the aggregate function #op applied on the set of term tuples ful-
filling its conditions does not violate the lower and upper bounds.
Here, #count counts the number of distinct term tuples fulfilling
the related conditions, and #min,#max and #sum are calculat-
ing the minimum, maximum or sum of the first terms in the distinct
term tuples fulfilling the related conditions. A negative literal not ω
is satisfied (written as I � not ω) iff ω is not satisfied.

A ground rule r is satisfied by I (written as I � r) iff the head
is satisfied or the body is not. The body of a rule is satisfied by I
iff all literals in the body are satisfied. The head of a rule is satisfied
iff the literal in it is satisfied. In particular, an empty body is always
satisfied and integrity constraints are satisfied iff the body is not sat-
isfied, i.e. the constraint is not violated. A program P is satisfied by
an interpretation I iff all rules in its grounding PG are satisfied.

An answer set for a program can be defined on the basis of the
program’s reduct [9, 16]. The reduct P I of a ground program P rel-
ative to an interpretation I ⊆ HBP is defined as P I := {H(r) ←
B(r)+ : r ∈ P,B(r)− ∩ I = ∅}.

An interpretation I ⊆ HBP (which may be empty) is an answer
set for a program P not containing choice rules iff

• I satisfies all rules r in P I , i.e. ∀r ∈ P I : I � r and
• I is subset-minimal, i.e. there is no I ′ ⊂ I so that I ′ satisfies all

rules in P I′ .

Choice rules can produce answer sets that are not subset-minimal,
which leads to a slight change of semantics when such rules are
present. For example, the program consisting only of the choice rule
{a}. possesses the two answer sets {} and {a}. In order to be in
line with the original semantics and thus restore subset-minimality
an equivalent program can be produced by extending the program as
follows:

For every head ai within a cardinality atom of a choice rule, add a
new atom a′i (which is not occurring elsewhere in the program) and
a constraint ← ai, a

′
i. Informally, a′i expresses that ai is not in the

interpretation. This way, the choice rule {a}. equivalently produces

the two answer sets {a′} and {a}. For convenience, we can imagine
the new atoms a′i and the constraints ← ai, a

′
i to be invisible. For

details, consult [7].
An ASP program is unsatisfiable iff it has no answer sets and sat-

isfiable otherwise.

2.3 Constraint Answer Set Programming
A constraint satisfaction problems (CSP) can be defined as a three-
tuple 〈V,D = {dom(v) : v ∈ V }, C〉 whereby V is a set of vari-
ables, D is the set of domains of the variables in V and C is a set
of constraints on variables in V . A solution to a CSP is an assign-
ment ∀v ∈ V, v := d ∈ dom(v) such that all constraints c ∈ C are
fulfilled. A CSP comprising only finite domains is called finite. If all
domains are defined over discrete values (most commonly integers),
the CSP is called discrete.

For integrating CP into ASP there are basically two approaches.
First, solvers like Clingcon [15] are based on the extension of the
ASP input language in order to support the definitions of constraints.
The Ezcsp solver [3] is based on a different approach where ASP
and CP are not integrated into one language. ASP rather acts as a
specification language for Constraint Satisfaction Problems (CSPs).
The main idea is that answer sets constitute CSP encodings which are
used as input for a CP solver. The above example can be expressed
in Ezcsp as:

num(N):-N=1..3.
cspdomain(fd).
cspvar(var(N),1,6):-num(N).
required(var(X) + var(Y) + var(Z) == 6):-
num(X), num(Y), num(Z), X!=Y, Y!=Z, X!=Z.

required(var(1) > 1).
required(all_distinct([var/1]).

After some pre-processing, an answer set is calculated which in-
cludes cspdomain-, cspvar- and required facts. cspdomain(fd)
denotes that the CSP is finite and discrete. Ezcsp is also able to handle
real domains. CSP variables are explicitly defined by cspvar facts
also defining lower and upper bounds of the variable domains. Con-
straints are represented as required facts. For expressing global con-
straints, and thus refer to sets of CSP variables, Ezcsp allows the us-
age of functional symbols. E.g. [var/1] refers to all variables formed
by the unary function var. Once an answer set has been produced,
the CSP encoded within the cspdomain-, cspvar- and required
facts is passed to the CP solver. As answer set production and CSP
solution search are two separated processes, different CP solvers can
be used in Ezcsp. Currently, Sicstus- and B-Prolog are supported.

The semantics of a program builds on the notion of extended an-
swer sets [3]: A pair 〈A,S〉 is an extended answer set of program Π
iff A is an answer set of Π and S is a solution to the CSP defined
by A. We further define that the empty CSP (i.e. without any CSP
variables) possesses the empty solution.

For CSP solution search, Ezcsp provides different search strategies
impacting the underlying CP solver. In case of Sicstus Prolog as a CP
solver, the built-in value selection strategies step (min domain value,
when ascending order is used, max domain value when descending
order is used) and bisect (bisection of the domain in the middle)
are available. Similarly in case of B-Prolog, the bisection strategies
split and reverse split are supported. The supported variable selec-
tion strategies are leftmost (leftmost variable), min (leftmost variable
with minimal lower bound), max (leftmost variable with maximal up-
per bound), and ff (first-fail). By the special label order/2 predicate it

Erich Teppan. 63

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

is also possible to define problem-dependent CSP variable orderings
for the CP solver. However, there are no constructs for expressing
problem dependent value or pruning strategies.

3 A Simple Constraint Answer Set Solver
ASCASS4 is a novel finite discrete CASP solver following the ap-
proach of Ezcsp, i.e. the input language is pure ASP and the an-
swer sets encode CSPs. The major difference to to state-of-the-art
CASP systems are the sophisticated features for expressing domain-
dependent heuristics consisting of custom variable selection, value
selection and pruning strategies.

Figure 2 shows the overall architecture of ASCASS. Answer set
production (grounding and solving) is done by Clingo5, which is cur-
rently one of the most powerful ASP systems. The input language is
the ASP standard ASP-Core-26.

After answer set solving, a produced answer set is handed over
to a parsing module that extracts the facts which encode the CSP
and search directives. This information is used to instantiate a cor-
responding CSP in the CP solver and perform search conforming
to the given search directives. Currently, Jacop7 is used within AS-
CASS as a CP solver. In case that the CSP could not be solved by
the CP solver or a timeout occurred (defined by the special predi-
cate csptimeout(∆)), the process continues with the next answer
set, until a solution is found, or there are no more answer sets. The
empty CSP (i.e. when there is not a single CSP variable) is always
satisfiable and possesses the empty CSP solution.

3.1 Encoding of CSPs
ASCASS focuses on finite discrete Constraint satisfaction problems
(CSPs). In order to encode a CSP within ASCASS there can be used
a number of specific predicates. Of course, in the input these predi-
cates can contain variables. The following explanations refer to their
grounded form.

The predicates cspvar(α, λ, υ) and cspvar(α, λ, υ, η) are re-
sponsible for encoding CSP variables. Hereby, α represents the
variable name and λ and υ represent respectively the numerical
lower and upper bound of the variable’s domain. For example
cspvar(x, 1, 10) stands for a CSP variable v with the domain [1..10].
The numerical priority η is used to define a custom variable selection
ordering. When using the variable selection strategy priority (see
below), the CP solver selects the variable with the highest priority
first.

The predicate cspconstr(α, ρ, τ) encodes a relational constraint
(i.e. =, <>,<,<=, >,>=) over a variable α. ρ denotes the type of
relation and must be a constant out of {eq, neq, lt, lteq, gt, gteq}. τ
denotes another CSP variable or a numerical constant. For example,
cspconstr(x, lt, 5) expresses that variable x must be lower than 5.

The predicate csparith(α, π, β, ρ, γ) encodes arithmetic con-
straints. α, β and γ are CSP variable names. Like for cspconstr,
the constant ρ denotes the type of relation. π is a constant represent-
ing an arithmetic operation. Currently, ASCASS supports addition
(plus), subtraction (minus), multiplication (mult), division (div)
and exponent (exp). For example, csparith(xa, plus, xb, eq, xc)
states that the sum of the values of xa and xb must be equal the
value of xc.
4 http://isbi.aau.at/hint/ascass
5 sourceforge.net/projects/potassco/files/clingo
6 www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
7 jacop.osolpro.com

For expressing logical constraints predicates of the form
cspif(Ξ1, and,Ξ2, and, . . . , and,Ξm, then,Ξm+1, or,Ξn) can
be used. Each Ξ consists of a variable α, a relational symbol
ρ and another variable or numerical constant τ . For example,
cspif(x, lt, 5, and, y, gt, 10, then, z, gteq, 0) is to be read as ‘if x
is lower than 5 and y is greater than 10 then z must be non-negative’.

Global constraints are constraints over arrays of vari-
ables. In ASCASS global constraints are defined by
predicates of the form cspglobal(σ1, . . . , σm, κ) and
cspglobal(σ1, . . . , σm, κ, τ1, . . . , τn). κ is a constant denoting
the type of global constraint. σ1, . . . , σm represent arrays of
variables. τ1, . . . , τn represent single CSP variables or integers. The
selection of global constraints currently supported by ASCASS has
been determined by the needs of our application areas and will be
further expanded. ASCASS currently supports the following global
constraints8:

• min: cspglobal(σ,min, τ), the minimum value of the variables σ
is equal to τ

• max: cspglobal(σ,max, τ), the maximum value of the variables
σ is equal to τ

• sum: cspglobal(σ, sum, τ), the sum of values of the variables σ
is equal to τ

• count: cspglobal(σ, count, τ1, τ2), τ1 is equal to the counted
number of variables in σ with value τ2

• global cardinality: cspglobal(σ1, σ2, gcc), a more general count-
ing constraint where the occurring values in σ1 are counted in the
corresponding counter variables in σ2

• all different: cspglobal(σ, alldiff), all variables in σ are mutu-
ally unequal

• element: cspglobal(σ, element, τ1, τ2), the value of the τ1-th
variable in σ is equal to τ2

• cumulative: cspglobal(σ1, σ2, σ3, cumulative, τ), σ1 represents
the starting times of |σ1|many jobs, σ2 represents the durations of
the jobs, σ3 represents the amounts of needed resources of the jobs
and τ represents the allowed accumulated amount of resources at
any time point

• bin packing: cspglobal(σ1, σ2, σ3, binpacking), σ1 represents
bin assigments for |σ1| many items, σ2 represents the bin sizes
of the |σ2| many bins and σ3 represents the item sizes

In order to address arrays of CSP variables, ASCASS not
only allows simple constants but also n-ary functional terms for
variable names of the form φ(ι1, . . . , ιn) with ι1, . . . , ιn repre-
senting string or integer arguments (see Figure 3). The special
functional argument all acts as a placeholder and can be used
for addressing arrays of variables. For example, take the four
variable definitions cspvar(v(1, 1), 1, 10), cspvar(v(1, 2), 1, 10),
cspvar(v(2, 1), 1, 10) and cspvar(v(2, 2), 1, 10). A natural inter-
pretation of the arguments is row and column of a two-dimensional
variable array. Consequently, cspglobal(v(all, 2), alldiff) ex-
presses that the values of all second column’s variables, in our case
v(1, 2) and v(2, 2), must be different to each other. v(all,all) stands
for all variables in the two-dimensional array, i.e. all variables formed
by the functional symbol v with arity 2.

8 More information about global constraints can be
found at http://jacop.osolpro.com/guideJaCoP.pdf and
http://sofdem.github.io/gccat/

64 Solving the Partner Units Configuration Problem with Heuristic Constraint Answer Set Programming.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Figure 2. Architecture of ASCASS

Figure 3. Concept of variable arrays in ASCASS

3.2 Encoding of variable selection strategies
Apart from the predicates for defining a CSP, ASCASS pro-
vides predicates for steering the search of the CP solver. The
predicates cspvarsel(ε) and cspvarsel(ε, θ) define the variable
selection strategy to be used. Hereby, ε is the primary selec-
tion strategy and, if defined, θ acts as a secondary, tiebreaking
strategy. For variable selection, ASCASS currently supports the
problem-independent built-in strategies smallestDomain, mostCon-
strainedStatic, mostConstrainedDynamic, smallestMin, largestDo-
main, largestMin, smallestMax, maxRegret, weightedDegree and the
problem-dependent strategy priority.

When using the priority-strategy, ASCASS builds an order-
ing of the CSP variables based on the provided priorities η in
cspvar(α, λ, υ, η). Variables with high priorities are selected first.
Variables for which there is no η defined are selected as the last ones.
Hence, the priority strategy in combination with the variable prior-
ities is similar to the label order predicate in Balduccini’s EZCSP.

3.3 Encoding of value selection strategies
For value selection ASCASS provides the predicates cspvalsel(φ)
and cspvalsel(φ, ϕ) where φ and ϕ are constants denoting the strat-
egy. As it is often important to have different value selection strate-
gies for different sets of variables, ASCASS provides also the pred-
icates cspvalsel(σ, φ) and cspvalsel(σ, φ, ϕ) where σ represents
an array of variables like in global constraints. ASCASS supports
the already built-in strategies indomainMin, indomainMiddle, indo-
mainMax and indomainRandom. For expressing problem-dependent
value selection strategies, the novel strategy indomainPreferred can
be used.

When using indomainPreferred, the CP solver first tries to use
specified values before changing to the built-in strategy ϕ (min-
Domain if not stated otherwise). For specifying preferred val-
ues, ASCASS provides the special predicate cspprefer(α, ρ, τ)
and cspprefer(α, ρ, τ, η). Like for relational constraints, α rep-

resents a CSP variable, ρ represents a relational symbol and τ
stands for a further variable or a numerical constant. For example,
cspprefer(v, eq, 5) states that for the CSP variable v a preferred
value is 5. In order to specify an ordering of the specified values,
it is possible to make use of a numerical priority η. Higher priority
statements are taken into account first by ASCASS. For example, if
there is given cspprefer(v, eq, 5, 1) and cspprefer(v, eq, 20, 2),
ASCASS tries to first label v with 20 and only after that with 5. Of
course, only preferred values are taken into account which are still
in the variable’s domain. In case that τ denotes another variable, the
minimum value in the current domain of τ is used as a preferred
value, i.e. τ does not need to be singleton for specifying a preferred
value of α. This in combination with global constraints is a highly
dynamic and powerful mechanism.

As with the relational constant eq in combination with the priori-
ties η every ordering of preferred values can be expressed, the usage
of lt, lteq, gt and gteq can be clearly seen as syntactic sugar. By
using lt, lteq, gt and gteq sets of preferred values can be expressed:

• lteq τ : {τ, τ − 1, . . . ,−∞}
• lt τ : {τ − 1, . . . ,−∞}
• gteq τ : {τ, τ + 1, . . . ,∞}
• gt τ : {τ + 1, . . . ,∞}

Note that all preferred values of such a set P have the same
priority (possibly given explicitly by η). For defining an order re-
lation over P , i.e. fix the order in which ASCASS considers the
preferred values in P , the following holds: For lt and lteq de-
creasing order is used, i.e. τ, τ − 1, . . . ,−∞ and for gt and gteq
increasing order is used, i.e. τ, τ + 1, . . . ,∞. For example hav-
ing the variable definition cspvar(v, 1, 10) and the value selec-
tion strategy cspvalsel(indomainPreferred, indomainMin),
cspprefer(v, lt, 5) would effect that ASCASS considers the domain
values in the following order: 4, 3, 2, 1, 5, 6, 7, 8, 9, 10. The reason
why for lt and lteq descending order and for gt or gteq ascending or-
der is used is simply the following: Would it be the other way round,
the behavior with lt and lteq would conform to indomainMin and
with gt and gteq to indomainMax.

3.4 Encoding of pruning strategies

The third component of many problem-dependent heuristics is the
pruning strategy. For specifying how a search tree is pruned, AS-
CASS provides the special predicate cspsearch(ω, µ). Hereby, ω
specifies the pruning type and µ specifies a numerical limit that,
when reached, triggers backtracking. Again it could be beneficial

Erich Teppan. 65

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

having different limits for different groups of variables or even hav-
ing no limit on certain variables whilst search on others is limited.
To this, ASCASS provides the predicate cspsearch(σ, ω, µ) with σ
denoting an array of variables like for global constraints.

Currently, ASCASS provides two pruning types.
cspsearch(limited, µ) limits the number of wrong decisions
for variables. If the number µ of wrong choices for a variable is
reached, backtracking is triggered and the counter for the variable
is reset. For example, cspsearch(limited, 3) specifies that for
every variable v there must not be more than three labeling trials
for v within a search branch. The second pruning type is based on
limited discrepancy search [10] and operates on the level of search
paths. When specifying cspsearch(lds, µ) only a certain number of
wrong decisions (called discrepancies) along the whole search path
is allowed. If this number reaches µ, backtracking is triggered.

Furthermore, it is possible to limit search time of the CP solver by
csptimeout(∆) where ∆ is the number of seconds when the timeout
is triggered. The timeout concerns only the search of Jacop so that
search might start over based on the next answer set if such exists.

3.5 Directives for answer set production
In order to specify which heuristic is to be used by Clingo, the spe-
cial ASCASS predicate aspheuristic(ν) can be used. Hereby, ν is
a constant denoting the heuristic which is passed to Clingo as a com-
mand line option --heur = ν. As this happens before the actual
answer set solving, aspheuristic(ν) must only be used as a single
fact within program source code. Common heuristics to be used are
V SIDS or Berkmin [11]. When using aspheuristic(domain),
Clingo uses a user-defined heuristic defined via the special predicate
heuristic [6]. For limiting the number of produced answer sets, the

special predicate aspnumas(∆) can be used. ∆ is a non-negative
integer and is passed to Clingo as a command line option. The de-
fault is ’1’ and ’0’ effects the production of all answer sets. Like
aspheuristic, also aspnumas must only be used as a single fact
within the problem source code. Similarly, asptimeout(∆) speci-
fies a timeout for answer set solving.

4 Solving the PUP with ASCASS
The input comprises of a set of egde(i, s) facts where i takes the
numerical identifier of an indicator and s takes the identifier of a
sensor. Additionally the input includes a fact ucap(x) with x > 0
that defines the unit capacity (UCAP) and a fact iucap(y) with y > 0
that defines the inter-unit capacity (IUCAP).

For the code snippets given in the remainder of this section we
use the standard notation of logic programming. In particular, left-
implication← is represented as ’:-’.

In order to produce explicit indicator and sensor information the
following lines of code are used:

sensor(S):-edge(I,S).
indicator(I):-edge(I,S).
numIndicators(N):-N=#count{I:indicator(I)}.
numSensors(N):-N=#count{S:sensor(S)}.

The number of indicators (numIndicators) respectively sensors
(numSensors) are calculated by means of the #count aggregate
literal provided by Clingo.

We restrict the number of units (numUnits) available for
a solution to the theoretical lower bound, i.e. numUnits =⌈

max(numIndicators,numSensors)
UCAP

⌉
:

max(M):-numIndicators(E),numSensors(F),
M=#max(E;F).

numUnits(N):-max(M),ucap(C),N=(M+1)/C.
unit(Z):-numUnits(N),1<=Z,Z<=N.

For each indicator i there is a CSP variable device(i, 1) and for
each sensor s there is a CSP variable device(s, 2). This way it is
also possible to refer to the array of all CSP device variables as
device(all, all), to only the indicator variables as device(all, 1) and
to the sensor variables as device(all, 2) which will be useful later.
The value range for these CSP variables is [1..numUnits]. Further-
more, the variables get a priority defining the topological order in
which they are labeled by ASCASS:

cspvar(device(I,1),1,N,P):-
numUnits(N),iPriority(I,P).

cspvar(device(S,2),1,N,P):-
numUnits(N),sPriority(S,P).

The calculation of the priorities is explained in detail below.
In order to assure UCAP, for each unit u there are two counting

variables ci(u) and cs(u). These variables can take values in the
range [0..UCAP]. Furthermore, for each unit u there are two count
global constraints counting the number of indicator respectively sen-
sor variables taking the value u:

cspvar(ci(U),0,C):-ucap(C),unit(U).
cspvar(cs(U),0,C):-ucap(C),unit(U).
cspglobal(device(all,1),count,ci(U),U):-

unit(U).
cspglobal(device(all,2),count,cs(U),U):-

unit(U).

In order to capture which unit u1 is connected to which unit
u2 there are numUnits × numUnits many CSP variables (i.e.
conn(U1, U2)). The variables can take values in the range [0..1]
if u1 <> u2. Otherwise, the variables’ ranges consists of only a
single value, i.e. [1..1]. This is because in our model each unit u is
always connected to itself. Furthermore, there is a constraint assuring
symmetry, i.e. if u1 is connected to u2 also u2 is connected to u1:

cspvar(conn(U1,U2),0,1):-unit(U1),unit(U2),
U1<>U2.

cspvar(conn(U,U),1,1):-unit(U).
cspconstr(conn(U1,U2),eq,conn(U2,U1)):-

unit(U1),unit(U2),U1<U2.

For summing up how many units are connected to a unit u we
make use of the global sum constraint. The used summing variables
can hereby take values in the range [1..IUCAP + 1] as every unit is
also connected to itself:

cspvar(sumconns(U),1,K+1):-iucap(K),unit(U).
cspglobal(conn(U,all),sum,sumconns(U)):-

unit(U).

In order to make the summing variables and constraints take ef-
fect, it must be assured that any connection variable conn(u1, u2)
is set to one whenever there is an edge(i, s) in the input so that
device(i, 1) = u1 and device(s, 2) = u2. Following the approach
of [5], this is implemented by means of the global element con-
straint. Given an array of CSP variables arr, an index i and a value
v, an element constraint assures that the ith variable in arr is equal
to v. In our case, for each edge(i, s) in the input there is such a
global constraint setting the appropriate connection variable within
conn(all, all) to one:

66 Solving the Partner Units Configuration Problem with Heuristic Constraint Answer Set Programming.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

cspglobal(conn(all,all),element,index(I,S),1)
:-edge(I,S).

As the element constraint cannot directly handle multi-dimensional
arrays, the respective index is calculated as index(i, s) =
(device(i, 1) − 1) × numUnits + device(s, 2). The formulation
with constraints is straightforward.

The priorities for the device variables (i.e. device(i, 1) and
device(s, 2) are based on a topological ordering of the devices.
Given the layer of a sensor or indicator whereby the root of the topo-
logical graph is at layer zero, the priority is higher the lower the layer
is:

iPriority(I,P):-indicatorLayer(I,L),P=9999-L.
sPriority(S,P):-sensorLayer(S,L),P=9999-L.

The effect is that, given a root indicator, ASCASS first tries to
label the root indicator, then the neighbors of the root indicator, then
the neighbors of the neighbors, and so on. In our implementation a
choice rule is used to express that there is exactly one distinguished
indicator that acts as root. This indicator is always placed at the first
unit:

1{root(I):indicator(I)}1.
cspconstr(device(I,1),eq,1):-root(I).

The choice rule 1{root(I) : indicator(I)}1 produces one answer
set for each root indicator and asserts a root(i) fact.

For calculating the actual layers, we first calculate the minimum
distances to the root whereas root indicator has a zero distance to
itself9:

indicatorDist(I0,0):-root(I0).
sensorDist(S,D+1):-indicatorDist(I,D),

edge(I,S),numDevices(M),D<M.
indicatorDist(I,D+1):-sensorDist(S,D),

edge(I,S),numDevices(M),D<M.
numDevices(N):-numIndicators(E),numSensors(F),

N=E+F.

The layers are calculated by using the #min aggregate literal
from Clingo:

indicatorLayer(I,Dmin):-indicator(I),
Dmin=#min{D:indicatorDist(I,D)}.

sensorLayer(S,Dmin):- sensor(S),
Dmin = #min{D:sensorDist(S,D)}.

First to try to place devices on unused units and, only if not suc-
cessful, on used units in descending order can be expressed in AS-
CASS by means of preferred values:

cspprefer(device(I,1),lteq,nextUnit):-
indicator(I).

cspprefer(device(S,2),lteq,nextUnit):-
sensor(S).

The CSP variable nextUnit points to the next unused unit, which
is the current unit plus one10:

9 In order to make grounding safe, we have to limit the maximum possible
distance which is equal to the total number of devices.

10 Within the constraint, the helping variable cspvar(one, 1, 1) is used as
arithmetic constraints only accept variables in ASCASS.

cspvar(curUnit,1,N):-numUnits(N).
cspvar(nextUnit,1,N+1):-numUnits(N).
csparith(curUnit,plus,one,eq,nextUnit).

For the calculation of the current unit, i.e. the highest number
taken by some device(i, 1) or device(s, 2) variable, the globalmax
constraint is used:

cspglobal(device(all,all),max,curUnit).

As ASCASS uses the lower bound of variables for calculating
the preferred values, each device variable is first tried to be bound
to values lower than or equal to the lower bound of nextUnit =
curUnit+ 1 in descending order.

In order to control how many units are maximally tried per device
variable, the search is pruned such that only the next unit and a lim-
ited number of already used units can be tried before backtracking is
triggered. In our implementation we use the following statement for
only trying the next, the current and the last unit:

cspsearch(limited,3).

We furthermore restrict the maximum CSP search time for each
call of the CP solver in order to try different start indicators:

csptimeout(300).

For making ASCASS respect the problem-
dependent selection strategies, cspvarsel(priority) and
cspvalsel(device(all, all), indomainPreferred) must be
included. Thus, the concepts of QuickPup can be fully expressed in
a declarative way by ASCASS. To the best of our knowledge, this is
not possible within any other ASP or CASP approach.

4.1 Evaluation
We tested the ASP solver Clingo 4 and the CASP solvers ASCASS,
Clingcon and Ezcsp on the PUP benchmark suite used in [2]11.
Clingo was tested using the PUP encoding proposed in [2]12. The
tests were run on a 3.2 Ghz machine with 64 GByte of RAM, assur-
ing that the grounding bottleneck does not play a role for the tested
instances13 and performance can be attributed to the search phase.

In the Clingcon model, problem-dependent CSP variable selec-
tion, value selection or pruning strategies cannot be exploited. For
Ezcsp, it is possible to express the topological variable orderings sim-
ilar to ASCASS. However, there are no means for pruning search or
problem-dependent value strategies.

Table 1 depicts how many instances of each type in the bench-
mark suite could be solved by the different approaches within a 1000
seconds time frame. Clingo using VSIDS heuristic peformed very
well on the benchmark suite showing once again that the conflict-
driven search techniques employed by Clingo are quite powerful.
Also Ezcsp was able to solve some instances. Using other built-in
heuristics did not result in better performance. Clingcon was not able
to solve a single instance. In the contrary, ASCASS was able to solve
all but one instances within time limits. We want to point out that
only optimal solutions (i.e. minimum number of units) were allowed
for easing the grounding bottleneck of conventional ASP. Increasing

11 Encodings and benchmark instances can be found at
http://isbi.aau.at/hint/ascass

12 The ’new’ encoding provided by the ASP competition 2014 was found to
be inconsistent as it also produces answer sets for unsatisfiable instances.

13 The biggest grounding in the ASP model was ∼ 12 GByte.

Erich Teppan. 67

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Clingo ASCASS Clingcon Ezcsp
double(IUCAP=2) 10 2 10 0 2
doublev(IUCAP=2) 6 3 6 0 0
triple(IUCAP=2) 3 2 3 0 2
triple(IUCAP=4) 7 6 6 0 3
grid(IUCAP=4) 10 10 10 0 0
total 36 23 35 0 7

Table 1. Solved instances whithin 600 seconds

the number of allowed units in a solution would increase grounding
size for ASP significantly. In the cases of ASCASS and Ezcsp, in-
creasing the number of allowed units would not affect the grounding
size as the number of allowed units is captured by the upper bounds
of the CSP variables.

Furthermore, we want to make clear that the superior performance
of ASCASS can be attributed to the inclusion of the QuickPup strate-
gies. This was crosschecked by removing the heuristic parts from the
ASCASS problem encodings. It is to be noted that QuickPup origi-
nally was designed for producing only near-optimal solutions. How-
ever, the concepts of QuickPup obviously also work well for finding
optimal solutions.

5 Conclusions

Solving configuration problems are among the biggest challenges
and also major success stories of artificial intelligence. In this con-
text, the Partner Units Problem (PUP) has gained more and more at-
tention in the knowledge-based configuration community. The PUP
is a classical configuration problem with many application fields like
railway safety, CCTV surveillance or electrical engineering. More-
over, the PUP constitutes one of the hardest benchmark problems of
the ASP competitions. Many general solving frameworks like SAT
solving, integer, constraint or answer set programming have already
been applied on the PUP. However, the domain-specific QuickPup
heuristic has proven to outperform general problem solvers on real-
world problem instances. Up to now, it was not possible to express
complex domain heuristics like QuickPup within a declarative frame-
work. The new hybrid technique of constraint answer set program-
ming (CASP) introduces the chance to realize declarative frame-
works with which it is possible to express and exploit also more
complex domain heuristics like QuickPup.

In this paper we presented ASCASS, a novel CASP solver which
allows the declarative formulation of domain-specific heuristics. In
particular, ASCASS exploits ASP to generate problem-specific vari-
able and value selection as well as pruning strategies for usage by
the constraint solver. It was discussed in detail how the PUP and the
QuickPup heuristic can be implemented in ASCASS. A first evalua-
tion carried out on a well-established PUP benchmark clearly proofs
the concept. Due to the sophisticated QuickPup heuristic, which can
be expressed in ASCASS quite naturally but cannot be expressed in
any other ASP or CASP system, ASCASS clearly outperforms state-
of-the-art ASP or CASP systems on the tested instances.

ACKNOWLEDGEMENTS

Work has been funded by the Austrian Research Fund (FFG) in the
context of project Heuristic Intelligence (HINT, FFG-PNr.: 840242)
in cooperation with Siemens AG Österreich.

REFERENCES
[1] Falkner A., A. Haselboeck, G. Schenner, and H. Schreiner, ‘Modeling

and solving technical product configuration problems’, AI EDAM, 115–
129, (2011).

[2] M. Aschinger, C. Drescher, G. Friedrich, G. Gottlob, P. Jeavons,
A. Ryabokon, and E. Thorstensen, ‘Optimization methods for the
partner units problem’, in CPAIOR’11, pp. 4–19, Berlin, Heidelberg,
(2011). Springer-Verlag.

[3] M. Balduccini, ‘Representing constraint satisfaction problems in an-
swer set programming’, in ICLP09 Workshop on Answer Set Program-
ming and Other Computing Paradigms (ASPOCP’09), (2009).

[4] Marcello Balduccini, ‘Industrial-size scheduling with asp+cp’, in Pro-
ceedings of the 11th Int. Conf. on Logic Programming and Nonmono-
tonic Reasoning, LPNMR’11, pp. 284–296, Berlin, Heidelberg, (2011).
Springer-Verlag.

[5] Conrad Drescher, ‘The partner units problem: A constraint program-
ming case study’, in ICTAI’12, (2012).

[6] M. Gebser, B. Kaufmann, J. Romero, R. Otero, T. Schaub, and
P. Wanko, ‘Domain-specific heuristics in answer set programming’, in
27th AAAI Conf. (AAAI’13), pp. 350–356, (2013).

[7] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub, Answer Set Solving in Practice, Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, Morgan and Claypool Publish-
ers, 2012.

[8] Michael Gelfond and Vladimir Lifschitz, ‘The stable model seman-
tics for logic programming’, in Proceedings of the Fifth Int. Conf. and
Symp. of Logic Progr. (ICLP‘88), eds., R. Kowalski and K. Bowen, pp.
1070 – 1080. MIT Press, (1988).

[9] Michael Gelfond and Vladimir Lifschitz, ‘The stable model seman-
tics for logic programming’, in Proceedings of the Fifth International
Conference and Symposium of Logic Programming (ICLP‘88), eds.,
R. Kowalski and K. Bowen, pp. 1070 – 1080. MIT Press, (1988).

[10] William D. Harvey and Matthew L. Ginsberg, ‘Limited discrepancy
search’, in Proceedings of the 13th International Joint Conf. on Arti-
ficial Intelligence, pp. 607–613. Morgan Kaufmann, (1995).

[11] Matthew D. T. Lewis, Tobias Schubert, and Bernd W. Becker, ‘Speedup
techniques utilized in modern sat solvers’, in Proceedings of the 8th Int.
Conf. on Theory and Applications of Satisfiability Testing, SAT’05, pp.
437–443, Berlin, Heidelberg, (2005). Springer-Verlag.

[12] Yuliya Lierler, Shaden Smith, Miroslaw Truszczynski, and Alex West-
lund, ‘Weighted-sequence problem: Asp vs casp and declarative vs
problem-oriented solving’, in Proceedings of the 14th Int. Conf. on
Practical Aspects of Declarative Languages, PADL’12, pp. 63–77,
Berlin, Heidelberg, (2012). Springer-Verlag.

[13] Veena S. Mellarkod, Michael Gelfond, and Yuanlin Zhang, ‘Integrating
answer set programming and constraint logic programming’, Annals
of Mathematics and Artificial Intelligence, 53(1-4), 251–287, (August
2008).

[14] Sanjay Mittal and Felix Frayman, ‘Towards a generic model of con-
figuraton tasks’, in 11th International Joint Conference on AI - Vol. 2,
IJCAI’89, pp. 1395–1401, San Francisco, CA, USA, (1989). Morgan
Kaufmann Publishers Inc.

[15] Max Ostrowski and Torsten Schaub, ‘Asp modulo csp: The clingcon
system’, Theory Pract. Log. Program., 12(4-5), 485–503, (September
2012).

[16] Tommi Syrjänen, ‘Cardinality constraint programs’, in JELIA 2004,
volume 3229 of Lecture Notes in Computer Science, pp. 187–199.
Springer, (2004).

[17] Erich Christian Teppan, ‘Re-/configuring legacy instances of the part-
ner units problem’, in International Conference on Tools with Artificial
Intelligence (ICTAI’12), pp. 154–161. IEEE, (2012).

[18] Erich Christian Teppan, Gerhard Friedrich, and Andreas Falkner,
‘Quickpup: A heuristic backtracking algorithm for the partner units
configuration problem.’, in International Conference on Innovative Ap-
plications of AI (IAAI’12), pp. 2329–2334. AAAI, (2012).

[19] Erich Christian Teppan, Gerhard Friedrich, and Georg Got-
tlob, ‘Tractability frontiers of the partner units configura-
tion problem’, Journal of Computer and System Sciences,
http://dx.doi.org/10.1016/j.jcss.2015.12.004, (2016).

68 Solving the Partner Units Configuration Problem with Heuristic Constraint Answer Set Programming.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Towards Group-Based Configuration
Alexander Felfernig1 and Müslüm Atas1 and Thi Ngoc Trang Tran1 and Martin Stettinger1

Abstract. Group-based configuration is a new configuration ap-
proach that supports scenarios in which a group of users is in charge
of configuring a product or service. In this paper, we introduce a def-
inition of a group-based configuration task and a corresponding so-
lution. Furthermore, we show how inconsistent situations in group-
based configuration can be resolved to achieve consensus within the
group. We introduce these concepts on the basis of a working exam-
ple from the domain of (group-based) software release planning.

1 Introduction
Configuration [1, 16] is considered as one of the most successful ap-
plications of Artificial Intelligence technologies. It is applied in many
domains such as financial services [2], telecommunication [5], and
the furniture industry [7]. Configuration environments are typically
single-user oriented, i.e., the underlying assumption is that a specific
user is in charge of completing the configuration task. However, con-
sidering configuration as a single user task can lead to suboptimal
decisions [4]. For example, release planning is a task that typically
requires the engagement of a group of stakeholders where the knowl-
edge and preferences of all stakeholders should be taken into account
in order to be able to achieve high-quality decisions [4, 6].

There are various scenarios where configuration decisions are not
taken by a single person but by a group of users [3]. As mentioned,
Software Release Planning [4] is a requirements engineering related
task, where groups of users (stakeholders) are deciding about the or-
dering in which requirements should be implemented. In this sce-
nario, stakeholders have different preferences and knowledge regard-
ing the implementation alternatives. Consequently, requirements-
related knowledge should be exchanged as much as possible and
existing contradictions in preferences and evaluations have to be re-
solved. Holiday Planning [8] is another scenario where a group is
in charge of identifying a configuration that is accepted by all group
members – examples of related decisions are region to visit, hotel,
and activities during the stay. Product Line Scoping [14] is related to
the task of determining boundaries in a product line. This task is a
specific type of requirements engineering task and related decisions
are crucial for the success of a whole product line effort. Investment
Decisions (e.g., project funding) [3] are often taken by a group of
users who have to take into account constraints with regard to the
overall amount of money that can be invested and the topics projects
should deal with. The overall configuration task in this context is to
identify a bundle of project proposals that takes into account the fi-
nancial limits and includes high-quality proposals.

Existing configuration environments do not take into account the
aspect of group configuration [3]. In contrast, for non-configurable
items such as movies, restaurants, personnel decisions, and music,

1 Graz University of Technology, Austria, email:
{alexander.felfernig,muatas,ttrang,mstettinger}@ist.tugraz.at

there already exist proposals how to support related group decision
processes [11, 12, 15]. In this context, group recommendation heuris-
tics [12] are applied to support groups in their decision making ac-
tivities. In order to achieve consensus, different decision heuristics
are applied which propose decisions acceptable for a group as a
whole. For example, the least misery heuristic proposes alternatives
which do not represent an absolute no-go for at least one of the group
members. Besides decision heuristics, standard recommendation ap-
proaches [9] such as matrix factorization can be applied to predict
recommendations acceptable for a group as whole. These approaches
rely on existing group recommendations. Based on such information
about group selection behavior, corresponding recommendations can
be determined for similar groups.

In this paper, we focus on introducing a formal definition of a
group configuration problem and show how inconsistencies in the
preferences of group members can be resolved.2 The remainder of
this paper is organized as follows. In Section 2 we introduce a ba-
sic definition of a group-based configuration task and introduce a
corresponding example configuration knowledge base. In Section 3
we discuss approaches that can help to resolve inconsistencies in the
preferences of individual group members. In Section 4 we discuss
further issues for future work. With Section 5 we conclude the paper.

2 Group-Based Configuration

In the following, we introduce definitions of a group configuration
task and a corresponding solution. These definitions are based on a
Constraint Satisfaction Problem (CSP) [17] which is frequently used
for the definition of (single user) configuration tasks. The major char-
acteristic of group-based configuration compared to other types of
group decision tasks is that the alternatives are defined in terms of a
knowledge base, i.e., the alternatives are not pre-specified. This re-
quires new approaches to configuration and diagnosis search, and to
represent the configuration task in a corresponding user interface.

Definition 1: Group-based Configuration Task. A group-based
configuration task can be defined as a CSP (V ,D,C) where V is a set
of variables, D represents the corresponding domain definitions, and
C = PREF ∪ CKB represents a set of constraints. In this context,
PREF =

⋃
PREFi is the union of customer preferences PREFi

and CKB represents a configuration knowledge base.3

Definition 2: Group-based Configuration. A group-based config-
uration (solution) for a group-based configuration task is a complete
set of assignmentsCONF =

⋃
ai : vi = vai to the variables vi ∈ V

such that CONF ∪ PREF ∪ CKB is consistent.

2 The work presented in this paper has been developed within the scope of the
WEWANT project (Enabling Technologies for Group-based Configuration)
which is funded by the Austrian Research Promotion Agency (850702).

3 We denote customer requirements as preferences (PREFS) in order to
distinguish these from software requirements in the working example.

Alexander Felfernig, Müslüm Atas, Trang Tran and Martin Stettinger. 69

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Example 1: Group-based Configuration Task. For demonstration
purposes, we introduce a simplified group-based configuration task
from the domain of software release planning. The goal of software
release planning is to assign to each software requirement a corre-
sponding release. In this example, 9 requirements are represented in
terms of variables V = req1, req2, .., req9 and releases are repre-
sented as variable domains. If we assume that three releases have
been planned for completing the whole software (i.e., implementing
each individual requirement), each variable has a corresponding do-
main [1 .. 3], e.g., dom(r1) = [1 .. 3]. For the purpose of this example,
we assume the existence of three stakeholders who are in charge of
release planning – PREFi represents the preferences of stakeholder
i.

The following is a complete specification of a group-based config-
uration task. In this task, the individual user requirements PREFi
are consistent, i.e., a corresponding solution (software release plan)
can be identified.4 The configuration knowledge baseCKB includes
additional constraints that describe dependencies between different
software requirements reqi, for example, req1 > req5 denotes the
fact that requirement req1 must be implemented for req5, i.e., there
is a dependency between these requirements. Furthermore, the re-
quirements req3 and req4 must not be implemented in the same re-
lease (e.g., due to resource constraints).

• V = {req1, .., req9}
• D = {dom(req1) = [1 .. 3], .., dom(req9 = [1 .. 3])}
• PREF1 = {pref11 : req1 = 1, pref12 : req2 = 1, pref13 :
req3 = 1, pref14 : req5 = 2, pref15 : req8 = 3}

• PREF2 = {pref21 : req3 = 1, pref22 : req4 = 2, pref23 :
req6 = 3, pref24 : req7 = 3}

• PREF3 = {pref31 : req5 = 2, pref32 : req6 = 3, pref33 :
req8 = 3, pref34 : req9 = 2}

• CKB = {c1 : req1 < req5, c2 : req2 < req8, c3 : req3 <
req6, c4 : req3 6= req4}

Example 2: Group-based Configuration. On the basis of the ex-
ample group-based configuration task, a constraint solver could de-
termine the following solution: CONF = {a1 : req1 = 1, a2 :
req2 = 1, a3 : req3 = 1, a4 : req4 = 2, a5 : req5 = 2, a6 :
req6 = 3, a7 : req7 = 3, a8 : req8 = 3, a9 : req9 = 2}. For each
requirement, the constraint solver proposes a corresponding release
in the context of which the requirement should be implemented.

3 Resolving Inconsistencies in Group Preferences
In the example introduced in Section 2, the basic assumption is that
the preferences of individual group members are consistent. How-
ever, in group-based configuration scenarios it happens quite often
that the preferences of individual users differ. In the context of re-
lease planning scenarios, it is often the case that stakeholders have
different preferences regarding the implementation of specific re-
quirements. One requirement could be favored due to the fact that
the corresponding functionalities are needed by the stakeholder. An-
other reason could be that a stakeholder has no preferences or sim-
ply does not understand the requirement in detail. Inconsistencies
between preferences can be manually resolved by showing inconsis-
tent preferences to stakeholders and let them decide which changes
should be performed. In such scenarios, minimal conflict sets are de-
termined [10] and conflict resolution is performed by users in a man-
ual fashion.
4 In Section 3 we discuss approaches to deal with inconsistencies.

Alternatively, conflicts between requirements can be resolved au-
tomatically by calculating minimal diagnoses (Definition 4) for min-
imal conflict sets (Definition 3).

Definition 3: Conflict Set. A conflict set CS ⊆ ⋃
REQi is a min-

imal set of requirements such that inconsistent(CS). CS is minimal
if there does not exist a conflict set CS′ with CS′ is a conflict set
and CS′ ⊂ CS.

Minimal conflict sets can be exploited for determining the corre-
sponding diagnoses [13]. Assuming that

⋃
PREFi ∪ CKB is in-

consistent, a minimal diagnosis (Definition 4) represents a minimal
set of requirements that have to be deleted from

⋃
PREFi such that

a solution can be found for the remaining constraints (see Definition
4).

Definition 4: Group-based Configuration Diagnosis Task. A
group-based configuration diagnosis task is defined by a group-based
configuration task (V,D,C = PREF ∪ CKB) where PREF ∪
CKB is inconsistent.

Definition 5: Group-based Configuration Diagnosis. A diagnosis
for a given group-based configuration task (V,D,C = PREF ∪
CKB) is a set ∆ such that CKB ∪ PREF −∆ is consistent. ∆ is
minimal if ¬∃∆′: ∆′ ⊆ ∆.

Example 3: Group-based Configuration Diagnosis Task. An ex-
ample group-based configuration task that includes inconsistencies
between different user requirements is the following.

• V = {req1, .., req9}
• D = {dom(req1) = [1 .. 3], .., dom(req9) = [1 .. 3]}
• PREF1 = {pref11 : req1 = 2, pref12 : req2 = 1, pref13 :
req3 = 1, pref14 : req5 = 2, pref15 : req8 = 3}

• PREF2 = {pref21 : req3 = 2, pref22 : req4 = 3, pref23 :
req6 = 3, pref24 : req7 = 3}

• PREF3 = {pref31 : req5 = 2, pref32 : req6 = 3, pref33 :
req8 = 3, pref34 : req9 = 2}

• CKB = {c1 : req2 > req1, c2 : req2 < req8, c3 : req3 <
req6, c4 : req3 6= req4}

In this example, the requirements of the first stakeholder are incon-
sistent since the combination req1 = 2 and req2 = 1 is inconsistent
with the underlying knowledge base (req2 > req1). Furthermore,
there exists an inconsistency between the requirements req3 = 1
(stakeholder 1) and req3 = 2 (stakeholder 2).

The minimal conflict sets that can be derived from our work-
ing example are the following: CS1 = {pref11, pref12} and
CS2 = {pref13, pref21}. The corresponding set of alternative di-
agnoses (hitting sets) is the following: ∆1 = {pref11, pref13},
∆2 = {pref11, pref21}, ∆3 = {pref12, pref13}, and ∆4 =
{pref12, pref21}. A diagnosis is a minimal set of requirements from⋃
PREFi such that CKB ∪ PREF −∆ is consistent.
Diagnoses represent a set of consistency-preserving delete oper-

ations that can be applied to the set
⋃
PREFi in the case that

PREF ∪ CKB is inconsistent. In many cases, there exist differ-
ent diagnoses that can be recommended for preserving the consis-
tency between user requirements and the configuration knowledge
base (CKB). A ranking of alternative diagnoses in the context of
group configuration scenarios can be achieved, for example, by de-
termining a candidate set of minimal diagnoses that is then ranked
on the basis of different types of group decision heuristics [12].

An example of the application of such group decision heuristics
will be discussed in the following. Table 1 depicts a situation where
individual user requirements are inconsistent. In order to resolve this
inconsistency, the alternative diagnoses ∆1,∆2,∆3, and ∆4 can be
applied. An open question in this context is which of the alternative

70 Towards Group-Based Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

stake-
holder

req1 req2 req3 req4 req5 req6 req7 req8 req9

1
pref11 :
req1 = 2

pref12 :
req2 = 1

pref13 :
req3 = 1

pref14 :
req5 = 2

pref15 :
req8 = 3

2
pref21 :
req3 = 2

pref22 :
req4 = 3

pref23 :
req6 = 3

pref24 :
req7 = 3

3
pref31 :
req5 = 2

pref32 :
req6 = 3

pref33 :
req8 = 3

pref34 :
req9 = 2

Table 1. Tabular representation of constraints in an example group-based configuration task. Conflict set CS1 = {pref11, pref12} reflects inconsistent
preferences of stakeholder 1 (the preferences are inconsistent with the configuration knowledge base) and conflict set CS2 = {pref13, pref21} reflects a

conflict between the preferences of stakeholders 1 and 2.

diagnoses should be recommended first to the group of users – Table
2 summarizes the impact of the different diagnoses on the current
preferences of stakeholders (users). For this purpose, different group
decision heuristics can be applied that help to figure out alternatives
acceptable for the whole group.

In the following, we exemplify three basic heuristics and show
how these can influence the selection of a diagnosis. First, the least
misery heuristic prefers alternatives (in our case diagnoses) that min-
imize the misery of individual users (see Formula 1 – prefδ(s,∆)
denotes the number of preferences that have to be changed by user
s in the context of diagnosis ∆). In our scenario, least misery for
a whole group would reflect the minimum of the maximum num-
ber of preferences part of a diagnosis, i.e., the lower the least misery
value the better the corresponding diagnosis. For example, if diagno-
sis ∆2 is recommended, user 1 would have to adapt two of his/her
requirements and user 2 would have to adapt zero. Diagnosis ∆2 has
a lower misery value since the maximum number of requirements
to be adapted is 1. Obviously, user 3 is in the situation of not be-
ing affected by any of the diagnosis candidates. Second, the average
heuristic prefers alternatives with the lowest average deviation from
the original preferences (see Formula 2). Finally, the most pleasure
heuristic prefers alternatives with the best outcome for one user (see
Formula 3). For example, in Table 1 the most pleasure value of all di-
agnoses ∆i is 0.0 since for user 3 there does not exist a need to adapt
his/her preferences in all of the diagnoses. For a detailed discussion
of group decision heuristics we refer to [12].

leastmisery(∆) = argmaxd
⋃

s∈users
prefδ(s,∆) = d (1)

average(∆) =
Σs∈usersprefδ(s,∆)

#users
(2)

mostpleasure(∆) = argmind
⋃

s∈users
prefδ(s,∆) = d (3)

stakeholder ∆1 =
{r11, r13}

∆2 =
{r11, r21}

∆3 =
{r12, r13}

∆4 =
{r12, r21}

1 2 1 2 1
2 0 1 0 1
3 0 0 0 0

Table 2. Overview of the impact of the different diagnoses ∆i on the
current preferences of stakeholders, for example, stakeholder 1 has to change

two of his/her requirements if diagnosis ∆1 gets selected.

heuristic ∆1 =
{r11, r13}

∆2 =
{r11, r21}

∆3 =
{r12, r13}

∆4 =
{r12, r21}

least misery 2.0 1.0 2.0 1.0
average 0.67 0.67 0.67 0.67

most
pleasure 0.0 0.0 0.0 0.0

Table 3. Evaluation of the different diagnoses using the least misery,
average, and the most pleasure heuristic. In all three heuristics the ranking

criteria for the diagnoses is less is better.

4 Future Work
The major goal of this paper is to present our initial ideas related
to the implementation of group-based configuration technologies.
There are a couple of issues to be solved within the scope of future
work - these issues will be discussed in the following paragraphs.

Consensus in Group Decision Making. Presenting diagnoses in sit-
uations where user preferences are inconsistent with the underlying
configuration knowledge base and/or the preferences of other users is
a basic means to trigger discussions and achieve consensus [4]. How-
ever, further aspects have to be taken into account in order to be able
to accelerate the achievement of consensus in group decision mak-
ing. Approaches that are promising in this context are, for example,
the following. User interfaces have to be enriched in order to allow
basic negotiation mechanisms between users. An example thereof is
the following: stakeholder A is interested in having implemented re-
quirement reqa as soon as possible. Furthermore, stakeholder B is
interested in having implemented requirement reqb as soon as pos-
sible. Stakeholder A would accept an earlier implementation of reqb
if stakeholder B accepts an earlier implementation of requirement
reqa. In this context, visualization concepts for the representation
of the current decision situation will play a major role – alternative
ways to represent decision situations are a focus of future work.

Fairness in Group Decision Making. An important issue in group
decision making is fairness with regard to group members. Fairness
is especially a topic within the scope of repeated decision processes
where the same or similar groups are taking a decision. A related ex-
ample is holiday decisions where a group of friends decides about a
new travel destination and related activities. The preferences of users
who were discriminated to some extent in previous year’s travel ar-
rangements should have a higher emphasis in the new holiday deci-
sion. Fairness also includes visualization aspects since the visualiza-
tion of the current state of the decision process could help to increase
fairness in group decision making, for example, by increasingly tak-
ing into account the preferences of other group members.

Predictive Search. Based on the information about already com-
pleted group decision processes, diagnosis and repair could be im-

Alexander Felfernig, Müslüm Atas, Trang Tran and Martin Stettinger. 71

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

proved by better predicting alternatives acceptable for the whole
group. In this context, different types of personalization approaches
should be included that help to take into account the preferences of
the whole group when determining diagnoses and corresponding re-
pair actions. Diagnosis prediction approaches for single users are
already discussed in related work [1], however, in group decision
scenarios further related aspects have to be taken into account. The
prediction of a relevant diagnosis does not only have to take into ac-
count the selection behavior of users but also how users interacted
with each other within the scope of a group decision process. Fur-
thermore, the search for alternative configurations has to take into
account group preferences, i.e., search heuristics must be learned on
the basis of past group interactions.

Negotiation Mechanisms. The main challenge of negotiation
mechanisms is to include these in a way that is easy to understand
for users. Complex negotiation mechanisms will not be accepted by
end-users, i.e., the major challenge is to propose decision and nego-
tiation mechanisms that help to achieve high-quality decisions and
consensus as soon as possible and to trigger inconsistency manage-
ment only in situations where real disagreements exists. For example,
if one stakeholder evaluates the risk level of a requirement with 7 (on
a scale [1..10]) and the other stakeholder evaluates the same require-
ment with 8, there seems to be no real disagreement and the system
may not have to point out an existing inconsistency.

Intelligent User Interfaces. Since group-based configuration tasks
are solved in a distributed and asynchronous fashion, user interfaces
should be able to take into account this situation. Figure 1 includes
a screenshot of the CHOICLA group decision support environment
[15].5 In its current version, the system supports group decisions re-
lated to non-configurable products and services (e.g., party locations
and type of dinner), i.e., decisions are taken with regard to a collected
assortment of alternatives but are not taken with regard to certain at-
tributes (variables) which are basic elements of a configuration task.
In the current version of CHOICLA, the only possibility of taking
decisions regarding configurable products is to enumerate a repre-
sentative set of alternatives (e.g. new family car). In future versions
of CHOICLA, we will support the integration of complete configura-
tion tasks into decision processes. Variables will then be represented
as alternatives and user preferences and inconsistencies will be rep-
resented on a corresponding graphical level.

5 Conclusions

In this paper, we introduced the concept of group-based configura-
tion. We introduced a basic definition of a group-based configuration
task (represented as a constraint satisfaction problem) and showed
how to deal with inconsistent preferences of group members on the
basis of the concepts of model-based diagnosis. In this context, we
showed how to integrate different types of decision heuristics into
diagnosis selection processes. Finally, we discussed different chal-
lenges for future work we want to tackle.

REFERENCES
[1] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based

Configuration: From Research to Business Cases, Elsevier/Morgan
Kaufmann Publishers, 1st edn., 2014.

[2] A. Felfernig, K. Isak, K. Szabo, and P. Zachar, ‘The VITA Financial
Services Sales Support Environment’, in AAAI/IAAI 2007, pp. 1692–
1699, Vancouver, Canada, (2007).

5 www.choicla.com.

Figure 1. CHOICLA group decision support environment. Each entry
represents a group decision task – the corresponding percentages indicate the

share of users who already articulated their requirements. A red circle
indicates the fact that the current user did not articulate his/her preferences.

[3] A. Felfernig, M. Stettinger, G. Ninaus, M. Jeran, S. Reiterer, A. Falkner,
G. Leitner, and J. Tiihonen, ‘Towards open configuration’, in 16th Intl
Workshop on Configuration, pp. 89–94, Novi Sad, Serbia, (2014).

[4] A. Felfernig, C. Zehentner, G. Ninaus, H. Grabner, W. Maaleij,
D. Pagano, L. Weninger, and F. Reinfrank, ‘Group Decision Support for
Requirements Negotiation’, in Advances in User Modeling, Springer
Verlag, volume 7138 of LNCS, pp. 105–116, (2012).

[5] Gerhard Fleischanderl, Gerhard E. Friedrich, Alois Haselböck, Herwig
Schreiner, and Markus Stumptner, ‘Configuring large systems using
generative constraint satisfaction’, IEEE Intelligent Systems, 13(4), 59–
68, (1998).

[6] T. Greitemeyer and S. Schulz-Hardt, ‘Preference-consistent evaluation
of information in the hidden profile paradigm: Beyond group-level
explanations for the dominance of shared information in group deci-
sions.’, Jrnl of Personality & Soc Psychology 84(2), 332–339, (2003).

[7] A. Haag, ‘Sales Configuration in Business Processes’, IEEE Intelligent
Systems, 13(4), 78–85, (1998).

[8] A. Jameson, S. Baldes, and T. Kleinbauer, ‘Two methods for enhancing
mutual awareness in a group recommender system’, in ACM Intl. Work-
ing Conf. on Advanced Vis. Interf., pp. 48–54, Gallipoli, Italy, (2004).

[9] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender
Systems – An Introduction, Cambridge University Press, 2010.

[10] U. Junker, ‘QuickXPlain: Preferred Explanations and Relaxations
for Over-Constrained Problems’, in 19th National Conference on AI
(AAAI04), pp. 167–172, San Jose, CA, (2004).

[11] J. Masthoff, ‘Group modeling: Selecting a sequence of television items
to suit a group of viewers’, UMUAI, 14(1), 37–85, (2004).

[12] J. Masthoff, ‘Group recommender systems’, Recommender Systems
Handbook, 677–702, (2011).

[13] R. Reiter, ‘A theory of diagnosis from first principles’, AI Journal,
23(1), 57–95, (1987).

[14] K. Schmid, ‘Scoping software product lines’, in Software Product Lines
– Experience and Research Directions, pp. 513–532, (2000).

[15] M. Stettinger, ‘Choicla: Towards domain-independent decision support
for groups of users’, in 8th ACM Conference on Recommender Systems,
pp. 425–428, (2014).

[16] M. Stumptner, ‘An overview of knowledge-based configuration’,
AICOM, 10(2), 111–125, (1997).

[17] E. Tsang, Foundations of Constraint Satisfaction, Academic Press,
London, 1993.

72 Towards Group-Based Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Towards Configuration Technologies for IoT Gateways
Alexander Felfernig1 and Seda Polat Erdeniz1 and Paolo Azzoni2 and

Michael Jeran1 and Arda Akcay1 and Charalampos Doukas3

Abstract. The AGILE project aims to create Internet of Things
(IoT) gateway technologies that support many devices, protocols, and
corresponding administration and software development activities. In
this context, there are scenarios that require the support of configura-
tion technologies. The major goal of this short paper is to provide an
overview of application scenarios and related configuration technolo-
gies that will be developed within the scope of the AGILE project.

1 Introduction
Configuration is a process in which agents (users or external sys-
tems) can specify requirements and the configuration system (often
denoted as the configurator) provides feedback in terms of solutions
and/or explanations [6, 17, 18]. Configuration can be interpreted as
a type of design activity where a product is composed (configured)
from a set of instances corresponding to predefined component types
such that the resulting configuration (solution) is consistent with a
given set of constraints [17, 18]. Requirements can be regarded as
specifications of intended properties of the product (i.e., specific con-
straints), for example, a specific application or mail server version
should be included in the system configuration. In such contexts,
system feedback for a user is provided in terms of configurations,
reconfigurations, and explanations for situations in which no solu-
tion could be found. There is a multitude of application examples
of knowledge-based configuration, for example, in the automotive
domain, railway interlocking systems, financial services, operating
systems, and software product lines [6].

Configuration services for the Internet of Things (IoT) domain [2]
is a new application area. The IoT is an emerging paradigm that envi-
sions a networked infrastructure enabling different devices (things) to
be interconnected at anyplace and anytime. In this paper we discuss
two basic scenarios that will be supported by software components
to be developed in the AGILE research project.4 First, ramp-up con-
figuration services will be developed that help to determine an initial
configuration for the whole IoT gateway infrastructure. One of the
major tasks of such gateways5 is to bridge devices to corresponding
applications on the basis of different communication protocols such
as Hue and Zigbee. For example, in the smarthome domain, a con-
figuration would determine the set of sensors, connection protocols,
and apps needed to make a gateway operable for the user. Second,
we will develop technologies that help to optimize configuration and

1 Graz University of Technology, Austria, email: {alexander.felfernig, spo-
later, mjeran, aakcay}@ist.tugraz.at

2 Eurotech Group, Italy, email: paolo.azzoni@eurotech.com
3 Create-Net, Italy, email: cdoukas@create-net.org
4 AGILE (An Adaptive & Modular Gateway for the IoT) is an EU-funded

H2020 project 2016–2018 – see agileiot.eu.
5 Raspberry Pi is one of the hardware platforms used in AGILE – see

www.raspberrypi.org.

reconfiguration of communication protocols in such a way that user
requirements (e.g., performance requirements) and side conditions
(e.g., available bandwith) can be taken into account.

The contributions of this paper are the following. First, we in-
troduce Internet of Things (IoT) as a new application domain of
knowledge-based configuration technologies. Second, we provide an
overview of example IoT application scenarios that are in the need of
configuration support. Finally, we summarize research objectives and
technological approaches that will be followed in the AGILE project.

The remainder of this paper is organized as follows. In Section
2 we provide an overview of basic configuration functionalities that
will be provided in the context of AGILE ramp-up configuration sce-
narios. In Section 3, we focus on a runtime scenario in which we
want to optimize the selection of communication protocols with re-
gard to optimization criteria. In Section 4 we provide an overview of
related work. With Section 5 we conclude the paper.

2 ”Ramp-Up Configuration” in AGILE

AGILE gateways will be deployed in different domains such as
health monitoring, animal monitoring in wildlife areas, air qual-
ity and pollution monitoring, enhanced retail services, smart homes,
and port area monitoring. Each application scenario requires a pre-
configuration which estimates the needed hardware and software
components / devices to be deployed in the ramp-up phase of the
system. We denote this type of configuration ramp-up configuration
since each scenario requires a specific set of hardware components
and software components (including apps) to ”ramp-up” the system.

AGILE Air Pollution Monitoring. Environmental pollution has be-
come an issue of serious international concern and is increasingly
stimulating the development and adoption of solutions to moni-
tor and reduce the effects of pollution. This is an interesting and
challenging market, with both potential economical outcomes and
a strong societal impact. The convergence of hardware integration,
reduction of sensor costs, IoT and M2M technologies introduces a
new panorama where it is really possible to deliver low cost, high
quality monitoring systems with a capillary coverage of the territory.
This convergence leads to a new era of solution for environmental
pollution monitoring. Air quality and pollution monitoring stations
are complex systems that, depending on the application context, de-
liver added value pollution monitoring services based on a delicate
equilibrium between the adoption of the most appropriate sensors,
their correlation, the selection of the correct algorithms and the con-
figuration of their hardware and software parameters. A wrong or
imprecise selection and configuration of these elements leads to mis-
leading, wrong, and completely useless results and services. Air Pol-
lution Monitoring is in the need of configuration support since the
measuring equipment has to be pre-selected and parametrized in the

Alexander Felfernig, Seda Polat Erdeniz, Arda Akcay, Paolo Azzoni and Charalampos Doukas. 73

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

line of the environmental conditions that exist, for example, in a city.
Further AGILE Scenarios. The basic task of a configurator in

health monitoring is to figure out which measuring devices are
needed (including their parametrization) to be able to monitor and
analyze specific body functions. In the animal monitoring scenario it
is important to figure out which infrastructure can be used to com-
plete predefined data collection tasks. In such scenarios, reachability
of animals (and corresponding sensors) plays a major role in order
to be able to complete data collection. Reachability depends on the
selected drone types but also on the selected communication proto-
cols which have different degrees of power consumption. Enhanced
retail services that allow a personalized shopping experience in phys-
ical stores are in the need of configuration functionalities that indi-
cate the amount and positioning of sensors (e.g., for indoor position
detection) and displays that are needed to successfully support cus-
tomers in their shopping experiences. In the port area monitoring
scenario, configuration technologies are needed that help to select
relevant sensors (e.g., gas, radioactivity, and water quality sensors)
that are able to provide the needed data. In smarthome scenarios, the
task of the configurator is to identify sensors, communication compo-
nents, and protocols that are needed to provide the smarthome func-
tionalities required by a customer. In this context, examples of cus-
tomer requirements are rooms in the house and their type, maximum
accepted price, and needed functionalities (e.g., presence monitoring
and simulation, and video surveillance).

Knowledge Acquisition & Representation. When configuring, for
example, smart homes, the configuration model includes information
about the relationships between building properties and correspond-
ing sensors (e.g., if a room is a kitchen and includes an oven, then a
corresponding temperature sensor has to be included for the room)
or between user preferences and the corresponding technical infras-
tructure (e.g., if a user wants to save money, wireless communication
is preferred). A configuration for a given configuration task includes
information about which components, devices, and drivers are part
of the initial gateway installation.

In AGILE, we will evaluate the applicability of different types
of configuration knowledge representations such as answer set pro-
grams (ASP) [13] and constraint-based representations [6, 9, 20].
Our aim is to identify a knowledge representation language that can
be applied for each of the different application scenarios in order
to provide a basic technology for supporting IoT ramp-up configu-
ration tasks. The applicability of these languages will be primarily
evaluated with regard to expressiveness and reasoning efficiency. Es-
pecially, ASP-based configuration approaches will be evaluated with
regard to their applicability in typical gateway ramp-up scenarios.

Consistency Management of Knowledge Bases. Configuration
knowledge bases can become inconsistent, i.e., the defined compo-
nent types and constraints lead to the problem that no solution can
be identified. Such a situation can occur in the context of regression
testing [4] but also in situations where the conflict is induced by the
configuration knowledge base itself. In such scenarios, configuration
technologies in combination with model-based diagnosis [16] can be
exploited to automatically identify the sources (e.g., constraints) of
a given inconsistency [4]. Such functionalities will be included in a
development environment for IoT configuration knowledge bases.

In the context of AGILE, we focus on the development of tech-
niques that help to improve the efficiency of configuration knowl-
edge engineering processes. Although automated debugging [4] is a
useful means to reduce time efforts related knowledge base develop-
ment and maintenance, the development and maintenance of related
test cases (also denotes as examples [4]) is still costly. We will an-

alyze the applicability of different testing approaches from software
engineering and will especially focus on the the development of mu-
tation testing approaches for knowledge bases [10]. In this context, a
mutation will serve as a basis for generating tests that are, for exam-
ple, accepted by the original knowledge base but should not.

Consistency Management of User Requirements. Consistency
management not only plays a role in the context of knowledge base
development and maintenance but also within the scope of a config-
uration process. A user of an AGILE configurator could articulate
a set of requirements in such a way that no solution can be iden-
tified. Also in such a situation, model-based diagnosis approaches
can be exploited to indicate sets of user requirements that have to be
adapted such that at least one solution can be identified [4, 7, 12, 21].
A similar situation occurs in the context of reconfiguration, i.e., in a
situation where hardware and software components of an IoT gate-
way have to be adapted. In this context, minimal changes have to
be proposed that indicate how the existing configuration has to be
adapted such that a consistent configuration can be determined that
takes into account all reconfiguration requirements [8].

In AGILE, we focus on the development of personalization tech-
niques that help to improve the diagnosis prediction quality, i.e., to
identify those diagnoses that will be accepted by the user. Such per-
sonalized diagnoses will be determined on the basis of an analysis
of the interaction behavior of users of similar gateway installations
(available in gateway profile repositories). In this context we will de-
velop learning-based approaches that help to calibrate search heuris-
tics in order to improve efficiency and prediction quality of configu-
ration and reconfiguration.

A simple example of our envisioned approach is the following. Let
us assume the existence of a configuration log as the one shown in
Table 1. The parameters reqi indicate user requirements and xi in-
dicate technical product parameter settings (consistent with the user
requirements) accepted by the user ui. The overall goal is to op-
timize the configurator search heuristics (e.g., variable and domain
orderings) in such a way, that the prediction quality for the technical
parameter settings is maximized. More precisely, we want to iden-
tify search heuristics that guide to solutions (configurations) that will
be accepted by the current user. User interactions (see, e.g., Table
1) serve as a basis for learning. Prediction quality can be measured,
for example, in terms of the user acceptance degree of parameter set-
tings (configurations) proposed by the configurator. In this context
we will evaluate different clustering techniques, i.e., to learn heuris-
tics not on a global level, but depending on a specific cluster derived,
for example, from the user requirements.

user req1 req2 x1 x2 x3 x4

u1 1 2 3 4 4 2
u2 2 2 8 3 4 2
u3 1 2 3 4 5 2

current 1 1 ? ? ? ?

Table 1. Example configuration log as a basis for optimizing the prediction
quality of configuration parameters (reqi represent user requirements and xi

represent technical product parameter settings accepted by previous users).

3 Runtime Configuration in AGILE
Modern embedded systems included in IoT scenarios support a rich
set of connectivity solutions (e.g., 3G, LTE, TD-LTE, FDD-LTD,
WIMAX, and Lora). In this context, configuration technologies play

74 Towards Configuration Technologies for IoT Gateway.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

an important role in terms of suggesting optimal connectivity config-
urations. Such configurations include a collection of connectivity so-
lutions that are needed to support a set of active applications (apps).
Criteria that have to be taken into account are, for example, loca-
tion information, available connectivity, performance and reliability
requirements, contractual aspects, and costs.

In AGILE, runtime configuration must be performed on the gate-
way – in contrast, ramp-up configuration can also take place in the
cloud. On the one hand we will evaluate different types of reasoning
engines, for example, the CHOCO constraint solver6 and the Sat4j
boolean satisfaction library7. We will also take into account the appli-
cation of rule engines8, optimization libraries, and knowledge com-
pression techniques [1] to assure efficiency of problem solving on
the gateway level.

In AGILE, gateway configurations can be manually defined by
users but also be determined on the basis of a configurator that is
in charge of keeping the overall system installations consistent. A
configurator (e.g., a constraint solver) can determine alternative con-
figurations which have to be ranked. In order to determine a ranking
for alternative configurations, a MAUT9 approach can be used [22].
Examples of evaluation dimensions (dim) used in MAUT could be
performance, reliability, and costs. Depending on the current gate-
way configuration and the usage context, a configurator can deter-
mine alternative (re-)configurations and rank them accordingly.

A simplified example of the application of a utility-based approach
is the following. Table 2 includes an evaluation of connectivity pro-
tocol configurations conf (confa and confb) to be used on the gate-
way, for example, for different types of data exchange. The three
evaluation dimensions used in this example are performance, relia-
bility, and costs. Furthermore, Table 3 includes the personal prefer-
ences of two different gateway users (u1 and u2).

In order to determine the configuration that should be chosen for a
specific user, we can apply a utility function (see, e.g., Formula 1).

utility(conf, u) = Σd∈diminterest(u, d)× value(conf, d) (1)

In this context, utility(conf,u) denotes the utility of the configura-
tion conf for the user u, interest(u,d) denotes the interest of user u in
evaluation dimension d, and value(conf,u) denotes the contribution
of configuration conf to the interest dimension d. In the example,
configuration confa has a higher utility for user u1 (107.0) whereas
configuration confb has a higher utility for u2 (111.0). Note that
for simplicity we omitted to sketch the determination of the evalu-
ations depicted in Table 2 – for details see [5]. In order to increase
the efficiency of runtime configuration, we will evaluate knowledge
compression techniques that help to reduce search efforts as much
as possible. For example, we will apply decision diagram techniques
[1] to pre-calculate possible configurations and re-configurations.

Table 4 provides a summary of the configuration-related research
objectives in AGILE. Within the context of ramp-up configuration
scenarios we will identify knowledge representation mechanisms
that allow an easy representation of the AGILE IoT domains intro-
duced in Section 2. Furthermore, we will develop test case generation
techniques that will help to make the development and management
of test cases more efficient. For AGILE scenarios, we will develop
concepts that support the learning of search heuristics to optimize
configuration and reconfiguration processes. Furthermore, we will

6 choco-solver.org.
7 sat4j.org.
8 java-source.net/open-source/rule-engines.
9 Multi-attribute utility theory.

work on knowledge compression techniques [1] that help to make
solution search on the gateway level as efficient as possible.

4 Related Work
Although different from basic IoT scenarios [2], there exist appli-
cations that support the configuration of systems including hard-
ware and software components. Falkner and Schreiner [3] introduce
approaches to the configuration of railway interlocking systems as
examples of complex industrial systems designed on the basis of
constraint-based configuration technologies. Krebs et al. [11] show
the application of configuration technologies in the area of car pe-
riphery supervision that includes detection of the car environment,
the recognition of hazardous situations, and the handling of difficult
traffic situations. Related applications are pre-crash detection, the de-
tection of obstacles, and parking assistance. Related car configura-
tion processes have to take into account existing hardware compo-
nents and to combine these with the corresponding software units.
Finally, Perera et al. [15] introduce an approach to the end-user-
oriented configuration of IoT middleware components.

The afore mentioned approaches are in the line of the mentioned
”ramp-up” scenario, i.e., infrastructures are configured before the
system is operable. In contrast to the developments in [3, 11, 15], the
”ramp-up” configuration approach that is currently developed in AG-
ILE focuses on advanced testing methods for supporting configura-
tion knowledge engineering and also on approaches to improve con-
figurator usability by the inclusion of different types of personalized
consistency restoration methods. Initial approaches to include rec-
ommendation methods into configuration problem solving are doc-
umented, for example, in [19]. These approaches do not take into
account the issue of consistency management in a satisfactory fash-
ion which will be a major focus of our work in the AGILE project.
Finally, for an overview of different IoT smart solutions available on
the market we refer to [14].

5 Conclusions and Future Work
In this paper we provide a short introduction to basic configuration
scenarios of the AGILE project. We discussed the two scenarios of
”ramp-up configuration” and ”runtime optimization”. Major chal-
lenges for our future work will be approaches to automated test case
generation for configuration knowledge bases, efficient techniques to
solve the ”no solution can be found” problem in interactive configu-
ration settings, and the personalization of related repair approaches.

REFERENCES
[1] H. Andersen, ‘An introduction to binary decision diagrams’, in Lecture

Notes for Efficient Algorithms and Programs, pp. 1–35, (1999).
[2] L. Atzori, A. Iera, and G. Morabito, ‘The Internet of Things: A survey’,

Computer Networks, 54(15), 2787–2805, (2010).
[3] A. Falkner and H. Schreiner, ‘SIEMENS: Configuration and Recon-

figuration in Industry’, in Knowledge-based Configuration – From Re-
search to Business Cases, eds., A. Felfernig, L. Hotz, C. Bagley, and
J. Tiihonen, pp. 199–210. Morgan Kaufmann, (2014).

[4] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner,
‘Consistency-based diagnosis of configuration knowledge bases’, Ar-
tificial Intelligence, 152(2), 213–234, (2004).

[5] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, ‘An environment
for the development of knowledge-based recommender applications’,
International Journal of Electronic Commerce (IJEC), 11(2), 11–34,
(2006).

[6] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based
Configuration: From Research to Business Cases, Elsevier/Morgan
Kaufmann Publishers, 1st edn., 2014.

Alexander Felfernig, Seda Polat Erdeniz, Arda Akcay, Paolo Azzoni and Charalampos Doukas. 75

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

configuration
perfor-
mance

reliability costs

confa 9 5 2
confb 5 8 3

Table 2. Utility table: evaluation of configurations with regard to the interest dimensions performance, reliability, and costs.

user performance reliability costs

u1 10 3 1
u2 5 7 10

Table 3. Example user preferences w.r.t. interest dimensions performance, reliability, and costs.

configuration topic research objective

appropriate knowledge representations
knowledge representations for easy
modeling and efficient configuration

search
efficiency of knowledge base
development and maintenance

automated test case generation and
mutation testing

personalized consistency management
personalized configuration based on

learning search heuristics and
knowledge compression techniques

Table 4. Overview of AGILE research objectives.

[7] A. Felfernig, M. Schubert, and C. Zehentner, ‘An Efficient Diagnosis
Algorithm for Inconsistent Constraint Sets’, Artificial Intelligence for
Engineering Design, Analysis, and Manufacturing (AIEDAM), 25(2),
175–184, (2011).

[8] A. Felfernig, R. Walter, and S. Reiterer, ‘FlexDiag: AnyTime Diagnosis
for Reconfiguration’, in 16th International Workshop on Configuration,
pp. 105–110, Vienna, Austria, (2015).

[9] G. Fleischanderl, G. Friedrich, A. Haselböck, H. Schreiner, and
M. Stumptner, ‘Configuring large systems using generative constraint
satisfaction’, IEEE Intelligent Systems, 13(4), 59–68, (1998).

[10] Y. Jia and M. Harman, ‘An Analysis and Survey of the Development of
Mutation Testing’, IEEE Transactions on Software Engineering, 37(5),
649–678, (2011).

[11] T. Krebs, L. Hotz, and A. Günter, ‘Knowledge-based Configuration for
Configuring Combined Hardware/Software Systems’, in Proceedings
of PuK’2002, pp. 1–6, Freiburg, Germany, (2002).

[12] J. Marques-Silva, F. Heras, M. Janota, A. Previti, and A. Belov, ‘On
computing minimal correction subsets’, in IJCAI, pp. 615–622, (2013).

[13] V. Myllärniemi, J. Tiihonen, M. Raatikainen, and A. Felfernig, ‘Using
answer set programming for feature model representation and configu-
ration’, in Workshop on Configuration, pp. 1–8, Novi Sad, (2014).

[14] C. Perera, C. Liu, and S. Jayawardena, ‘The Emerging Internet of
Things Marketplace From an Industrial Perspective: A Survey’, IEEE
Transactions on Emerging Topics in Computing, 3(4), 585–598, (2015).

[15] C. Perera, A. Zaslavsky, M. Compton, P. Christen, and D. Geor-
gakopoulos, ‘Semantic-driven configuration of internet of things mid-
dleware’, in 9th International Conference on Semantics, Knowledge &
Grids (SKG), pp. 66–73, Beijing, China, (2013).

[16] R. Reiter, ‘A theory of diagnosis from first principles’, Artificial Intel-
ligence, 32(1), 57–95, (1987).

[17] Daniel Sabin and Rainer Weigel, ‘Product configuration frameworks -
a survey’, IEEE Intelligent Systems, 13(4), 42–49, (1998).

[18] M. Stumptner, ‘An overview of knowledge-based configuration’,
AICOM, 10(2), 111–125, (1997).

[19] J. Tiihonen and A. Felfernig, ‘Towards Recommending Configurable
Offerings’, International Journal of Mass Customization, 3(4), 389–
406, (2010).

[20] E. Tsang, Foundations of Constraint Satisfaction, Academic Press,
London, 1993.

[21] R. Walter, A. Felfernig, and W. Küchlin, ‘Constraint-based and sat-
based diagnosis of automotive configuration problems’, Journal of In-
telligent Information Systems, 1–32, (2016).

[22] D. Winterfeldt and W. Edwards, Decision Analysis and Behavioral Re-
search, Cambridge University Press, 1986.

76 Towards Configuration Technologies for IoT Gateway.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Towards Modularization and Configuration of Services –
Current Challenges and Difficulties

Thorsten Krebs1 and Aleksander Lubarski2

Abstract.1 The megatrend individualization forces companies to
diversify and tailor their products up to lot size one. However, in
order to stay competitive they need to increase the overall
efficiency by standardizing their internal processes, which leads to
a conflict of interest between a company and its customer. The
principle of modularization gives a possible solution for wide
market coverage with a sufficiently large number of product
variants without major investments. Modularization and
configuration are already widely used in manufacturing and
software development, but the service domain still seems to be at
the beginning of its development, even though service providers
face similar challenges when offering individualized services.
Additionally, traditional product manufacturers are more often
investing into services for being able to cope with saturated and
commoditized global environments, striving for attracting and
retaining customers. This paper presents a problem description and
as such it addresses the challenges and difficulties for the emerging
service modularity. We elaborate on the commonalities and
differences between modularization and configuration of tangible
products and services and present first ideas towards
modularization and configuration of services. The insights are
based on a number of case studies with local companies that were
carried out in a joint research project (http://www.bakerstreet.uni-
bremen.de).

1 INTRODUCTION

In advanced economies, the service sector continuously gains

importance. Not only service firms, whose core competencies are

the provision of services, generate a high portion of the economic

output, but also manufacturers recognize the importance of services

for their business success [1]. The service-dominant logic (SDL)

has become predominant in the modern service provision,

underlying a close interaction between provider and customer,

especially in business-to-business (B2B) services.

In the areas of consumer and capital goods we have seen how

customers became more demanding regarding the individualization

of their requests, which, in turn, forced product manufacturers to

offer more and more variants of their products. In mass

customization scenarios, product configuration based on a modular

strategy is an enabler for this trend [2]. In general terms,

modularity can be seen as a principle of building a complex system

from smaller parts that can be designed and improved

independently, yet function together as a whole [3]. Linked to

“modularity” as the basic concept, “modularization” denotes the

1 encoway GmbH, Buschhöhe 2, 28357 Bremen, email: krebs@encoway.de
2 Universität Bremen, Wilhelm-Herbst-Str. 5, 28359 Bremen, email:

lubarski@is.uni-bremen.de

actual transformation process, and a “modular architecture” is the

desired result of it [4]. The idea of loose coupling results in

interchangeability of modules (separate service components, e.g.,

packaging of a machine before transport) and flexibility

(substitution of one module for another, without affecting the main

service, e.g. contract logistics), as long as the interfaces between

separate modules are well-defined and standardized and a clear

one-to-one matching of modules and functions exists [5].

Manufacturers are adapting their business models and

information systems according to increasing customer demands. As

a result, product diversifications leads to increased use of modular

systems as a basis for product configuration [6]. While product

configuration and modularization strategies are well understood

and applied in the areas of consumer goods and capital goods [7],

the discussion about service modularity remains mostly theoretical

with little application, even though service providers face similar

challenges when offering individualized services (Figure 1).

Figure 1. Need for service modularity

However, the concept of service modularity and its potential

implementation has attracted academic attention of both service

design researchers as well as information system society, thus

becoming one of the central topics of international conferences and

academic journals. Service design researchers like Dörbecker and

Böhmann [8] emphasize the need of examining, whether the

concept of modularity can be actually useful for practical purposes

in the service sector. Similarly, it has been underlined that “so far

the literature does not provide clear guidelines for how to

accomplish modular service design and development” [9].

The purpose of this paper is therefore to start a discussion on the

service modularity from the practical point of view and its possible

implementation with the help of configurators. We elaborate on

commonalities and differences between modularization and

configuration of tangible products and services, concentrating on

the resulting challenges and difficulties and we present first ideas

towards modularization and configuration of services.

Thorsten Krebs and Aleksander Lubarski. 77

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

The remainder of this paper is organized as follows. Section 2

gives an overview of existing work in the field of service

modularity. Section 3 describes the methodology of the case study

research, followed by the conclusions based on the BakerStreet

project in Section 4. The findings are compared to what is known

from the modularization and configuration of tangible products.

Finally, Section 5 summarizes the paper.

2 RELATED WORK

In general, it seems that the concept of service modularity still

remains in its infancy both in terms of academic discussion and

practical application [10]. Previous studies have discussed the

concept of modularity in general [11]–[13], conducted literature

reviews [9] or assessed modularity potentials for specific

application scenarios [14], [15]. A good overview on existing work

on service modularity, regarding its relevant definitions as well as

discussion of positive and negative effects, can be found in the

literature review of [8]. Similarly, in their conceptual paper, Müller

and Lubarski [16] developed seven dimensions on how relevant

literature on service modularity can be structured and introduce

four schools of thought, to show how the concept is evolving in

terms of SDL and business model transformation.

Service modularity has been also recognized as a tool for

strategic positioning of the firm. For instance, Carlborg and

Kindström [10] apply the idea of the SDL (i.e. intensity of

customer participation in the service provision) combined with

different types of service processes and recommend different

modular strategies depending on the types (Figure 2).

Figure 2. Service types and modular strategies [10]

They present their typology as a matrix of two dimensions. The

first dimension distinguishes service processes as being either rigid

or fluid. Rigid service processes are characterized by a high level

of formalization, standardization and low task variety, and a

relatively low level of information exchange between service

provider and customer. On the other hand, fluid service processes

require a high level of technical skill and information exchange and

exhibit a high task variety. While the activities of rigid service

processes are mainly directed to the customer’s possessions (e.g.,

equipment or material), the activities of fluid service processes are

mainly directed towards the customer processes. The second

dimension distinguishes between the modes of customer

participation in the service process, which can vary from passive

(i.e., employees of the service firm produce the service) or active

(i.e., customer action is required). The four cells of the matrix

(Figure 2) represent four different service types that are each

characterized by different key issues in modularity, supporting

resources and modular strategies [10]. While such a typology

marks a first step in introducing service modularity to the service

providers, it still gives no practical guidance on its implementation

or evaluation methods, in particular in terms of the sales process.

Finally, additional attention has been directed towards

modularization methods, which are either adapted from product

modularity [17] or designed specifically for services [18].

However, even though several individual modularization methods

have been introduced and applied in case studies [19], they were

not able to cover the whole modularization process, but instead

concentrated on single phases only (e.g., decomposition of

monolithic service offerings, module creation). In addition, most of

the existing methods make simplified assumptions, which are not

necessarily valid for the real service providers (e.g., existence of an

already well-defined and clearly decomposed service portfolio, or a

comprehensive transparency over service delivery processes). The

first classification of the existing methods for service

modularization based on their specific characteristics was given by

Lubarski and Pöppelbuß [4], who used two dimensions for

structuring (Figure 3).

Figure 3. Process model for service modularization [4]

The first dimension presents different stages of the

modularization process, which are to be completed within a

restructuring initiative, beginning with the information capturing

about the existing service portfolio of the service provider up to the

test phase of the final modularized construction kit, including

modules and rules for their configuration. The result of this process

is a modular architecture comprised of configurable modules,

which can be operated by users (e.g., sales personnel or customers)

using appropriate configuration tools. The second dimension

analyzes how modules are structured, differentiating between (1)

logical structures (widely used in the manufacturing industry,

where the composition of a product from its static components is

described), (2) temporal structures (more suitable for the service

domain due to the process nature) and (3) complex structures

(arbitrary combination of logical and temporal structures).

78 Towards Modularization and Configuration of Services – Current Challenges and Difficulties.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Several case studies have confirmed that there is a current need

for a modular service portfolio amongst practitioners, especially in

the healthcare [19], [20], remote monitoring systems [10] or

logistics sector [15], [21]. Therefore, the idea of an IT-supported

configurator that builds on a modular architecture seems very

promising. Such approaches would allow the customer to get an

overview on possible variants and their corresponding prices,

which would be novel particularly in the B2B environment that is

characterized by a high level of complexity of services,

information asymmetry regarding the service portfolio and price

calculation, and the effortful tender preparation processes.

3 CASE STUDIES

The decomposition of services and their subsequent aggregation

into modules are likely to cause organizational and process

changes, which are best observed in practical application. In order

to gather useful insights, methods of qualitative empirical research

shall be employed. Qualitative research is especially suitable when

the research area is still emerging and not controllable by the

investigators [22], which is the case with service modularization.

To achieve a comprehensive solution for each of the research

objectives, the service providers in the case studies should be as

heterogeneous as possible. Therefore, this research concentrated on

potential partners from key industries in Bremen – logistics and

wind energy services. These industries are different in the nature of

the services offered and service provision, but they face similar

challenges in terms of developing offers that are both flexible and

customizable to fit the specific requirements of the customer.

3.1 Preparation and interviews

Therefore, as part of the research project BakerStreet we have

carried out 18 interviews with service providers; 9 companies from

the area of wind energy and 7 companies from the area of logistics.

The companies are varying in size such that they range between 50

and 8000 employees and between an annual revenue between 2

million and 5.5 billion Euros. The guiding questions addressed the

sales process of the firms as well as the characteristics of the actual

service processes. In line with the subject area of this research,

interviewees from organizations providing these services were

selected. The interviews were conducted in September and October

2015 and lasted from 20 to 45 minutes each. All interview partners

requested to remain anonymous. We used MAXQDA 12 for

analyzing the data. With four of the interviewees we made an in-

depth case study, carried out as a half day workshop with a number

of relevant persons from that companies, such as sales reps and

product managers.

Since we investigated companies from different business areas

the results are only partially comparable. But the areas of logistics

and wind energy also have a lot in common. In addition, we also

made a case study with a company selling construction and

engineering services in the automotive industry and gained insights

from discussions with two companies from the areas of printing

machines and marking systems.

3.2 Results

What all these service providers have in common is that the

complexity behind configuration of services from a customer point

of view is rather a minor problem. The major difficulty in setting

up modular service portfolios is the influence of the customer on

the individual shaping of how the service needs to be carried out.

This, in addition, leads to rather complex pricing strategies.

The impact of individual customer situations depends on the

type of business. For logistics main variant drivers are source and

target location and size, weight and type of goods to be transported.

For wind energy the plant location and turbine manufacturers are

important. For companies selling combined product service

systems, the type of product has impacts on the available services

as well as individual shaping a service. Services carried out based

on products already in use require additional information about the

product’s age, how it was used and serviced in the past.

In addition, service providers often need to manage knowledge

about past quotes and orders. Often every customer inquiry is

executed individually, independent of the question whether the

same or at least a similar inquiry was completed before. Hence,

service providers would largely benefit from a system supporting

the retrieval of past cases based on the customer input.

4 LESSONS LEARNED

The high impact of customers and their situation on the shaping of

how services need to be carried out shows us that a manageable

outer variety of services needs to be set up based on a large inner

variety of tasks to handle specific situations. At first sight, this

seems contrary to what we know from variant management:

managing a small inner variety of modules to offer a large outer

variety of products. But variant management activities are still

valuable support for service providers in setting up their portfolio.

Treating each customer inquiry individually is obviously no

good way to deal with diversity. A smart move may be grouping

customers who are in similar situations into clusters and using this

knowledge to identify modules that in combination fulfill the

overall services. This means that, in contrast to modularization of

traditional products, additional sources of knowledge are required.

Let us look at how a car insurance vendor does this: customers

are grouped based on a number of factors: the location, the

individual driving skills and, of course, the type of car that will be

insured. The location and the type of car both give insight on how

an average driver behaves in the specific area and with that specific

type of car. Both factors are based on statistics learned from the

past. The individual driving skills, for example, are simply

measured by the number of years without a crash. All three factors

will influence the individual customer’s price for the insurance.

What we can learn from the car insurance vendor is that

abstracting the individual customer situation to as much

information as necessary and as little information as possible

makes the task of setting up a modularization strategy manageable.

The resulting price is an average that might not be equally fair for

all clients but it will be somewhat close to the truth.

4.1 What are the differences?

In this section we compare modularization and configuration of

services and products and we point out the major differences.

Products can be manufactured customer-neutral or -specific,

depending on the business scenario. Pick-to-order (PTO) products

are typically pre-produced and put on stock. When an order comes

in, the product is packaged and shipped. Assemble-to-order (ATO)

Thorsten Krebs and Aleksander Lubarski. 79

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

and engineer-to-order (ETO) products include creating a customer-

specific compilation of constituents. Service fulfillment is always

carried out customer-specific and after the order comes in.

Furthermore, we can distinguish point-of-sale (POS) and

contract services. A POS service stands for its own or is sold as

part of a combined product service system (PSS), in which case it

is dedicated to a new product. Contracts can also be signed for

servicing products that are already in use, which might even

include services for products from a different manufacturer.

The manufacturing process for a product is always independent

from the customer. Even though the customer can choose the

characteristics of his specific product, the manufacturing is done

independently of him. The machines that are used for

manufacturing are the same for all customers. Service fulfillment is

different in the sense that it always includes the customer himself

or his products that are serviced, goods to be transported, and so

on. Obviously, this means that services cannot be fulfilled prior to

an order. This is different from product manufacturing and leads to

a situation in which the actual price of the service fulfillment is

hard to predict: specific situations might not be foreseeable. The

pricing strategy will thus be an important future topic for service

firms that tend to modularize their portfolio.

As already mentioned in the previous section, pricing is based

on different factors. While for product manufacturing the

production costs can be calculated independently from the

customer, for service fulfillment this is not possible. This leads to

different pricing strategies. For product manufacturing typical

pricing strategies are cost-plus and list prices. Recently, also value-

based pricing gained a lot of attention. Cost-plus is driven by the

idea to know the production costs and to be sure there still is a

margin. List prices are driven by the idea that there is a fixed price

which can be shown to customer as a criterion for his product

selection process. Value-based pricing is different in the sense that

the main question is: how much is the customer willing to pay? Of

course, all three pricing strategies are also possible for service

fulfillment. But generating a price beforehand, i.e. independently

from the specific customer situation requires additional information

based on statistics over relevant criteria from the past.

5 SUMMARY

In this paper we introduce the problem description of modularizing

and configuring services. We describe how the input was gained

from case studies that were carried out based on the joint research

project BakerStreet. We present first results from the case studies

are draw respective conclusions that give valuable input for service

firms of any application domain. Furthermore, we elaborate on the

differences between modularization and configuration of

traditional products and service fulfillment.

REFERENCES

[1] S. L. Vargo and R. F. Lusch, “Evolving To A New Dominant Logic

for Marketing,” J. Mark., 2004.

[2] F. T. Piller, “Mass Customization: Reflections on the State of the

Concept,” Int. J. Flex. Manuf. Syst., vol. 16, no. 4, pp. 313–334, Oct.

2004.

[3] Baldwin and Clarc, “Baldwin, Clarc (1997) Design Rules Volume 1,

The Power of Modularity.pdf,” 1997.

[4] A. Lubarski and J. Pöppelbuß, “Methods for service modularization -

a systematization framework,” in Proceedings of the Pacific Asia

Conference on Information Systems, Chiayi, Taiwan, 2016.

[5] E. D. Arnheiter and H. Harren, “Quality management in a modular

world,” TQM Mag., vol. 18, no. 1, pp. 87–96, Jan. 2006.

[6] A. Smirnov, A. Kashevnik, N. Shilov, A. Oroszi, S. Mario, and T.

Krebs, Changing Business Information Systems for Innovative

Configuration Processes. 2015.

[7] D. Sabin and R. Weigel, “Product configuration frameworks-a

survey,” IEEE Intell. Syst., vol. 13, no. 4, pp. 42–49, 1998.

[8] R. Dörbecker and T. Böhmann, “The Concept and Effects of Service

Modularity -- A Literature Review,” 2013, pp. 1357–1366.

[9] T. Tuunanen, A. Bask, and H. Merisalo-Rantanen, “Typology for

Modular Service Design: Review of Literature,” Int. J. Serv. Sci.

Manag. Eng. Technol., vol. 3, no. 3, pp. 99–112, 33 2012.

[10] P. Carlborg and D. Kindström, “Service process modularization and

modular strategies,” J. Bus. Ind. Mark., vol. 29, no. 4, pp. 313–323,

Apr. 2014.

[11] A. Bask, M. Lipponen, M. Rajahonka, and M. Tinnilä, “The concept

of modularity: diffusion from manufacturing to service production,”

J. Manuf. Technol. Manag., vol. 21, no. 3, pp. 355–375, Mar. 2010.

[12] Y. Lin, J. Luo, and L. Zhou, “Modular logistics service platform,” in

Service Operations and Logistics and Informatics (SOLI), 2010 IEEE

International Conference on, 2010, pp. 200–204.

[13] S. Pekkarinen and P. Ulkuniemi, “Modularity in developing business

services by platform approach,” Int. J. Logist. Manag., vol. 19, no. 1,

pp. 84–103, May 2008.

[14] T. Bohmann and K. Loser, “Towards a service agility assessment-

Modeling the composition and coupling of modular business

services,” in E-Commerce Technology Workshops, 2005. Seventh

IEEE International Conference on, 2005, pp. 140–148.

[15] A. Bask, M. Lipponen, M. Rajahonka, and M. Tinnilä, “Modularity in

logistics services: a business model and process view,” Int. J. Serv.

Oper. Manag., vol. 10, no. 4, pp. 379–399, 2011.

[16] F. Müller and A. Lubarski, “School of thought in service modularity,”

in Proceedings of the European Conference on Information Systems

(ECIS), Istanbul, Turkey, 2016.

[17] R. Dörbecker, O. Tokar, D. Heddaeus, and T. Böhmann, “Evaluation

der Multiple Domain Matrix Methode zur Modularisierung von

Dienstleistungen am Beispiel eines Versorgungsnetzwerks für

psychische Erkrankungen,” Multikonferenz Wirtsch. Annahme Zur

Publ., 2014.

[18] Y. Lin and S. Pekkarinen, “QFD‐based modular logistics service

design,” J. Bus. Ind. Mark., vol. 26, no. 5, pp. 344–356, Jun. 2011.

[19] C. Peters and J. M. Leimeister, “TM3-A Modularization Method for

Telemedical Services: Design and Evaluation,” in Proceedings of

21st European Conference on Information Systems (ECIS), 2013.

[20] C. de Blok, K. Luijkx, B. Meijboom, and J. Schols, “Modular care

and service packages for independently living elderly,” Int. J. Oper.

Prod. Manag., vol. 30, no. 1, pp. 75–97, Jan. 2010.

[21] A. Lubarski and J. Pöppelbuß, “Modularization of Logistics Services

– An Investigation of the Status Quo,” presented at the 5th

International Conference on Dynamics in Logistics, Bremen, 2016.

[22] R. K. Yin, Case study research: Design and methods. Sage

publications, 2013.

80 Towards Modularization and Configuration of Services – Current Challenges and Difficulties.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Determining New Components for Open Configuration
Linda L. ZHANG1 and Xiaoyu CHEN

Abstract. 1 Traditional product configuration is based on the
assumption that all configuration elements and their relationships
are predefined. Because of this assumption, most configuration-
related solutions have limitations in dealing with unforeseen
customer requirements. In view of these limitations, open
configuration is proposed to assist companies in configuring
products that can meet both unforeseen and anticipated customer
requirements. This study investigates the open configuration
process and proposes an approach based on cloud computing.
Based on a cloud, the open configuration process includes three
sub-processes: new component determination, constraint
processing, and component modification and refinement. This
study describes the details of the new component determination
sub-process. Laptop computer open configuration is used to
demonstrate how new components are determined.

1 INTRODUCTION
Product configuration has been applied in a variety of industries,
such as computer, telecommunication systems, transportation,
industrial products, medical systems and services [1, 2, 3]. It brings
companies a number of advantages in delivering customized
products, including managing product variety [4], shortening
delivery time [5], improving product quality [1], simplifying order
acquisition and fulfilment activities [6, 7, 8]. Despite the diversities
among them, the configuration tools and methodologies are
developed based on a common assumption: the configuration
elements, such as components or modules, attributes, functions and
their relationships are predefined [9, 10]. Because of this
assumption, the products that can be configured are predefined and
known in principle. In other words, the available product
configuration-related solutions consider only anticipated or
predefined customer requirements and leave such customer
requirements that call for new components (i.e., unforeseen
customer requirements) unaddressed.

In view of the above limitation of traditional product
configuration, the authors in [11] propose open configuration to
help companies configure products that can meet both anticipated
and unforeseen customer requirements. Open configuration deals
with not only the determination of new components but also the
necessary modifications of predefined ones. While for meeting the
unforeseen customer requirements, open configuration determines
new components from a pool of external resources, it does not
involve the design of new components.

Built on top of the initial study in [11], this study investigates
open configuration details with a focus on its process. In view of
the advantage of cloud-based computing [12, 13], we develop the
open configuration process based on a cloud. The cloud-based

1 Corresponding author. Email: l.zhang@ieseg.fr

open configuration process not only determines new components
for addressing the unforeseen customer requirements but also
selects predefined components for dealing with the anticipated
customer requirements. It includes three sub-processes: new
component determination, constraint processing, and component
modification and refinement. In this paper, we shed light on the
details of the new component determination sub-process.

The rest of the paper is organized as follows. In Section 2, we
provide the fundamentals of open configuration, including open
configuration knowledge and process. The details of determining
new components are discussed in Section 3. Laptop open
configuration is used as an example in Section 4 to demonstrate
how new components are determined. We conclude the paper in
Section 5 by providing directions for future research.

2 FUNDAMENTALS OF OPEN
CONFIGURATION

2.1 Open configuration knowledge
In open configuration, there are two types of components:
predefined and new. While predefined components are used to meet
anticipated customer requirements, new components contribute to
fulfilling unforeseen ones. To ensure the compatibility, necessary
modifications and refinements are applied to predefined and new
components in each open configuration. The resulting modified or
refined components become predefined components for the future
open configurations. Each component has a component type,
several attributes and ports.

Among predefined components, there are two types of
relationships. Interior and exterior constraints are defined to model
these two types of relationships. While interior constraints define
the relationships among predefined components, exterior
constraints specify these between predefined and new components.
The relationships among new components are modeled as connects
with, requires, and compatibility. The connects with constraints
restrict the physical connections between two components via
corresponding ports, whereas the requires constraints specify the
dependency between two components, i.e., one component requires
the presence of the other component with which there is no direct
physical connection. For example, a component Fingerprint Reader
is physically connected with Keyboard Panel in some laptops. Thus,
the relationship between Fingerprint Reader and Keyboard Panel is
connects with. The same component Fingerprint Reader requires
the presence of a CPU though there is no physical contact between
them. The relationship between Fingerprint Reader and CPU is
requires. Compatibility constraints determine if two components
can be used in a same product configuration. For example, a bigger

Linda Zhang and Xiaoyu Chen. 81

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

motherboard is not compatible with a very small liquid crystal
display, thus not being able to be used in a laptop configuration.

During each open configuration process, additional constraints
are produced. These constraints specify the relationships between
predefined and new components. They are modification,
refinement, and connects with constraints. While modification and
refinement constraints determine if modifications and refinements
are required for selected configuration components, connects with
constraints define the possible connections among them.

2.2 Open configuration process
In product development, cloud computing is increasingly used for
providing resources and decreasing development time [14,15]. In
cloud computing, a cloud is rapidly provided and released with
minimal management effort or service provider interaction [16, 17].
In view of this advantage, the open configuration process in this
study is proposed based on a cloud (see the functions of the cloud
below). More specifically, new components in an open
configuration are specified based on the cloud. The cloud enables
easy access to a pool of configurable computing resources (e.g.,
storage, services). One of the services in the cloud is the
maintenance and delivery of product databases from different
providers, e.g., companies, reliable online channels. (Note, in this
study, we assume that same ontology is used in organizing data in
the databases.) These databases contribute to the determination of
new components. They consist of all product and component data
from different sources. As there are diverse databases in the cloud,
to ensure the efficient utilization, in relation to a product type, each
database is assigned a weight, which represents its relevance to the
product to be configured. A database with a higher weight is more
relevant to the product to be configured. The weights can be
assigned by domain experts. The databases are indexed based on
their weights and a database with a smaller index value has a higher
weight.

As shown in Fig. 1, the open configuration process has three
major sub-processes: new component determination, constraint
processing, and component modification and refinement.

Cloud
Customer

requirements

Evaluation &
classification

Predefined
component
selection

Additional
constraint
network

New component
determination

Constraint
processing

Component
modification

and refinement

Second type
of customer
requirements

First type of
customer

requirements First level-
related new
components

Initial
new

components

Second level-
related new
components

Selected
predefined

components

Product
configurations

Figure 1. Overview of the open configuration process

Representing the desired product performance, customer

requirements for a product to be configured are evaluated first
based on the open configuration knowledge. This process rules out
the unreasonable customer requirements. For example, ‘a car that

runs faster than an airplane’ is an unreasonable requirement. Also
ruled out are invalid, incomplete requirements. After the
elimination, the process classifies the remaining requirements into
two types. The first type is the requirements that can be met by
predefined components, whereas the second type is the unforeseen
customer requirements calling for the specification of new
components. Corresponding to the first type, predefined
components are evaluated and suitable ones are selected.

For fulfilling the second type of unforeseen customer
requirements, the new component determination sub-process
determines initial new components from the databases in the cloud.
To specify the possible connections between the initial new
components and selected predefined ones, first and second level-
related new components are determined subsequently. (See details
in the next section.) The first level-related new components are
components that are connected to the initial new components in the
same databases, whereas the second level-related are new
components that are connected to the first level-related new
components. In the second sub-process: constraint processing, the
new components and constraints interact with these selected ones,
resulting in additional constraints.

The last sub-process: component modification and refinement
either modifies some of the selected predefined components or
refines the newly determined ones. The modifications and
refinements are based on the newly produced modification and
refinement constraints. With the newly produced connects with
constraints, the connections among all the final components are
also established such that the final product configurations are
determined.

3 NEW COMPONENT DETERMINATION
In response to the second type of customer requirements

22 21 22 2
{ , ,..., }CR pdN

CR cr cr cr Type= , where pdType represents the type
of final products to be configured, initial new components are
determined from several databases, which contain the same type of
final products to be configured, in the cloud, as shown in Figure 2.
An initial new component is described by its type, attributes, ports,
the type of final products to be configured, and the weight of the
corresponding database.

YFirst level
determination

Y

N

Similarity
calculation

Second level
determination

Compatibility
check

Similarity
calculation

Databases

Discard

N

Discard

Valid

Valid

Compatible

Second type
of customer
requirements

Initial new
component

determination

Valid initial new
components

First level-related
new components

Second level-related
new components

Valid first level-
related new
components

Valid second level-
related new
components

N
Y

Initial new
components

Figure 2. Determining new components

To specify the relationships between the initial new components

and selected predefined components, the first level-related new
components are determined. These components are connected to
the initial new components with either requires or connects with
constraints in the same databases. As not all of them can specify

82 Determining New Components for Open Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

the relationships between initial new components and predefined
ones, these first level-related new components need to be validated.
In validating them, similarity calculation between the first level-
related and selected predefined components with the same types is
carried out. The similarity value indicates how similar two
components are and to what extent they can be used as an
alternative replacing each other. The similarity value is zero for a
first level-related component if no predefined component with the
same type is found. The higher the similarity value is, the more
information a first level-related component can provide for
specifying the relationships between an initial new component and
selected predefined ones. Attribute names and values, port types
and connections, and weight values of the components are taken
into account in calculating similarities.

The validity of a first level-related component is determined by
comparing the corresponding similarity values with a threshold
value specified by domain experts. A first level-related component
is valid if at least one of its similarity values is equal to or greater
than the threshold value; otherwise, it is invalid. A valid first level-
related component is used as a potential reference for component
modifications and refinements if it has requires constraints with
initial new components. If a valid first level-related component has
connects with constraints with initial new components, it is used as
both a potential reference for modifications and refinements and an
intermediate component for connecting an initial new component
with selected predefined components.

For an invalid first level-related component, its second level-
related components may be able to provide references for
modifications and refinements or to connect initial new
components with predefined ones. In this regard, in this study, the
second level-related components of invalid first level-related ones
are determined as well. These components are connected to the
invalid first level-related components using either requires or
connects with constraints in the databases. In the same way,
similarity calculation between the second level-related components
and predefined components is carried out; the validity of these
second level-related components is determined based on the
comparison of similarity values and given threshold values. (See
the details of determining first/second level-related new
components and similarity calculation in Subsections 3.2 and 3.3.)
When a second level-related component is invalid, it is discarded.
In summary, the valid first and second level-related components
have two roles: i) establishing the connections between the initial
new components and corresponding selected predefined
components and ii) providing references for modifying and
refining corresponding selected predefined components and valid
initial new components.

At the end of the process (shown in Figure 2), compatibility
checks are conducted on the newly determined components, be
they valid initial, first or second level-related. The check is based
on compatibility constraints of new components and exterior
constraints of selected predefined components. The checks remove
such initial, first, and second level-related new components that
have conflicts with the above constraints. The components which
respect the constraints are retained for further processing.

3.1 Determining initial new components
We first define a new component N as follows:

{ , , , }T A P C w=N , where T is the component type; A is a set of
component attributes; P is a set of component ports; C is a set of

constraints defining the relationships between N and other new
components; w is the weight of N , which is the same as that of
the corresponding database.

The component attributes A are described by attribute names
NA and attribute values VA . The component ports P are described

by port types: TP and corresponding port connections: CP . The
constraints C include (a) connects with constraints pC defining
the physical connections between N and other new components,
(b) requires constraints rC specifying the other new components
which are required by N , and (c) compatibility constraints cC
limiting the components that can be used together with N in a
product configuration.

For any requirement of the second type : 2icr , some initial new
components are determined from the relevant databases. In
determining the initial new components, a requirement is described
in the way such that the required component type is specified and
the component attributes are restrained (see Section 4 for
requirement description). The new components with the required
component type and attributes are determined as initial new
components. An initial new component iN from database m is
denoted as { I

iN , mw } with mw representing the weight of
database m.

3.2 Determining first and second level-related
new components

In determining the first/second level-related new components, the
requires and connects with constraints of the initial new components
are utilized. More specifically, the components, which have either
requires or connects with relationship with initial new components
are determined as first level-related components; these having either
requires or connects with relationship with a first level-related
component are determined as second level-related new components.
In the condition that a first level-related new component has only
requires (or connects with) constraint with initial new components,
the corresponding second level-related new components are
determined based on requires (or connects with) constraints only.

For examples, as shown in Figure 3, based on a connects with
constraint: 1,1

pC , 11
FLN is determined as a first level-related new

component corresponding to an initial new component 1
IN ; with a

requires constraint: 1,1
rC , 12

FLN is determined as another first level-

related new component of 1
IN ; based on a connects with

constraint:
11,1

pC , 111
SLN is determined as a second level-related new

component corresponding to the first level-related new component:
11

FLN ; based on a requires constraint: 12,1
rC , 121

SLN is determined as
a second level-related new component of the first level-related
new component 12

FLN .

Database1

21
FLN11

FLN 12
FLN

1,1
pC

1
IN 2

IN

1,1
rC 2,1

pC

211
SLN 212

SLN

21,1
pC 21,2

pC
11,1
pC

111
SLN

12,1
rC

121
SLN

Legend: : the i-th initial new componentI
iN

,
p

i cC : the c-th connects with / d-th requires
constraint of

FL
ijN : the j-th / n-th first level-related new

component that has connects with /
requires constraint with

SL
ijqN

I
iN

: the q-th / l-th second level-related new
component that has connects with /
requires constraint with

/ FL
inN

,
r
i dC/

SL
inlN/

FL
ijN / FL

inN

: the c-th connects with / d-th requires
constraint of

,
p

ij cC
,

r
in dC/

I
iN

FL
ijN / FL

inN

Figure 3. Determining first and second level-related new components

Linda Zhang and Xiaoyu Chen. 83

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Determining first level-related new component using connects
with constraint:
() (),. { , }: { , }I p FL

k i i c k ij m k mC w w∃ = ⇒ =N N N N N , where I
iN is the i-

th initial new component from the m-th database; ,
p

i cC is the c-th

connects with constraint of I
iN indicating that I

iN is connected
with kN ; kN is the k-th new component from the same database;

FL
ijN is the j-th first level-related new component of I

iN ; mw is
the weight of the m-th database.
Determining first level-related new component using requires
constraint:
() (),. { , }: { , }I r FL

k i i d k in m k mC w w∃ = ⇒ =N N N N N , where I
iN , kN ,

and mw have the same meaning as above; ,
r
i dC is the d-th requires

constraint of I
iN indicating that I

iN requires kN ; FL
inN is the n-

th first level-related component of I
iN .

Determining second level-related new component using connects
with constraint:
() (),. { , }: { , }FL p SL

k ij ij c k ijq m k mC w w∃ = ⇒ =N N N N N , where FL
ijN is the

j-th first level-related new component of I
iN from the m-th

database; .
p

ij cC is the c-th connects with constraint of FL
ijN

indicating that FL
ijN is connected to kN ; SL

ijqN is the q-th second

level-related component corresponding to FL
ijN ; kN and mw have

the same meaning as above.
Determining second level-related new component using requires
constraint:
() (),. { , }: { , }FL r SL

k in in d k inl m k mC w w∃ = ⇒ =N N N N N , where FL
inN , kN ,

and mw have the same meaning as above; ,
r
in dC is the d-th requires

constraint of FL
inN indicating that FL

inN requires kN ; SL
inlN is the

l-th second level-related component corresponding to FL
inN .

3.3 Calculating similarities
In calculating the similarity between a first (or second) level-related
new components and a selected predefined one, the similarity values
of their attribute names NA , attribute values VA , port type TP , and
port connections CP are calculated first. The similarity of the two
components is the weighted sum of the similarity values of the
above four elements multiplied by the corresponding weight of the
first (or second) level-related new component. For a first level-
related component FL

ijN and a predefined component sP , their

similarity values (,)FL
ij sS N P is calculated based on Eq. (1).

(,)

* (,) * (,)
* ,

* (,) * (,)

0,

FL
ij s

ij s ij s
m ij s

ij s ij s

S

S NA NA S VA VA
w T T

S TP TP S CP CP

otherwise

α β

λ η

=

⎧ + +⎛ ⎞
=⎪ ⎜ ⎟⎜ ⎟+⎨ ⎝ ⎠

⎪
⎩

N P

. (1)

In the above equation, mw is the weight of FL
ijN ; (,)ij sS NA NA ,

(,)ij sS VA VA , (,)ij sS TP TP , and (,)ij sS CP CP are the similarity values of
NA , VA , TP , and CP , respectively; α , β , λ , and η with

1α β λ η+ + + = are the weights of NA , VA , TP , and CP . Based on
their own situations, companies can adopt different weight values.
For illustrative simplicity, we assign 0.25 to each weight in this

study. In calculating the similarity values of the four elements, a
Boolean operator ε is introduced.

Calculating (,)ij sS NA NA : The similarity value of attribute

names of FL
ijN and sP : (,)ij sS NA NA is calculated based on the

below equation.
, ,

,

2 (,)
(,)

ij s

ij a s b
a b

ij s NA NA

NA NA
S NA NA

N N

ε
=

+

∑
, (2)

where ijNAN and sNAN represent the total number of attributes
describing FL

ijN and sP with a = 1, …, ijNAN and b = 1, …, sNAN ;

, ,
, ,

, ,

0, (,)
(,)

1, (,)
ij a s b

ij a s b
ij a s b

Sim NA NA
NA NA

Sim NA NA
ε

¬⎧⎪= ⎨
⎪⎩

 indicating the similarity

status of the a-th attribute of FL
ijN : ,ij aNA and the b-th attribute of

sP : ,s bNA . , ,(,) 0ij a s bNA NAε = if ,ij aNA and ,s bNA are different (i.e.,

, ,(,)ij a s bSim NA NA¬); otherwise (i.e., , ,(,)ij a s bSim NA NA is true),

, ,(,) 1ij a s bNA NAε = .

Calculating (,)ij sS VA VA : The similarity value of attribute values
of FL

ijN and sP : (,)ij sS VA VA is calculated based on Eq. (3) below.
, ,

,

, ,
,

, ,
,

0, (,) 0

(,)(,)
,

(,)

ij a s b
a b

ij a s bij s
a b

ij a s b
a b

NA NA

S VA VAS VA VA
otherwise

NA NA

ε

ε

⎧ =
⎪
⎪⎪= ⎨
⎪
⎪
⎪⎩

∑

∑
∑

, (3)

where , ,(,)ij a s bS VA VA is the similarity value of attribute values of

,ij aNA and ,s bNA ; , ,(,)ij a s bNA NAε denotes the similarity status of

,ij aNA and ,s bNA (see the definition in Eq. (2)). , ,(,)ij a s bS VA VA is
computed based on Eq. (4) below.

, ,
, ,

, , , ,

0, (,) 0
(,)

(,), (,) 1
ij a s b

ij a s b
ij a s b ij a s b

NA NA
S VA VA

VA VA NA NA
ε

ε ε
=⎧⎪= ⎨ =⎪⎩

. (4)

In the above equation, , ,(,)ij a s bVA VAε indicating the similarity

status of the a-th attribute value of FL
ijN : ,ij aVA and the b-th

attribute value of sP : ,s bVA . It has two values: 0 and 1, i.e.,

, ,
, ,

, ,

0, (,)
(,)

1, (,)
ij a s b

ij a s b
ij a s b

Sim VA VA
VA VA

Sim VA VA
ε

¬⎧⎪= ⎨
⎪⎩

. , ,(,) 0ij a s bVA VAε = if ,ij aVA and

,s bVA are different (i.e., , ,(,)ij a s bSim VA VA¬); otherwise (i.e.,

, ,(,)ij a s bSim VA VA is true), , ,(,) 1ij a s bVA VAε = .

Calculating (,)ij sS TP TP : The similarity value of port types of
FL

ijN and sP : (,)ij sS TP TP is calculated using Eq. (5).
, ,

,

2 (,)
(,)

ij s

ij e s f
e f

ij s TP TP

TP TP
S TP TP

N N

ε
=

+

∑
, (5)

where ijTPN and sTPN represent the total number of ports of FL
ijN

and sP , respectively with e = 1, …, ijTPN and f = 1, …, sTPN ;
, ,

, ,
, ,

0, (,)
(,)

1, (,)
ij e s f

ij e s f
ij e s f

Sim TP TP
TP TP

Sim TP TP
ε

¬⎧⎪= ⎨
⎪⎩

 indicating the similarity status

of the e-th port type of FL
ijN : ,ij eTP and the f-th port type of sP :

,s fTP . , ,(,) 0ij e s fTP TPε = if ,ij eTP and ,s fTP are different (i.e.,

, ,(,)ij e s fSim TP TP¬); otherwise (i.e., , ,(,)ij e s fSim TP TP is true),

, ,(,) 1ij e s fTP TPε = .

84 Determining New Components for Open Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Calculating (,)ij sS CP CP : The similarity value of port
connections of FL

ijN and sP : (,)ij sS CP CP is calculated based on
Eq. (6) below.

, ,
,

, ,
,

, ,
,

0, (,) 0

(,)(,)
,

(,)

ij e s f
e f

ij e s fij s
e f

ij e s f
e f

TP TP

S CP CPS CP CP
otherwise

TP TP

ε

ε

⎧ =
⎪
⎪⎪= ⎨
⎪
⎪
⎪⎩

∑

∑
∑

,

(6)

where , ,(,)ij e s fS CP CP is the similarity value of port connections of

port types ,ij eTP and ,s fTP and is computed based on Eq. (7);

, ,(,)ij e s fTP TPε denotes the similarity status of ,ij eTP and ,s fTP (see
the definition in Eq. (5)).

, ,

, ,

, ,, ,
,

, ,

0, (,) 0
2 (,)(,)

, (,) 1
ij e s f

ij e s f

ij eg s fhij e s f
g h

ij e s fCP CP

TP TP
CP CPS CP CP

TP TP
N N

ε
ε

ε

=⎧
⎪⎪= ⎨
⎪ =
⎪ +⎩

∑ , (7)

where ,ij eCPN and ,s fCPN represent the total number of port
connections of ,ij eTP and ,s fTP with g = 1, …, ,ij eCPN and h = 1, …,

,s fCPN ; , ,
, ,

, ,

0, (,)
(,)

1, (,)
ij eg s fh

ij eg s fh
ij eg s fh

Sim CP CP
CP CP

Sim CP CP
ε

¬⎧⎪= ⎨
⎪⎩

 indicating the

similarity status of the g-th port connection of ,ij eTP : ,ij egCP and the

h-th port connection of ,s fTP : ,s fhCP . , ,(,) 0ij eg s fhCP CPε = if ,ij egCP and

,s fhCP are different (i.e., , ,(,)ij eg s fhSim CP CP¬); otherwise (i.e.,

, ,(,)ij eg s fhSim CP CP is true), , ,(,) 1ij eg s fhCP CPε = .

In determining the validity of a first level-related new
component, a threshold value: Sim

ThV is used. This value can be
specified by the domain experts. Similarly, the similarity values
between the second level-related new components and predefined
ones are calculated and the validity of the second level-related new
components is determined.

3.4 Checking compatibilities
Compatibility checks are conducted for all valid initial, first and
second level-related new components. The checks are conducted
based on the compatibility constraints which are defined in the same
databases. If a first (or second) level-related new component is
incompatible with an initial new component, it is discarded for
further consideration. If two first (or second) level-related new
components or if a first level-related and second level-related new
component are incompatible, the one with a lower similarity value
with predefined components is discarded. For example, 11

FLN is

incompatible with 21
FLN based on one of its compatibility

constraints:
11,111 21.FL c FLC = ¬N N . Further, the highest similarity value

of 21
FLN is greater than that of 11

FLN . 11
FLN is discarded.

Compatibility check is also conducted based on the exterior
constraints of selected predefined and dynamic components, which
define the possible external connections. For example, an exterior
constraint of a selected predefined component is

1 1. EC ExteriorConnection= ¬P . It indicates that no exterior
connection is allowed for 1P . The initial new components that
have connection relationships with 1P are, thus, discarded.

4 CASE STUDY

An example of laptop computer open configuration is introduced to
demonstrate how new components are determined. There are 11
types of predefined components in the laptop open configuration,
including CPU, Motherboard, Memory, HardDisk, Monitor,
Keyboard, Battery, ExtensionSocket, Upper Cover, Keyboard
Panel and Bottom Casing, as shown in Figure 4, and the product
type pdType = ‘Laptop Computer’.

Figure 4. Predefined components of a laptop computer

Table 1 provides the details of some predefined components,

including component types, attributes and attribute values, and
ports and port connections. For illustrative simplicity, the table is
truncated and provides these predefined components that are used
in the rest of the example. (Note: the ID of each component is
provided in the small brackets after each symbol. This is the same
for the rest of the tables and text.)

Table 1. Some predefined components

Component
Component

Type
Attribute Name and Value

Port Type and
Connections

1P

(CPU #1)

CPU

(Processor, Speed): (Intel Xeon
E5-2690, 2.6GHz)

PMB: {MBIntel Xeon}
2P

(CPU #2)
(Processor, Speed): (Intel Xeon

E5-2680, 2.7GHz)

3P

(CPU #3)
(Processor, Speed): (Intel Core

i7-3970X, 3.3GHz)
PMB: {MBIntel Core}

4P

(CPU #4)
(Processor, Speed): (Intel Core

i7-3960X, 3.5GHz)

5P

(MB #1)

Motherboard

(Chip, SptCPU, MaxSptCPU,
MaxSptRAM): (Intel B85, CPU

Xeon, 2, 2)

PCPU: {CPU Xeon}
PMemory: {SDRAM,

RDRAM}
PHD: {ATA-100}

6P
(MB #2)

(Chip, SptCPU, MaxSptCPU,
MaxSptRAM): (Intel B150, CPU

Core, 2, 2)
PCPU: {CPU Core}
PMemory: {SDRAM,

RDRAM}
PHD: {ATA-100} 7P

(MB #3)

(Chip, SptCPU, MaxSptCPU,
MaxSptRAM): (Intel Z97, CPU

Core, 2, 2)

8P

(UC #1)
Upper Cover

(Size, Material, Color, KPCut,
MonCut): (12in., Hybrid, Black,

KP-12, LCD-12)

PMonitor: {LCD-12}
PCasing: {Keyboard Panel}
PESocket: {Monitor Socket}

9P

(UC #2)

(Size, Material, Color, KPCut,
MonCut): (14in., Hybrid, Black,

KP-14, LCD-14)

PMonitor: {LCD-14}
PCasing: {Keyboard Panel}
PESocket: {Monitor Socket}

10P

(KP #1)
Keyboard

Panel

(Size, Material, Color, UCCut,
KBCut, PSCut, MSCut,

USBCut): (12in., Hybrid, Black,
UC-12, KB-12, PS-std, MS-std,

USB-std)

PCaseing: {Upper Cover}
PKeyboard: {KB-12}

PESocket: {Power Socket,
Modem Socket, USB

Socket}

11P

(KP #2)

(Size, Material, Color, UCCut,
KBCut, PSCut, MSCut,

USBCut): (14in., Hybrid, Black,
UC-14, KB-14, PS-std, MS-std,

PCaseing: {Upper Cover}
PKeyboard: {KB-14}

PESocket: {Power Socket,
Modem Socket, USB

Linda Zhang and Xiaoyu Chen. 85

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

USB-std) Socket}

12P

(BC #1)

Bottom
Casing

(Size, Material, Color, KPCut,
BTCut, PSCut, MSCut,

USBCut): (12in., Hybrid, Black,
KP-12, BT-std, PS-std, MS-std,

USB-std)

PCasing: {Keyboard Panel}
PBattery: {Battery-NC,

Battery-Lith, Battery-Hyb}
PESocket: {Power Socket,
Modem Socket, USB

Socket} 13P

(BC #2)

(Size, Material, Color, KPCut,
BTCut, PSCut, MSCut,

USBCut): (14in., Hybrid, Black,
KP-14, BT-std, PS-std, MS-std,

USB-std)
… … … …

Suppose the requirements from a customer are as follows: CR =

{CPU.Speed >= 3.3GHz, Motherboard.(Chip, SptCPU) = (Intel B 150,
CPU Core), Upper Cover.Material = Hybrid, SIM Socket.Number = 1,
Fingerprint Reader.Number = 1}. These customer requirements can be
classified into two types: the first type of customer
requirements 1CR and the second type of customer requirements

2CR . While 1CR = {CPU.Speed >= 3.3GHz, Motherboard.(Chip,
SptCPU) = (Intel B 150, CPU Core), Upper Cover.Material = Hybrid},

2CR = {SIM Socket.Number = 1, Fingerprint Reader.Number = 1 pdType

= ‘Laptop Computer’}. The predefined components: 3P (CPU #3),

4P (CPU #4), 6P (MB #2), 8P (UC #1), 9P (UC #2), 10P (KP #1), 11P (KP

#2), 12P (BC #1), 13P (BC #2) are selected to fulfill 1CR .

In accordance with the product type: pdType = ‘Laptop
Computer’, two databases: database1 with a weight 1w and
database2 with a weight 2w are selected from the cloud. The
weight values of the two database are 1w = 0.9 and 2w = 0.85. To
meet 2CR , some initial new components are determined from these
databases. Their details are provided in Table 2.

Table 2. Initial new components determined from the two databases

Component Component
Type

Attribute Name and
Value

Port Type and Connections

Database1

1N (ES #1) SIM
Socket

MaxCardinality: 2
PCasing: {Keyboard Panel, Bottom

Casing}

2N (SG #1)
Fingerprint

Reader

(Chip, Size): (v1.0,
1cm)

PCasing: {Keyboard Panel}

3N (SG #2) (Chip, Size): (v2.0,
1.5cm)

PCasing: {Keyboard Panel}

Database 2

1N (SG #1) Fingerprint
Reader

(Chip, Size): (v3.0,
1.3cm)

PCasing: {Upper Cover, Keyboard
Panel}

These four initial new components together with their weights

are denoted as follows: 1 1{ , }I wN , 2 1{ , }I wN , 3 1{ , }I wN and

1 2{ , }I wN .They have 13 connects with and requires constraints as
follows :
1) ()1 1 1,1 4 #{ , }. 1I pw C KP=N N ; 2) ()1 1 1,2 5 #{ , }. 2I pw C KP=N N ;

3) ()1 1 1,3 6 #{ , }. 1I pw C BC=N N ; 4) ()1 1 1,4 7 #{ , }. 2I pw C BC=N N ;

5) ()2 1 2,1 4 #{ , }. 1I pw C KP=N N ; 6) ()3 1 3,1 5 #{ , }. 2I pw C KP=N N ;

7) ()1 2 1,1 3 #{ , }. 1I pw C UC=N N ; 8) ()1 2 1,2 4 #{ , }. 1I pw C KP=N N ;

9) ()2 1 2,1 8 #{ , }. 1I rw C CPU=N N ; 10) ()2 1 2,2 9 #{ , }. 2I rw C CPU=N N ;

11) ()3 1 3,1 8 #{ , }. 1I rw C CPU=N N ; 12) ()3 1 3,2 9 #{ , }. 2I rw C CPU=N N ;

13) ()1 2 1,1 6 #{ , }. 1I rw C CPU=N N .

Take the first one: ()1 1 1,1 4 #{ , }. 1I pw C KP=N N as an example. In the

connects with constraint 1,1
pC of 1

IN from database1, 1
IN is

connected with a specific keyboard panel: ()4 #1KPN from the
same database. The remaining constraints can be interpreted in a
similar way.

Based on the determination of first level-related new
components introduced earlier, ()4 #1KPN and ()5 #2KPN are
determined as first level-related new components of 1

IN . In a
same way, all the first level-related new components for the above
initial new components are determined and provided in Table 3.

Table 3. The first level-related new components

Component Component
Type

Attribute Name and Value Port Type and Connections

Database 1

4N

(KP #1)

Keyboard
Panel

(Size, Material, Color, UCCut,
KBCut, PSCut, MSCut,

USBCut, SIMCut, FPCut):
(12in., Hybrid, Black, UC-12,
KB-12, PS-std, MS-std, USB-

std, SIM-std, FP-v1.0)

PCaseing: {Upper Cover}
PKeyboard: {KB-12}

PESocket: {Power Socket,
Modem Socket, USB Socket,

SIM Socket}
PSG: {Fingerprint Reader}

5N

(KP #2)

(Size, Material, Color, UCCut,
KBCut, PSCut, MSCut,

USBCut, SIMCut, FPCut):
(14in., Hybrid, Black, UC-14,
KB-14, PS-std, MS-std, USB-

std, SIM-std, FP-v2.0)

PCaseing: {Upper Cover}
PKeyboard: {KB-14}

PESocket: {Power Socket,
Modem Socket, USB Socket,

SIM Socket}
PSG: {Fingerprint Reader}

6N

(BC #1)

Bottom
Casing

(Size, Material, Color, KPCut,
BTCut, PSCut, MSCut,

USBCut, SIMCut): (12in.,
Hybrid, Black, KP-12, BT-std,

PS-std, MS-std, USB-std,
SIM-std)

PCasing: {Keyboard Panel}
PBattery: {Battery-NC, Battery-

Lith, Battery-Hyb}
PESocket: {Power Socket,

Modem Socket, USB Socket,
SIM Socket} 7N

(BC #2)

(Size, Material, Color, KPCut,
BTCut, PSCut, MSCut,

USBCut, SIMCut): (14in.,
Hybrid, Black, KP-14, BT-std,

PS-std, MS-std, USB-std,
SIM-std)

8N

(CPU #1)
CPU

(Processor, Speed): (Intel
Core i7-3970X, 3.3GHz)

PMB: {MBIntel Core}

9N

(CPU #2)
(Processor, Speed): (AMD

A10-7850K, 3.7GHz)
PMB: {MBAMD}

Database 2

3N

(UC #1)
Upper Cover

(Size, Material, Color, KPCut,
MonCut, FPCut): (14in.,

Hybrid, Black, KP-14, LCD-
14, FP-v3.0)

PMonitor: {LCD-14}
PCasing: {Keyboard Panel}
PESocket: {Monitor Socket}
PSG: {Fingerprint Reader}

4N

(KP #1)
Keyboard

Panel

(Size, Material, Color, UCCut,
KBCut, PSCut, MSCut,

USBCut, SIMCut, FPCut):
(14in., Hybrid, Black, UC-14,
KB-14, PS-std, MS-std, USB-

std, SIM-std, FP-v3.0)

PCaseing: {Upper Cover}
PKeyboard: {KB-14}

PESocket: {Power Socket,
Modem Socket, USB Socket,

SIM Socket}
PSG: {Fingerprint Reader}

6N

(CPU #1)
CPU

(Processor, Speed): (Intel
Core i7-3950X, 3.4GHz) PMB: {MBIntel Core}

These first level-related new components are denoted as

follows: 11 1{ , }FL wN = ()4 1 # },{ 1KP wN ; 12 1{ , }FL wN = ()5 1 #{ , }2KP wN ;
13 1{ , }FL wN = ()6 1 #{ , }1BC wN ; 14 1{ , }FL wN = ()7 1 #{ , }2BC wN ; 21 1{ , }FL wN =
()4 1 # },{ 1KP wN ; 22 1{ , }FL wN = ()8 1 #1{ , }CPU wN ; 23 1{ , }FL wN =
()9 1 #2{ , }CPU wN ; 31 1{ , }FL wN = ()5 1 #{ , }2KP wN ; 32 1{ , }FL wN =
()8 1 #1{ , }CPU wN ; 33 1{ , }FL wN = ()9 1 #2{ , }CPU wN ; 11 2{ , }FL wN =
()3 2 #{ , }1UC wN ; 12 2{ , }FL wN = ()4 2 #{ , }1KP wN ; 13 2{ , }FL wN =
()6 2 #1{ , }CPU wN . To evaluate their validity, the similarity values of

86 Determining New Components for Open Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

these first level-related new components and the selected
predefined ones are calculated. The similarity values of 23 1{ , }FL wN
and 33 1{ , }FL wN are zero since there are no predefined components
with the same component type. The highest similarity value of each
of the rest components is provided below.

11 1 10 21 1 10({ , },) ({ , },)FL FLS w S w=N P N P = 0.81;
12 1 11 31 1 11({ , },) ({ , },)FL FLS w S w=N P N P = 0.81;
13 1 12({ , },)FLS wN P = 0.86;
14 1 13({ , },)FLS wN P = 0.86;
22 1 3 32 1 3({ , },) ({ , },)FL FLS w S w=N P N P = 0.90;
11 2 9({ , },)FLS wN P = 0.78;
12 2 11({ , },)FLS wN P = 0.77;
13 2 3({ , },)FLS wN P = 0.64.

The threshold value: Sim
ThV is given as 0.7. As the highest

similarity value of 31 2{ , }FL wN is less than 0.7, 31 2{ , }FL wN is invalid for
specifying the relationships between the initial new components
and selected predefined ones. Similarly, 23 1{ , }FL wN and 33 1{ , }FL wN ,
which have 0 as similarity value, are invalid as well. As the rest of
components have similarity values larger than 0.7, they are valid
and can be used as an alternative to replace the corresponding
selected predefined components.

In a similar fashion, the second level-related new components
are determined for the above invalid first level-related new
components. As 23 1{ , }FL wN and 33 1{ , }FL wN are the same component,
the second level-related components are the same. In this regard,

23 1{ , }FL wN is used to determine the second level-related new
components. With the requires constraint of 23 1{ , }FL wN :

()23 1 23,1 10 #2{ , }.FL rw C MB=N N in database1 and the requires constraint
of 13 2{ , }FL wN : ()13 2 13,1 5{ }. #1,FL rw C MB=N N in database2, their second
level-related components are determined and denoted as: 231 1{ , }SL wN
= ()10 1 #2{ },MB wN and 131 2{ , }SL wN = ()5 2 # },{ 1MB wN (see component
details in Table 4).

Similarly, similarity values of these second level-related new
components are calculated for evaluating their validity. As there is
no predefined component with the same type, 131 2{ , }SL wN has a 0
similarity value, thus being invalid. 131 2{ , }SL wN has a similarity value
of 0.85, thus being retained.

Table 4. The second level-related new components

Component
Component

Type
Attribute Name and Value

Port Type and
Connections

Database 1

10N

(MB #2)
Motherboard

(Chip, SptCPU, MaxSptCPU,
MaxSptRAM):(Intel B85,

CPU Core, 2, 2); (AMD B85,
CPU AMD, 2, 2)

PCPU: {CPU AMD}
PMemory: {SDRAM}
PHD: {ATA-100}

Database 2

5N
(MB #1)

Motherboard
(Chip, SptCPU, MaxSptCPU,
MaxSptRAM): (Intel B150,

CPU Core, 2, 2)

PCPU: {CPU Core}
PMemory: {SDRAM,

RDRAM}
PHD: {ATA-100}

In summary, the final initial new components are 1 1{ , }I wN ,

2 1{ , }I wN , 3 1{ , }I wN , and 1 2{ , }I wN . The valid first and second level-
related new components include 11 1{ , }FL wN , 12 1{ , }FL wN , 13 1{ , }FL wN ,

14 1{ , }FL wN , 21 1{ , }FL wN , 22 1{ , }FL wN , 31 1{ , }FL wN , 32 1{ , }FL wN , 11 2{ , }FL wN and

131 2{ , }SL wN . As they have requires constraints with 2 1{ , }I wN , 3 1{ , }I wN ,
and 13 1{ , }FL wN , 22 1{ , }FL wN , 32 1{ , }FL wN , and 131 2{ , }SL wN are used as
references for modifying and refining 3P (CPU #3), 6P (MB #2),

2 1{ , }I wN , and 3 1{ , }I wN . As they have connects with constraints with

1 1{ , }I wN , 2 1{ , }I wN , 3 1{ , }I wN , and 1 2{ , }I wN , 11 1{ , }FL wN , 12 1{ , }FL wN ,

13 1{ , }FL wN , 14 1{ , }FL wN , 21 1{ , }FL wN , 31 1{ , }FL wN , and 11 2{ , }FL wN are the
intermediate components for connecting the initial new
components with the selected predefined ones as well as the
referencing components for modifying and refining 9P (UC #2), 10P

(KP #1), 11P (KP #2), 12P (BC #1), 13P (BC #2), 1 1{ , }I wN , 2 1{ , }I wN ,

3 1{ , }I wN , and 1 2{ , }I wN .
With the above newly determined new components, the other

two open configuration sub-processes contribute to constraint
processing, component modifications and refinements, and the
establishment of connections among final configuration
components. At the end, 6 laptops are configured and each of them
contains predefined, modified, and new components. For
illustrative simplicity, the components of one configuration are
provided below.

 Selected predefined components: 3P (CPU #3), 6P (MB
#2), 8P (UC #1), 10P (KP #1), and 12P (BC #1);

 Modified components: 10
MP (KP #1) and 12

MP (BC #1);

 New components: 1 1{ , }I wN and 2 1{ , }I wN .
Based on his/her personal preferences or other considerations,

the customer can select one from these 6 laptop configurations.

5 CONCLUSIONS
In response to the limitations of available product configuration
solutions, open configuration is put forward as a new approach to
configuring customized products while meeting both unforeseen
and anticipated customer requirements. This study proposed an
approach based on cloud computing to address one of the sub-
processes of open configuration: new component determination. In
the approach, new components for meeting unforeseen customer
requirements are determined from different databases in the cloud.
An example of laptop open configuration is used to demonstrate
how the new components are determined.

In determining new components, we considered the components
which are connected with the initial new components at two levels
and assumed that two leveled components were sufficient for
finding solutions. In the future, this assumption might be relaxed
and components at more levels might be considered. In this study,
we detailed the new component determination sub-process and left
the other two sub-processes: constraint processing and component
modification and refinement unexplained. We plan to complete
them in the near future. As the implementation of open
configuration would bring companies a competitive edge in
product customization: providing product functions and features
for unforeseen customer requirements, more investigations in the
future are required. In the long term, research efforts should be
geared towards open configuration knowledge modeling and
representation, open configuration system development, open
configuration evaluation, and so on.

ACKNOWLEDGEMENTS
We are very grateful to Dr. Andreas FALKNER from Siemens AG,
Vienna, Austria for his constructive comments and suggestions
which helped improve both the quality and presentation of the
earlier versions of the paper.

REFERENCES

Linda Zhang and Xiaoyu Chen. 87

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

[1] Trentin, A., Perin, E., and Forza, C.: ‘Product configurator impact on
product quality’, International Journal of Production Economics,
2012, 135, pp. 850-859.

[2] Franke, D.W.: ‘Configuration research and commercial solutions’,
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 1998, 12, (04), pp. 295-300.

[3] Zhang, L.L.: ‘Product configuration: a review of the state-of-the-art
and future research’, International Journal of Production Research,
2014, 52, (21), pp. 6381-6398.

[4] Forza, C., and Salvador, F.: ‘Managing for variety in the order
acquisition and fulfilment process: The contribution of product
configuration systems’, International Journal of Production
Economics, 2002, 76, pp. 87-98.

[5] Haug, A., Hvam, L., and Mortensen, N.H.: ‘The impact of product
configurators on lead times in engineering-oriented companies’,
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 2011, 25, (2), pp. 197-206.

[6] Forza, C., and Salvador, F.: ‘Product configuration and inter-firm co-
ordination: an innovative solution from a small manufacturing
enterprise’, Computers in Industry, 2002, 49, pp. 37-46.

[7] Salvador, F., and Forza, C.: ‘Configuring products to address the
customization-responsiveness squeeze: A survey of management
issues and opportunities’, International Journal of Production
Economics, 2004, 91, (3), pp. 273-291.

[8] Aldanondo, M., Rouge, S., and Ve, M.: ‘Expert configurator for
concurrent engineering: Cameleon software and model’, Journal of
Intelligent Manufacturing, 2000, 11, (2), pp. 127-134.

[9] Mittal, S., Frayman, F., and Sridharan, N.S.: ‘Towards a generic
model of configuration tasks’, Proceedings of the 11th International
Joint Conference on Artificial Intelligence, Detroit, USA, 1989, pp.
1395-1401 .

[10] Sabin, D., and Weigel, R.: ‘Product configuration frameworks-a
survey’, IEEE Intelligent Systems, 1998, 13, (4), pp. 42-49.

[11] Zhang, L.L., Chen, X., Falkner, A., and Chu, C.: ‘Open
Configuration: a New Approach to Product Customization’,
Proceedings of the 16th Workshop on Configuration, Novi Sad,
Serbia, 2014, pp. 75-79.

[12] Buyya, R., Yeo, C. S., Venugopal, S., and et al.: ‘Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility’, Future Generation Computer Systems,
2009, 25,(6), pp. 599-616.

[13] Al-Anzi, F. S., Salman, A. A., Jacob, N. K.: ‘New proposed robust,
scalable and secure network cloud computing storage architecture’,
Journal of Software Engineering and Applications, 2014, 7,(5), pp.
347.

[14] Hernández, I., Sawicki, S., Roos-Frantz, F., and et al.: ‘Cloud
configuration modelling: a literature review from an application
integration deployment perspective’, Procedia Computer Scinece,
2015, 64, pp. 977-983.

[15] Zheng, P., Lu, Y., Xu, X., and et al.: ‘A system framework for OKP
product planning in a cloud-based design environment’, Robotics and
Computer-Integrated Manufacturing, 2016 (in press).

[16] Zhang, Q., Cheng, L., Boutaba, R.: ‘Cloud computing: state-of-the-art
and research challenges’, Journal of Internet Services and
Applications, 2010, 1,(1), pp. 7-18.

[17] Nurmi, D., Wolski, R., Grzegorczyk, C., and et al.: ‘The eucalyptus
open-source cloud-computing system’, Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Computing and the
Grid, Shanghai, China, 2009, pp. 124-131.

88 Determining New Components for Open Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Benchmark for configuration and planning optimization
problems: Proposition of a generic model

Pitiot Paul
1,2

 and Garcés Monge Luis
1
 and Vareilles Elise

1
and Aldanondo Michel

1

Abstract.1 Computer science community is always interested in «
benchmarks », e.g. standard problems, by which performance of
optimization approaches can be measured and characterized. This
article aims at presenting our work to achieve a benchmark for
concurrent product configuration and process planning (CPCPP)
optimization problems. A benchmark is a set of reference models
that represents a particular kind of problem. Product configuration
and process planning are classic problems abundantly handled in
the literature. Their coupling in an integrated model is a more and
more handled complex problem; but there is a lack of benchmark
in spite of the need expressed by the community during last
configuration workshops [1]. In this article, we propose a generic
model of CPCPP problems that is representative of existing real
applications and studies founded on literature. We define relevant
concepts and propose some configuration and evaluation patterns
for product and process modelling. Our generic model is adapted
for a high level and multi-disciplinary (functional and/or physical)
representation of these environments. It shall allow us to supply a
representative and complete benchmark, in order to accurately
estimate the contribution of existing optimization methods.

1 INTRODUCTION

Benchmarking of optimization approaches is crucial to assess

performance quantitatively and to understand their weaknesses and

strengths. There is numerous academic benchmarks associate with

various classes of optimization problem (linear / nonlinear

problems, constrained problems, integer or mixed integer

programming, etc.). Studies, reports and websites of [2] [3] [4] [5]

are particularly accomplished examples of existing optimization

benchmark with a multitude of articles and algorithms

benchmarked on great variety of test functions (see for example

[6], [7] or [8]).

More than an academic tool, a benchmark should also be

representative of real-world problems. For a specific domain, a

benchmark represents a reference which should be used by

company’s decision-makers to select an approach or an algorithm.

But it is not always easy for them to know of which theoretical

case covers their practical case. Benchmark on configuration field

could illustrate this aspect with various industrial cases: automotive

[9], [10], [11], power supply [12], train design [13], etc. A data-

base of industrials cases was started on [14] but it is not anymore

maintained.

1 University Toulouse – Mines Albi, France, emails: paul.pitiot@mines-

albi.fr, vareille@mines-albi.fr, aldanond@mines-albi.fr,
luis_ignacio.garces_monge@mines-albi.fr.

2 3IL – CCI Aveyron, France

CPCPP problem is an interesting and increasingly studied

industrial problem. It gathers in single model two classical domains

for a stakeholder: which product corresponds to customer’s needs

and how it is going to be obtained? A decision aiding tool has to

assist stakeholder to make the best decisions (product configuration

and process planning choices) according to multiple objective.

CPCPP problems take place in the first steps of the study of

product and associated process. It thus manipulates a high level

description model.

Ours previous research projects [15] aim at produce decision

aiding tools for a specific problem subject to a growing interest in

mass customization community: the coupling between product and

process environments. Numerous authors showed the interest to

take into account simultaneously the product and process

dimensions in a decision aiding tool. This concurrent process has

two main interests: i) Allowing to model, and thus to take into

account, interactions between product and process (for example, a

specific product configuration forbids using certain resources for

process tasks), ii) Avoid the traditional sequence: configure

product then plan its production which is the source of multiple

iterations when selected product can’t be obtained in satisfying

conditions (mainly in terms of cost and delay).

In spite of the growing interest of the community and

industrialists, there is no standard (benchmark) for this problem. In

this article, we propose a generic model of the whole problem

(configuration, planning and coupling). Therefore, the paper is

organized as follow. The next section details the problem and its

combinatorial aspect. The third section proposes a generic model

of the problem. Some elements associated with cases diversity are

discussed.

2 ADDRESSED PROBLEM

For our benchmark, the addressed problem is limited to the

coupling between product configuration and process planning. We

will describe both environments and the coupling of them in next

sub-sections.

2.1 Concurrent configuration and planning

Product configuration problem is a multi-domain,

multidisciplinary, multiobjective problem [16], [17]. That

generates a wide diversity of possible models to represent. We will

try to define a classification of existing product models and model

it in the proposed generic model. Planning problems are generally

more framed (e.g. temporal precedence, resources consumption,

due date or delay, etc.). To generate various problem instances we

Paul Pitiot, Luis Ignacio Garcés Monge, Élise Vareilles and Michel Aldanondo. 89

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

can act on the shape of the process graph and on the dispersal of

the values assigned for the resources of tasks (cost, delay, etc.).

Thus, we need to define in our generic model of the product /

process a kind of generic model for each part and for the coupling.

Many authors, since [18], [19], [20] or [21] have defined

configuration as the task of deriving the definition of a specific or

customized product (through a set of properties, sub-assemblies or

bill of materials, etc.) from a generic product or a product family,

while taking into account specific customer requirements. Some

authors, like [22], [23] or [24] have shown that the same kind of

reasoning process can be considered for production process

planning. They therefore consider that deriving a specific

production plan (operations, resources to be used, etc...) from some

kind of generic process plan while respecting product

characteristics and customer requirements, can define production

planning. More and more studies tackle the coupling of both

environments [24] [25] [26] [27] or [28]. Many configuration and

planning studies (see for example [29] or [30]) have shown that

each problem could be successfully considered as a constraint

satisfaction problem (CSP). CSP’s are also widely used by

industrials [31]. Considering that using a CSP representation, we

could both represent constrained and unconstrained problems, we

will use it to represent each environment and the coupling.

2.2 Combinatorial optimization problem

In previous concurrent model, some variables represent decisions

of the user (customer or decision-maker on product or process

environment). We assume that those decision variables are all

discrete variables, so that an instantiation of all these decisions

variables corresponds to a particular product / process. Indeed in

reality and regardless of the environment, decisions correspond to

choices between various combinations. In product environment,

decisions correspond to architectural choices between various

combinations of sub-systems, or to a choice among various

variants for every sub-system. In process environment, decisions

correspond to resources choices between various variants.

Combinatorial constrained optimization problem consists in a

search of a combination for every decision variables that respects

constraints of the problem [32]. Instantiation of every decision

variable in CSP model corresponds to a specific product/process

which could be analyzed and scored according user’s multiple

preferences or objectives (cost, delay, etc.). As those objectives

could be antagonist, algorithm has to find in a short time a set of

approximately efficient solutions that will allow the decision maker

to choose a good compromise solution. Using Pareto dominance

concept, the optimal set of solutions searched is called the optimal

Pareto front.

This thus allows us to define a multi-objectives combinatorial

constrained optimization problem: a search between various

combinations to find a selection of solutions which are the closest

possible of the optimal Pareto front.

3 GENERIC MODEL DESCRIPTION

Our goal is to define a benchmark for CPCPP optimization

problems. A benchmark is a set of model instances representative

of a specific optimization problem and which allows testing of

optimization algorithms and validation of their accuracy for the

addressed problem. We need to generate various instances of the

CPCPP problem that represented diversity and complexity of real

industrial cases. Thus we first need a definition of a generic model

of addressed problem and then, to create the selection of varied

model instances to get the benchmark.

In following sections, we will describe each part (Product

configuration, process planning and their coupling) by a generic

model using optimization constraint satisfaction problem (O-CSP)

paradigm. That means that the problem is defined by a quadruplet

<V, D, C, f > whit V the set of variables, D the set of domains

linked to each variable, C a set of configuration constraints that

correspond to compatibilities between values of variables ; and f a

specific set of constraints, called in this study evaluation

constraints, that allow to calculate multivalued objective function.

A sub set of V can also been identified as the set of decision

variables, named Vd. In a decision aiding problem, Vd corresponds

to the set of variables on which stakeholder can act. Each decision

variable is related to one or more objective. Decision variables are

discrete (numeric or symbolic). Product and process configuration

corresponds to the selection of a value for the set of decision

variables. The aim of O-CSP is to find the setting of decision

variables that will maximize/minimize objectives. In this study,

others variable of V will be called evaluation variables because

they allow to calculate the value of the objectives.

In this study, we consider only “global selling price” and

“process cycle time” objectives; others could be added as product

performance or carbon foot print. Objectives are represented by

two continuous variables (global_sp and process_cyt). Their

domains are unions of intervals. Global selling price is impacted by

both product and process domains, whereas process cycle time

only steams from process domain.

We have to define what we mean by selling price. Cost and

selling price are two different way to economically evaluate a

product. Costs are what pays the enterprise (raw material,

components or resources) while selling price is what customer

pays. Coming from value analysis domain, the functional

descriptive variables are related with selling price while

components and resource are related with respectively the product

cost and the process cost. As this decision aiding problem takes

place during negotiation with customer, internal costs has to be

hidden and they will be changed in selling price (commercial

strategy is included like margins or discounts).

Definition 1: Selling prices represent either costs of the

components or of the operation, or selling prices of product

characteristics. Their values are calculated using evaluation

constraints according to configuration of decision variables.

We decompose the analysis of the CPCPP problem in four

parts: Product configuration, process planning, configuration

constraints and evaluation constraints. In each part, we will define

relevant concepts in O-CSP paradigm and also make some

hypothesis according to reality of existing CPCPP industrial

problem.

3.1 Product configuration

Definition 2 Product or System gathers a set of physical-functional

modules in a one level decomposition.

Definition 3 physical-functional module is a sub-set of a product

that corresponds to a set of components and which fulfills some

functions of the product.

90 Benchmark for configuration and planning optimization problems: Proposition of a generic model.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Those definitions come from theory of axiomatic design [33] and

design structure matrix (DSM) [34]. In a DSM, modules are logical

group of components linked to a set of functions. For example, if

configured product is a car, modules can be audio system, engine

system, etc.

Let define a configurable product as a group of nb_modules

physical-functional modules with nb_modules greater than 1. This

definition of a module could be used to model either physical or

functional decomposition or also both at same time. This can be

helpful to interact with a customer which as eventually

requirements on the two aspects and also allow us to represent the

wild diversity of existing models.

1. Description of a physical-functional module

 Physical description (component view)

As we are in a configuration context, we assume that every

component mentioned in the definition 2, is exchangeable by

others component that fulfill same functions and thus each one

corresponds in fact to a family of components (foc).

Definition 4 family of component (module_i_foc_j) is a set of

components that can fulfill some required functions in module i.

module_i_foc_j are discrete decision variable in Vd.

Each module can gathered multiple families of components.

For example, the audio module gathers families of components

“central unit” and “speakers”. Each family corresponds to a set of

equivalent component. For example, the family of component

“central unit” contains possible catalogue references for the central

unit. Let define module_i_nb_foc the number of family of

components of module i.

 Functional description (function view)

A module could be described by its functional point of view.

Functions are linked to customer’s requirements. In the same way

as in physical description, this model takes place in a configuration

context. Thus functions describe components abilities according to

various discrete functional levels.

Definition 5 function is a fulfillment of a customer’s requirement

over various discrete functional levels.

Each function fulfilled by the module can be described using a

functional description variable (fdv) in a one high-level functional

description. Each function can be fulfilled according to a defined

number of levels. For example, a functional description variable on

audio module can be the “global audio power” with possible levels:

200w, 300W, 400W, etc. Another example could be “USB input”

with two levels: yes or no.

Definition 6 Functional description variable (module_i_fdv_j)

refers to description of a function and is a set of possible functional

level for a function in module i.

Each module can gather multiple functional description variables.

Let define module_i_nb_fdv the number of description variable of

module i.

2. Decision aiding aspect

According to the high level description of CPCPP problem, each

aspect (physical or functional) is a one level decomposition of

modules, families of component or description of functions. In

such high level description, a module corresponds to a small

number of families of component and fulfills a limited number of

functions. It has to be described by at least one family of

component or one functional description variable and maximum 10

of both. In a decision aiding problem, user act on decision variable

to analyze their impact on objectives.

Definition 7 In product domain, decision variable are choice of

components in each family of component and choice of functional

level, for each functional description variable and this for every

module of the product.

3. Evaluation of a physical-functional configuration

Aim of study is to help configuration and planning according to

multiple criteria. We thus need to model variables and constraints

involved in each criterion calculation. In product configuration

domain, only selling price criterion is taken into account (see

section 3.3 for more details on selling price concept).

In a module, the selling price variables are linked either with a

family of components variable or with a functional description

variable. Every selling price variables are continuous and their

domains are represented by intervals. They will allow calculating

selling price of a module according to choices on decision

variables. Let define module_i_nb_sp the number of selling price

in module i. We also add a selling price for each module named

module_i_sp. Value of this variable will be the sum of every

selling price variables in this module i. In the same way, a product

global selling price (product_sp) is added to the model. Value of

this variable will be the sum of every module_i_sp variables.

4. Configuration/Evaluation patterns in product domain

The product configuration contains a high diversity due to the

multiplicity of products. Nevertheless, we observe in the majority

of the product configuration models, some small groups of strongly

connected variables. Coming from our experience on product

configuration, we identify a set of common generic sets of

variables and constraints called Product Configuration/Evaluation

Pattern (PCEP) in our generic model showed in figure 1. Each

PCEP gathers a set of decision (foc and/or fdv) and objective (sp)

variables linked by constraints (configuration and evaluation

constraints, see section 3.3 for more details on constraint

definitions) and corresponds to a physical-functional description of

a part of a module. We thus define modules as a set of PCEP.

Figure 1. Various types of PCEP

On figure 1, the two first type of PCEP (Tpcep1 and Tpcep2)

gather a configuration and an evaluation constraint. They

correspond to a one point of view analysis, functional (Tpcep1) or

physical (Tpcep2). They express the fact that a set of compatible

components or functions is linked to a specific selling price. There

is one selling price value or interval for each compatible value of

foc or fdv variables.

Paul Pitiot, Luis Ignacio Garcés Monge, Élise Vareilles and Michel Aldanondo. 91

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

The two next PCEP (Tpcep3 and Tpcep4) sequences

configuration constraints between fdv variables and foc variables,

and one evaluation constraint between foc variables and the selling

price variable. It represents one or more set of functions carried out

by one family of component. Selling price is then inferred from

corresponding foc variables. With this kind of PCEP, user can

express his requirements either at the functional level or at the

physical level (components) but once one side is fulfilled, the other

is deduced. For example for the audio sound system of a car, he

could select the audio power output and other option he need, that

will lead to a compatible selection of audio central unit or directly

select this one (one or more specific references). Selling price is

linked to selected component.

The last PCEP (Tpcep5) merge configuration and evaluation

constraints in the same constraint. It represents more heterogeneous

links between functional and components description where

compatible combinations of functional levels correspond to

compatible combinations of components. We limit this kind of

behavior to two fdv and two foc.

3.2 Process planning

In this section, we define a generic model of production process

associate to the configurable product. Generic aspect expresses

facts that one process corresponds to one product, and that process

decomposition (sequence of operation) is the same for each

possible associate product configuration.

Definition 8 process is the sequence of operations that leads to

obtain relevant configurable product in one-level decomposition.

The ordering and the number of operation are static. It means that

there is neither OR node on the sequence nor operation activation

according to a specific product configuration.

In this section, we define all variables needed to a generic

description of an operation showed on figure 2. Each operation

generates a specific work load (operation_i_wl) to achieve on a

family of resource (described on next section). This work load

could be constant (for example, a packing work load equal two

man-month whatever the product is) or could be influenced by

product choices (for example a big component need more work

load to be assembled). The work load will be linked to selling price

(operation_i_sp), duration and resources selection (type and

quantity, see next section). Work load isn’t a decision variable.

Our aim in this process planning domain is to support

stakeholder to achieve a planning by acting only on the resources

selection (type and quantity) for each operation.

Definition 9 An operation is a step of production process that

corresponds to specified workload to be achieved using a specified

type and quantity of resource. It has a duration ensuing from the

choice of the type and from the quantity of selected resource.

We assume infinite capacity planning because, in such high

level description, there is a little probability that two macro-

operations use the same macro-resource, and we consider that

production is launched according to each customer order and

production capacity is adapted accordingly.

In our generic model, we define a generic process as a set of

nb_operation generic operation linked by temporal relations and

there is at least one operation.

Figure 2. Generic description of an operation

1. Description of an operation

 Temporal description

In order to plan the process, we need to model the temporal

placement of each operation. In a constraints modeling, we need 3

continuous variables for each operation i to describe its temporal

placement: starting date (operation_i_start), ending date

(operation_i_end), and duration (operation_i_duration).

Value of duration variable can be obtained by constraints

processing according to selected values of resource description

variables (type and quantity) and to amount of workload to

achieved, whereas start and ending dates will be planned according

start/ending date of previous and next operations and according to

selected duration.

 Resource description

In this kind of configurable process, we define process

configuration as selection of resource type and quantity. That leads

that for each operation, there is a set of exchangeable resources that

can be used to achieve works relevant to this operation. This set is

represented by a discrete variable called a family of resource

(operation_i_for). We assume that there is only one resource

family for each operation. In order because if there were multiple

resources needed for an operation; firstly they could be aggregate

in one family of aggregated resource (for example, an operator

resource and a machine resource could be aggregated in one

operator-machine resource); and secondly in first steps of

product/process study, stakeholder is interested in only critical

resource dimensioning.

Definition 10 A resource family is the set of resource that can

achieve works relevant from a specific operation.

To achieve an operation, stakeholder could also act on quantity

of selected resource. So for each operation i, generic model include

a discrete variable named quantity of resource (operation_i_qtr).

2. Decision aiding aspect

In process domain, decision variable are choices of resource in the

family of resource and choices of quantity of resource for each

operation i.

3. Objective valuation in process domain

In process planning domain, we consider two criterions: Process

cycle time and selling price. The process cycle time will be

computed according to precedence constraints between operation

(see evaluation constraints in section 3.4) and duration of

operations. Duration of an operation is linked to ability of

resources and quantity of resource selected. Selling price of an

operation is related to costs of resources selected according to the

workload needed. To simplify formulae of selling price calculation,

we also add a process global selling price named process_sp. Value

of this variable will be the sum of every operation selling price

variables.

92 Benchmark for configuration and planning optimization problems: Proposition of a generic model.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

3.3 Configuration constraints

Constraints could be an equation or a compatibility table according

to nature of variables involved (continuous or discrete).

Compatibility table shows allowed and/or forbidden combinations

of values of variable. In our generic model, configuration

constraints are exclusively represented by tables of compatibility

that link decision variables; while evaluation constraints use

equations and tables of compatibility.

Definition 11: Configuration constraint describes compatibility

between values of a set of decision variable. As decision variable

are discrete, it corresponds to a compatibility table.

For example, we could have incompatible components or a

component incompatible with a specific functional level or with a

specific family of resource (coupling configuration constraint), etc.

A constraint is first defined by an arity, e.g. the number of involved

variable. In a realistic CPCPP problem, arity of configuration

constraint is from two to four decision variables.

In our generic model, a configuration constraint is defined by

its type in the model (i.e. depending on nature of decision variable

they link), by a type of configuration pattern they illustrate and a

constraint density. We define in next sections those concepts.

1. Type of configuration constraints

Configuration constraints take place in different location of the

model. We list those locations illustrated on figure 4 and define

their placement rules according to each location:

1. Intra-PCEP constraints already defined in section 3.1

2. Inter-PCEP constraints: In a same module, PCEP’s

variables could be link to other PCEP’s variables to

describe incompatibilities between various components

or functions from different PCEP. We assume that those

configuration constraint link variables of the same kind

so fdv to fdv variable and foc to foc variable. In order

because PCEPs entirely describe links between

functional and physical aspects. For a realistic model, we

limit the arity of those constraints to three maximum.

3. Inter-Module constraints: In modular product, there are

more relations between variables of a same module than

relations between variables of different modules

(definitions of architectural design and modularity). This

kind of relation can nevertheless exist and they follow

the same rules than inter-PCEP configuration placement

(i.e. they link same kind of decision variable and there

arity is limited to three).

4. Process configuration constraints: We assume that there

are few configuration constraints in process domain (in

comparison with product domain). Those constraints

could link either two family of resource decision

variables from two different operations (for example two

incompatible subcontractor in two following operations)

or decision variables of the same operation (for example

two resources of the same family with different quantity

available).

5. Coupling configuration constraints: Coupling constraint

links one or two variables from one or two modules in

product side, to the family of resource decision variable

or/and workload variable of one operation on process

side. Coupling constraints corresponds to compatibilities

and incompatibilities between product and resources of

process (for example a big component could need a big

crane to be assembled) or a workload dimensioning

according to product configuration. In a realistic CPCPP

problem, arity of a coupling constraint is four maximum.

The last placement rule is to avoid circuit in constraints graph.

Figure 3. Example of the whole model

2. Type of configuration pattern

Coming from our experience and literature review, we identify

various configuration shapes or behavior named type of

configuration pattern (Tcp) presented in following list and showed

on figure 3. Those patterns rest on supposed ordered values of

variables in terms of performance or abilities. Examples on figure 3

show configuration constraints between two variable but they

could be extended to three or four variables. Compatibility tables

are illustrating by compatibility matrix. A cross in matrix

corresponds to a compatible couple of values. Each value of each

involved variable has to appear in at least one allowed tuple. (i.e.

we have at least one cross in each line and each column in

associated matrix).

1. Similarity or close level pattern (Tcp1): This pattern

corresponds to a similarity between various levels of

decision variables (parameter: diff_level difference of

between similar levels). It can represent a conception rule

to maintain coherence between choices on a product. For

example, this could lead to forbid the simultaneous

selection of luxurious and cheap components.

2. Dissimilarity pattern (Tcp2): This pattern corresponds to

a dissimilarity constraint between various values of

decision variables (parameter of pattern: diff_level

difference of between dissimilar levels). It can represent

a conception or organizational rule that forbids the

selection of same level for selected variables. For

example, this could lead to forbid the selection of similar

dangerous material for various component or similar

suppliers for different operations.

3. Limit Pattern (Tcp3): This pattern corresponds to a limit

between various levels of decision variables (parameter

of pattern: Extremum (min or max), operator (sum or

product), value of the limit). It can represent a physical

limitation. For example, it could be a limit for power

supply that impacts components consumption or a size

limit for a crane that handle product (coupling config.).

Paul Pitiot, Luis Ignacio Garcés Monge, Élise Vareilles and Michel Aldanondo. 93

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

4. Comparing pattern (Tcp4): this pattern corresponds to a

comparison between levels of decisions variables

(Parameters of pattern: Comparison sign). It can

represent for example an engine power requirement that

could be fulfilled by various engines.

Figure 4. Types of configuration constraint pattern

3. Constraint density of a configuration constraint

Constraint density for one constraint corresponds to the ratio of

allowed tuples over every possible tuple. It coincides to the ratio of

crosses in the compatibility matrix.

3.4 Evaluation constraints

Evaluation constraints correspond to fitness function f calculation

in O-CSP paradigm. They allow assigning a value to various

objectives for a specified product or process.

Definition 12: Evaluation constraint links an evaluation variable

(selling price variables or temporal description variable for

operations) either to a set of decision variable, or to a set of others

evaluation variables. It allows calculating values of this evaluation

variable according to either values of related decision variables

using a table of compatibility, or values of others evaluation

variables using equations.

CPCPP problems are challenging for optimization tool for

many reasons: multiobjective aspect, size of search space and

complexity of objective function. This last difficulty mainly results

from:

1. Close performance skills of components and resources

(i.e. a dominated component (in the Pareto sense) will be

a priori exclude from catalog before optimization and

configuration steps).

2. Multiplicity of elementary behaviors that cannot be

model by a global mathematical representation.

3. Marketing and innovation aspects in selling price

concepts introduce some singularities in evaluation

model

The evaluation constraints gather three kinds of constraints:

1. The first one is the set of constraints that links decision

variables (module_i_fdv, module_i_foc, operation_i_for

or operation_i_qtr) to one evaluation variable (selling

prices in product side and operation_i_sp and

operation_i_dur in process side). As decision variable

are discrete, those constraints are tables of compatibility.

2. The second set corresponds to temporal description of

the process and allows calculating cycle time objective. It

gathers precedence links between duration, starting date

and ending date variables of operations. Those

constraints called temporal evaluation constraints

correspond to some inequalities and one equation.

3. The third set of constraints will allow selling price

aggregation by linking every elementary selling price

variable to global selling price variable using some

equations. Those ones will be named selling price

aggregation constraint.

On following section, we will define evaluation constraints on

each domain, for the coupling and global aggregation ones.

1. Evaluation constraints on product domain

Evaluation constraints on product domain gather one

evaluation constraint for each PCEP on each module and

aggregation constraints that link selling price variables.

As explained in PCEP description (see section 3.1.4), each

PCEP gathers one evaluation constraint. This one links a set of

decision variable to one selling price variable using a compatibility

table. The compatibility table assigns a value or an interval of

value to the selling price variable for every possible combination of

decision variables. As we aim at produce a real-world behavior in

generated model, the compatibility table has to be fulfilled with

coherent values. Coming from our experience, we identify some

evaluation patterns used to fulfill this table.

An evaluation pattern corresponds to the variation of an

evaluation variable according to a choice on one or more decision

variable. Considering ordered values of decision variable, we could

define that a decision variable is either positively or negatively

correlated to an objective. This correlation is not necessarily linear

(Tep1), it could be quadratic (Tep2) or piecewise linear (Tep3).

Those three behaviors are illustrated on figure 4. We illustrate on

Tep1 a possible repartition of selling price values linked to one

decision variable with 5 values. This kind of relation is adaptable

to a combination of several variables of decision.

Figure 5. Types of evaluation pattern

As evoked in introduction of this section, we must include

some singularities to those mathematical elementary behaviors. We

could randomly select and change values of some combinations

according to singularity rate settled globally for the whole model.

In each module, all elementary selling price variables are

aggregate on module_i_sp variable:

module_i_sp = ∑ module_i_sp𝑗
𝑚𝑜𝑑_𝑖_𝑛𝑏𝑠𝑝

𝑗=1
 (1)

Then all module_i_sp are aggregate on product_sp:

 product_sp = ∑ module_i_spnb_mod
i=1 (2)

94 Benchmark for configuration and planning optimization problems: Proposition of a generic model.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

2. Evaluation constraints on process domain

Evaluation constraints on process domain gather two evaluation

constraint for each operation (one for the selling price objective

and one for the duration), temporal evaluation constraints and

finally a selling price aggregation constraints that link selling price

variables (operation_i_sp) to global one (process_sp).

For each operation, evaluation constraints must define a value

for each evaluation variable for each possible combination of

decision variables (operation_i_for and operation_i_qtr). The work

load is also involved in objective evaluation. It corresponds to

work to be realized according to the chosen product.

The selling price of an operation is defined by a compatibility

table that gathers all possible combination of workload and family

of resource.

process_sp = ∑ ope_k_sp
nb_ope
k=1 (3)

Global selling price is an aggregation of product and process

selling prices.

global_sp = product_sp + process_sp (4)

On the other hand, duration of an operation is defined by a

compatibility table. It gathers all possible combination of

workload, quantity and family of resource.

On each operation,

 operation_i_dur = operation_i_end – operation_i_stt (5)

Then between operations, precedence constraints result from

graph shape. Consecutive operations have to be linked by

precedence constraints. If an operation j follows an operation i:

Operation_i_end < operation_j_stt (6)

Finally, the process cycle time is the difference between

starting date of the first operation and the ending date of the last

one.

process_cyt = max∀j operation_j_end − min∀i operation_i_sdt (7)

4 MODEL GENERATION

The generic model described in previous section is used to create a

set of instances in order to constitute the CPCPP benchmark. We

currently develop a model generator that implements this generic

model definition to achieve this task. As our aim is to create

models representative of real-world problems, the model generator

will be available on-line and proposed to some industrial partners

so that they can create representative models of their products and

process. We shall complete this set with models representing the

existing cases in the publications on this subject.

To simplify model generation by a user, we have defined a

procedure based on a set of simple questions and indicators.

Without revealing sensitive industrial data, the user can define a

representative model in term of: number of modules, number of

operations, number of variables of decision, average number of

alternatives for each decision variable, selection of various types of

PCEP, configuration or evaluation patterns, etc.

We also define some simple ways to characterize and choose

the distribution of constraints in the model. To connect PCEP in a

module, modules themselves or for the coupling, we have defines

four different levels: unconnected, weakly, averagely and strongly

connected. For example for PCEP connecting, the first one

(unconnected) corresponds to separate patterns; “Weakly

connected” corresponds to some constraints between patterns

(randomly from 1 to the number of pattern); “Averagely

connected” corresponds to a module with every patterns connected

(i.e. if there is n patterns, number of inter-PCEP constraints in the

module will be n-1); and “strongly connected” corresponds to links

between every pattern in the module (i.e. if there is n patterns,

number of constraints in the module will be n! / (2*(n − 2)!),

combination of 2 between n modules).

Finally, we define some useful indicators to handle globally the

model: inter-PCEP constraints rate, modularity rate (i.e. the ratio of

constraints between modules with regard to the total number of

constraints in the product model), coupling rate (i.e. the ratio of

constraints between product variables and process variables with

regard to the total number of constraints in the model) and process

configuration rate (i.e. the ratio of constraints between process

variables with regard to the total number of constraints in the

model).

CONCLUSION

The goal of this research paper was to present our research

perspectives for a benchmark on concurrent configuration and

planning. This problem is more and more studied. Although there

are a lot of cases of Knowledge-based configuration systems

applied on the industrial practice and project planning, there is a

real lack of real-word inspired benchmark. In this study, we

propose a generic model that can represent this diversity and that

will allow to generate various test models. Coming from our

experience in CPCPP problem and analysis of existing works,

some configuration and evaluation pattern are proposed. We seek

for comments of the community and industrials to improve our

proposition. Then we will create a website with the benchmark and

the model generator to diffuse our proposition and better evaluate

optimization approaches on this CPCPP problem.

REFERENCES

[1] Workshops on configuration, 2013/2014/2015: 2013: http://ws-

config-2013.mines-albi.fr/, 2014: http://confws.ist.tugraz.at/

ConfigurationWorkshop2014/, 2015: http://blogs.helsinki.fi/confws-

15/

[2] O. Shcherbina, COCONUT benchmark,

http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Bench

mark.html, 2009.

[3] F. Domes, M. Fuchs, H. Schichl and A. Neumaier. The Optimization

Test Environment, Optimization and Engineering, vol. 15, pp. 443–

468, (2014)

[4] H. Mittelmann, Benchmarks, http://plato.asu.edu/sub/benchm.html,

(2009).

[5] J.C. Gilbert and X. Jonsson. LIBOPT - An environment for testing

solvers on heterogeneous collections of problems - The manual,

version 2.1. Technical Report RT-331, INRIA, (2009).

[6] O. Shcherbina, A. Neumaier, Djamila Sam-Haroud, Xuan-Ha Vu and

Tuan-Viet Nguyen, Benchmarking global optimization and constraint

satisfaction codes, pp.211--222 in: Ch. Bliek, Ch. Jermann and A.

Neumaier (eds.), Global Optimization and Constraint Satisfaction,

Springer, Berlin (2003).

[7] László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold

Neumaier Black Box Optimization Benchmarking of the GLOBAL

Paul Pitiot, Luis Ignacio Garcés Monge, Élise Vareilles and Michel Aldanondo. 95

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Method, , Evolutionary Computation, Vol. 20, No. 4 , pp. 609-639,

(2012)

[8] A. Auger and R. Ros, Benchmarking the pure random search on the

BBOB-2009 testbed. In Franz Rothlauf, editor, GECCO, pp 2479–

2484. ACM, (2009)

[9] J. Amilhastre, H. Fargier, P. Marquis, Consistency restoration and

explanations in dynamic csp’s - application to configuration, in:

Artificial Intelligence vol.135, pp. 199-234, (2002)

[10] A. Kaiser, K. Wolfgang, S. Carsten. Formal methods for the

validation of automotive product configuration data. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing,

17(2), Special Issue on configuration, (2003)

[11] Sinz, C., Kaiser, A., Küchlin, W., Formal methods for the validation

of automotive product configuration data. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, vol. 17, pp.75-97,

(2003)

[12] Jensen, R., Lars, S.: Power Supply Restoration, Master's thesis, IT

University of Copenhagen, (2005).

[13] S.Han, J. Lee. Knowledge-based configuration design of a train

bogie, Journal of Mechanical Science and Technology, Vol. 24, Issue

12, pp 2503-2510, (2011).

[14] Subbarayan, http://www.itu.dk/research/cla/externals/clib/, (2006)

[15] P. Pitiot, M. Aldanondo, E. Vareilles, P. Gaborit, M. Djefel, S.

Carbonnel, Concurrent product configuration and process planning,

towards an approach combining interactivity and optimality, in: I.J.

of Production Research, vol. 51 n°2, pp. 524-541, (2013)

[16] V. Viswanathan and Julie Linsey, Spanning the complexity chasm: A

re-search approach to move from simple to complex engineering

systems. AI EDAM 28(4): pp. 369-384, (2014).

[17] I. Tumer and K. Lewis. Design of complex engineered systems.

Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, 28, pp 307-309, (2014).

[18] S. Mittal, F. Frayman. Towards a generic model of configuration

tasks, proc of IJCAI, p. 1395-1401(1989).

[19] T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen, Towards a

General Ontology of Con-figuration., Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, vol 12 n°4, pp.

357–372, (1998)

[20] M. Aldanondo, E. Vareilles. Configuration for mass customization:

how to extend prod-uct configuration towards requirements and

process con-figuration, Journal of Intelligent Manufacturing, vol. 19

n° 5, p. 521-535A (2008)

[21] P. Hofstedt, D. Schnee-weiss. FdConfig: A Constraint-Based

Interactive Product Configurator. 19th International Conference on

Applications of Declarative Programming and Knowledge

Management, (2011).

[22] K. Schierholt. Process configuration: combining the principles of

product configuration and process planning AI EDAM , Volume 15,

Issue 05, pp 411-424, (2001)

[23] R. Barták, M. Salido, F. Rossi. Con-straint satisfaction techniques in

planning and scheduling, Journal of Intelligent Manufacturing, vol.

21, n°1, p. 5-15 (2010)

[24] L. Zhang, E. Vareilles, M. Aldanondo, Generic bill of functions,

materials, and operations for SAP2 configuration, I.J. of Production

Research, Vol. 51 n°2, pp. 465-478, (2013)

[25] Baxter, D. An engineering design knowledge reuse methodology

using process modelling. Research in Engineering Design, 18 (1) pp.

37-48, (2007)

[26] G. Hong, D. Xue, Y. Tu,, Rapid identification of the optimal product

configuration and its parameters based on customer-centric product

modeling for one-of-a-kind production, Computers in Industry

Vol.61 n°3, pp. 270–279, (2010)

[27] L. Li, L. Chen, Z. Huang, Y. Zhong, Product configuration

optimization using a multiobjective GA, I.J. of Adv. Manufacturing

Technology, vol. 30, pp. 20-29, (2006)

[28] Huang, H.-Z. and Gu, Y.-K., Development mode based on

integration of product models and process models. Concurrent

Engineering: Research and Applications. Vol.14, 1, pp 27-34, (2006)

[29] U. Junker, Handbook of Constraint Programming, Elsevier, chap. 24

Configuration, p. 835-875, (2006)

[30] P. Laborie. Algorithms for propagating resource constraints in AI

planning and scheduling: Existing approaches and new results,

Artificial Intelligence, vol. 143, pp 151-188, (2003)

[31] A. Kaiser, K. Wolfgang, S. Carsten. Proving consistency assertions

for automotive product data management. J. Automated Reasoning,

24(1-2):145-163, (2000)

[32] E. Mezura-Montes, C. Coello Coello, Constraint-Handling in Nature-

Inspired Numerical Optimization: Past, Present and Future, Swarm

and Evolutionary Computation, Vol. 1 n°4, pp. 173-194, (2011)

[33] N.P. Suh, Axiomatic Design: Advances and Applications, Oxford

University Press, (2001)

[34] Steward: The Design Structure System: A Method for Managing the

Design of Complex Systems, IEEE Transactions on Engineering

Management, vol 28(3), S. 71-74, (1981)

96 Benchmark for configuration and planning optimization problems: Proposition of a generic model.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Optimal Feature Selection via Evolutionary Algorithms
and Constraint Solving

Yibo Wang and Lothar Hotz 1

Abstract. In software development, product lines especially with
feature models are promising technologies to manage variability of
software products. A new challenge in deriving software products
from the product line is not only to select a set of features, which do
not incur any feature inconsistencies, but to optimize multiple objec-
tives (e.g. cost minimization and maximization of feature reuse) at
the same time. This challenge is a constrained multi-objective opti-
mization problem and has been proved to be difficult. In this paper,
we approach this problem by utilizing the state-of-the-art method
SATIBEA, which combines a multi-objective evolutionary algorithm
with constraint solving techniques. The contribution of our approach
is that we enhanced SATIBEA in two ways: by improving its muta-
tion operator and by providing a novel crossover operator. Our em-
pirical experiment results have shown that our approach SATIBEA+
improved SATIBEA noticeably, in providing more valid and more
qualitative feature selections in terms of the standard measures such
as hypervolume and Pareto front size.

1 INTRODUCTION

In many engineering fields, more and more emphasis is put on prod-
uct line technology due to the need for customization with low efforts
and in short terms. Planned variability, expressed in product models
such as feature models [8], allows a smart configuration of products
and services. However, products and services have to fulfill growing
non-functional requirements, such as safety or cost, due to the in-
creased competition on the markets. Such requirements more often
demand for optimizations for achieving best fitted products to user-
s’ needs. Meanwhile, multiple non-functional requirements have to
be considered together during optimization, although they might be
non-commensurable or competing.

The field of product configuration is trying to cope with such prob-
lems. A configuration is a description of all parts with their appropri-
ate parameters that are needed to build the product that hopefully
will fulfill the given requirements. In product configuration, the con-
figuration problem starts from certain user requirements and from a
configuration model which implicitly describes all configurations of
a certain domain. By using reasoning technology (e.g. a SAT-Solver
[16]), the configuration problem is solved by automatically creating
configurations. In the specific case of software product lines (SPL),
configuration models are often expressed by feature models repre-
senting all features of a product and the configuration consists of
selected features from such models. In this paper, this general task is
further enhanced by taking optimization into account.

1 Department of Informatics, University of Hamburg, Germany, email:
wang@informatik.uni-hamburg.de

Technologies that approach this problems are SAT-solvers that al-
low the computation of valid feature configurations [7, 16] and evo-
lutionary algorithms that are capable to compute solutions for multi-
objective optimization problems [5, 10, 12, 14]. Evolutionary algo-
rithms start with a set (an initial generation) of individuals (here,
potential feature configurations), and modify them by mutation and
crossover in the following generations. A mutation changes one in-
dividual (here, by selecting other features) and crossover combines
a few individuals to a further individual (here, a new configuration
generated by combination).

Syyad et al. [12] showed that for solving multi objective problem-
s, especially with an increased number of objectives, indicator-based
approaches (IBEA) outperform dominance-based ones. Dominance-
based approaches rank solutions according to absolute dominance
while indicator-based approaches provide an “amount” of dominance
by computing a value which incorporates user preferences. Based on
this, Henard et al. [5] introduced SATIBEA, which applies a SAT-
solver in the mutation operator to correct a configuration for return-
ing a valid mutation. However, we have found that SATIBEA often
fails for complex feature models with thousands of features and con-
straints. In addition, the standard 1-point crossover used in SATIBEA
generates in most cases worse offsprings (with more feature viola-
tions) than their parents, due to an arbitrary combination from par-
ents. Thus, our work complements the existing work of SATIBEA
(leading to SATIBEA+). The main contributions of our approach
SATIBEA+ can be summarized as following:

• We improve mutation operator of SATIBEA so that it finds more
valid configurations for complex feature models.

• We provide a novel crossover operator which reduces the num-
ber of feature violations for an invalid solution by learning from
another configuration.

• We show that SATIBEA+ outperforms SATIBEA, in providing
more valid and qualitative configurations in terms of hypervolume
and Pareto front size.

The paper is organized as follows: Section 2 presents the underlying
technologies which are used in our approach (Section 3). For eval-
uating this approach, we defined research questions (Section 4) and
verify them through experiments (Section 5 and Section 6). The sec-
tions 7, 8, and 9 provide discussions, related work, and a conclusion.

2 BASIC TECHNOLOGIES
In SPL, the variability of products (i.e., the configuration space) is
typically represented as feature models. They express all decision
variables that are subject to select and optimize (Subsection 2.1).
A main aspect of this paper is to support the combination of tech-
nologies that are capable to compute consistent configurations and

Yibo Wang and Lothar Hotz. 97

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

that are capable to optimize those configurations. In our approach,
we use SAT-solvers for consistency checking (Subsection 2.2) and
evolutionary algorithms for computing multi-objective optimization
problems (Subsection 2.3). The rest of the paper shows, how we in-
corporate both technologies, i.e., the SAT-solver used as a mutation
method for the evolutionary algorithm.

2.1 Feature Models and Feature Constraints

In software product lines, feature models are often used to express
variability of products. Features can be modeled with mandatory,
optional, and alternative constraints, as well as attributes (extended
feature models [2]). Furthermore, relations between features can be
expressed such as exclude or require which are all considered here
as integrity constraints or simply constraints (see [11]). Thus, con-
straints relate to features. In this paper, we divide a feature model into
features and constraints on one side to form the consistency part of
the feature model and feature attributes on the other side to form the
optimization part of the feature model. In the general form, feature
attributes might also belong to the consistency part. Figure 1 presents
an example also later used in the paper.

The task is now to select features from the feature model given
some preferred features so that a valid configuration is created (fea-
ture selection) that fulfills the constraints. For simplicity, in this pa-
per we consider the special case where the set of preferred features is
empty. This can be considered as a constraint satisfaction problem,
defined as follows [7]:

Definition (Constraint Satisfaction Problem – CSP). A con-
straint satisfaction problem (CSP) is defined by a triple (V,
D, C) where V represents a set of finite domain variables
V = {v1, v2, ..., vn}, D represents variable domains D =
{dom(v1), dom(v2), ..., dom(vn)}, and C represents a set of con-
straints defining restrictions on the possible combinations of variable
values (C = {c1, c2, ..., cm}).

A feature selection problem is a CSP where variables represent
features defined in a feature model.

A solution to a given CSP = (V, D, C) can be defined as follows:
Definition (CSP Solution). A solution for a giv-

en CSP = (V, D, C) is represented by an assignment
A = {ins(v1), ins(v2), ..., ins(vk)} where ins(vi) ∈ dom(vi).
We require solutions to be complete, i.e., to be represented by an
assignment where each variable in the definition of the CSP is
instantiated and consistent which means that the assignment A is
consistent with the constraints in C.

Thus, a feature selection (or configuration) is a CSP solution of a
feature selection problem.

2.2 SAT-based constraint resolving

A propositional logic formula consists of binary variables and the op-
erators AND, OR, and NOT . A truth value (TRUE or FALSE)
can be assigned to each binary variable. By assigning a truth value
to each variable a formula can be satisfied, i.e., results to TRUE.
A boolean satisfiability problem (SAT) is given by the task to check
whether a given formula is satisfiable. As an extension, a further task
is to assign values to not pre-assigned variables to make a formula
satisfiable.

A feature selection problem can be mapped to a SAT problem by
introducing binary variables for each feature and map constraints to
formulas. A SAT solver, such as SAT4J [1] can be used to check
the constraint violations of a solution or to compute valid variable
assignments for not pre-assigned variables.

2.3 Multi-objective Evolutionary Optimization
Algorithms (MOEAs)

In multi-objective optimization, multiple objective functions have to
be optimized at the same time. We define a feature optimization prob-
lem as follows (see [5]): Compute min(F1(x), F2(x), . . . , Fk(x))
with k the number of objective functions and x ∈ X is the set
of possible feature configurations. Each Fi(x) is an objective func-
tion based on feature attributes. We introduce the boolean attribute
“selected” to indicate if a feature is selected in the configuration or
not. Each Fi(x) has to be minimized. In evolutionary algorithms, d-
ifferent Fi(x)s are combined to a single value, the fitness value, to
evaluate a feature configuration.

Let x1 and x2 be two potential solutions to the problem. We say
that x1 dominates x2, if and only if ∀i ∈ {1, . . . , k} : Fi(x1) ≤
Fi(x2) and ∃i ∈ {1, . . . , k} : Fi(x1) < Fi(x2). Given x1, . . . , xn
potential solutions to the multi-objective optimization problem, the
Pareto front corresponds to the subset of these potential solutions
that are non-dominated by the others.

Each solution in the Pareto front is optimal in the sense that it can-
not be improved in one objective function without degrading another
one. Furthermore, all solutions in a Pareto front are equally optimal.
However, solutions obtained by MOEAs are not exactly the Pareto
front, but an approximation of it. Two properties are used to evaluate
the quality of the obtained solutions: convergence and diversity. The
first one describes how near they are to the Pareto front, while the
second one indicates how uniformly they distribute. A good solution
would have good convergence and diversity at the same time.

As pointed out in the introduction, indicator-based evolutionary
algorithms (IBEA) provide a mean for solving multi-objective opti-
mization problems (MOP). The rest of the paper will explain how
those technologies are applied for computing optimal feature config-
urations.

3 THE PROPOSED APPROACH - SATIBEA+

The main task of the automatic generation of configurations of SPLs
considered here is to find a set of valid and optimal feature selections
in consideration of multiple objectives. It means, at the end of the
search process, the resulting configurations must be valid. In other
words, the number of constraint violations should be zero in the final
configurations. Although invalid configurations are permitted as in-
termediate results, minimization of the number of invalid constraints
should be defined as an objective for the search process. Moreover,
the more valid configurations at the end of the process are generated,
the more useful is the search result, because more feasible configu-
ration could be given to decision makers for the final selection.

In order to reduce the number of feature violations and increase
the percentage of the valid configurations, the invalid configura-
tions should be replaced by valid ones or at least by “better” ones
(with less constraint violations) gradually during the search process.
Our approach is based on the SATIBEA approach, so we name it
“SATIBEA+”. Similar to SATIBEA, we also use the SAT-solver
to repair invalid configurations. In addition, SATIBEA+ can also
change an invalid configuration into a valid or a “better” one by learn-
ing from an another configuration. In our approach, we extend the
“smart” operators of “SATIBEA” to “smart+” operators to achieve
this goal.

3.1 “Smart” and “Smart+” Operators

We introduce two “smart+” operators as an extension of “mboxs-
mart” operators of [5]. The operators are called “smart”, because they

98 Optimal Feature Selection via Evolutionary Algorithms and Constraint Solving.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Figure 1. Example of a feature model including feature attributes based on [9]

can turn an invalid configuration into a full valid one or at least makes
it better. Furthermore, they change a configuration only slightly (the
change will be as little as possible).

3.1.1 Smart and Smart+ Mutation
This type of mutation operator is an unary operator acting on a single
configuration aiming to change it from invalid to valid. Thus, the out-
put of this operator should be a configuration without any constraint
violation.

Smart Mutation of SATIBEA: Before mutation, constraint vi-
olations are calculated for a configuration. Then, features in this
configuration are divided into two groups: the “bad” ones and the
“good” ones. The former refers to the features, which are involved in
at least one of the constraint violations. The latter refers to the fea-
tures, which do not incur in any constraint violation. Then the feature
assignments of bad ones will be removed while the assignments for
good ones remain unchanged. After that, smart mutation will inquire
the SAT-solver for a valid configuration under this assumption.

Figure 2. An positive example for the smart mutation in SATIBEA

Considering the configuration in the Figure 2 for the feature mod-
el defined in the Figure 1, it has a constraint violation of the require
relation between 7 and 15 (the left side of Figure 2). In the follow-
ing figures, the unselected features are struck out. If we remove the
assignments of the features 7 and 15 and give the assignments of the
rest features to the SAT-solver, then it will return a valid configura-
tion without any violations (the right side). In this case, only the bad
features will be changed (Feature 15). But what happens, if we apply
this operator to repair the other invalid configuration shown in Fig-
ure 3 (the left side)? Like in Figure 2, the exclude relation between
feature 7 and 15 is violated in this configuration.

According to all of the possible feature assignments of 7 and 15
(the right side), it is impossible to find a valid configuration. The
more features and the more feature constraints a feature model has,
the more likely no solution could be found by a SAT-solver. We have
found that for the complex feature models (eCos, FreeBSD and Lin-
ux in Table 1) used in our experiment, the mutation operator of SAT-
IBEA failed to find even just one valid configuration.

Figure 3. An negative example for the smart mutation in SATIBEA

Figure 4. Using the new smart+ mutation to repair the configuration in the
negative example

Smart+ mutation of SATIBEA+: In order to overcome this
shortcoming, we introduce the concept of connected features. A
feature x is “connected” with a feature y, if both features appear in
the same feature constraint. For a feature x, we iterate all feature
constraints and save all connected features with x in a set S. Then,
we call S the connected features for the feature x. For example,
the feature 7 has the connected features {4, 5, 6, 10, 15} in the
Figure 1, because there is at least one feature constraint defined
between 7 and those. To search for an invalid configuration, we
extended the set of the bad features with their connected features. It
inquires the SAT-solver for a valid configuration while remaining
the assignments of the good features (but without keeping the
assignments of the connected features). Thus, we can now repair
the invalid configuration in the Figure 3. As shown in Figure 4,
not only the bad features, but also the their connected features,
can be changed (features 14, 15 and 16 have been changed). With
this extension, the failure rate of the repair operator for the Linux
configuration model has been reduced up to 30% (see Section 6).

3.1.2 Smart+ Crossover
This operator is a binary operator acting on two configurations
(called the parents in EA) aiming to reduce the constraint violations

Yibo Wang and Lothar Hotz. 99

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

of the first one. Thus, the output of this operator should be a new
configuration (called the offspring in EA) with a reduced number of
constraint violations. The crossover operator uses a crossover point
which splits a configuration (a list of features) into two parts, before
and after the point.

1-point Crossover of SATIBEA: This crossover operator com-
bines two configurations in a new one by applying the feature as-
signments of the first one before the randomly selected crossover
point and applying the feature assignments of the second one af-
ter the crossover point. Because the crossover point is selected ran-
domly and feature values are simply copied without consideration of
constraints, the number of constraint violations will be reduced also
randomly. The more features and the more feature constraints a fea-
ture model has, the more likely no reduction of constraints could be
achieved. We have found that for the complex feature models used in
our experiment, the constraint violations has been even increased in
most cases.
Algorithm 1 smart+ crossover

1: Input: p1, p2
2: offspring = p1.copy()
3: violatedConstraintsP1 = getViolatedConstraints(p1);
4: violatedConstraintsP2 = getViolatedConstraints(p2);
5: for each constraint in violatedConstraintsP1 do
6: if constraint not in violatedConstraintsP2 then
7: for each featureX in constraint do
8: valueOf(offspring, featureX) = valueOf(p2, featureX);
9: end for

10: end if
11: end for
12: return offspring

Smart+ crossover in SATIBEA+: Instead of generating an off-
spring by exchanging values of configurations arbitrarily, we correct
feature violations in one configuration by learning “good” feature as-
signments from the other one. We introduce the smart+ crossover op-
erator in Algorithm 1. The inputs are two configurations p1 and p2 as
parents (line 1) and the output is the resulting configuration offspring
(line 12). The algorithm begins with copying p1 as the prototype of
the offspring (line 2). Then it calculates the violated constraints of
both parent configurations (line 3-4). For each violated constrain-
t in p1 (also in offspring, because it is the copy of p1), if we could
find feature assignments in p2, which do not violate this constraint,
then we use these the “good” feature assignments of p2 to replace the
“bad” ones in offspring (5-11). Please note that smart crossover is not
aiming to resolve all invalid feature constraints, just as smart muta-
tion does. It will only “improve” a configuration. It could generate an
offspring without any invalid feature constraint, but not necessarily.

Suppose the configuration Parent 1 in the Figure 5, which has 4
feature invalid constraints. Its counterpart Parent 2 has only 2 feature
constraints. Because the first three constraints of Parent 1 are not
violated in Parent 2, Parent 1 could replace their problem features 4,
6, 7, 13, 14 with the “good” feature assignments of Parent 2. Thus,
the generated Offspring has only one feature violation, which could
not be fixed anyhow (because it is violated in both configurations).
With this extension, the number of constraint violations for the Linux
configuration model can be reduced in almost 70% of the cases (see
Section 6).
3.2 Other changes against SATIBEA
3.2.1 Mating Selection
It is a selection operator which acts on a set of configurations aiming
to generate parents for crossover. In evolutionary algorithms, solu-

Figure 5. An example by using smart+ crossover to improve a
configuration

tions with better fitness values should have better opportunities to be
selected as parents for the crossover.

Mutation selection of SATIBEA: Binary tournament strategy
[14] has been applied in SATIBEA. From two randomly selected
configurations, the better one (with the better fitness value) will be
selected as the parent.

Changes in SATIBEA+: Instead of selecting parents by consid-
ering only fitness values, we make additional limitations on the s-
election process. Recalling the smart crossover defined in the last
section, the “bad” configuration will get improved by learning from
the “good” one. Thus, we limit a “good” configuration only on the
ones without any constraint violations. It can be selected only from
the set of valid configurations. In contrast, a “bad” configuration can
be selected from any configurations, as in SATIBEA.
3.2.2 Smart Replacement
This operator is aiming to add new solutions randomly in the current
population.

Smart Replacement of SATIBEA: In SATIBEA, it picks up a
configuration from the current population randomly and replace it
with a new valid configuration, which is also generated randomly.

Changes in SATIBEA+: Because this operator adds valid config-
urations into the population arbitrarily and periodically, it could pro-
duce uncontrolled influence on the final result so that effectiveness
of smart operators could not be measured properly. In this paper, we
investigated the influence of this operator.

3.3 The SATIBEA+ approach
The simplified activity diagram of SATIBEA+ can be seen in Figure
6. It augments SATIBEA with the new smart operators (steps 5-7).
The other activities (steps 1-4 and 8) are described in detail in [12]
and [5]. Like other MOEAs, it evolves a population of configurations
from generation to generation (circles from 3 to 7 and back to 3)
aiming to optimize given objectives. The difference is that features
constraints are taken into account in the following activities:

• Steps 2 and 3: The number of constraint violations is considered
as an extra objective to minimize. Its value is integrated in the
calculation of fitness value by IBEA.

• Step 5: Smart mating selection selects a “good” parent (without
constraint violations) and a “bad” parent (possibly with constraint
violations) for crossover.

100 Optimal Feature Selection via Evolutionary Algorithms and Constraint Solving.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Figure 6. Activity diagram of SATIBEA+. Extensions compared to
SATIBEA are marked in gray.

• Step 6: Smart+ crossover reduces the number of constraint vio-
lations in generating an offspring. It repairs the “bad” parent by
learning from the “good” one.

• Step 7: Smart+ mutation eliminates constraint violations in chang-
ing an invalid configuration into a valid one.

• Step 8: Only the valid configurations will be considered as result,
because configurations with any constraint violations are useless
for the end user.

4 RESEARCH QUESTIONS
We conducted experiments to empirically compare the performance
of SATIBEA+ with that of SATIBEA. Specially, we attempted to find
answers for the following questions:
RQ1. How are the results found by SATIBEA+ compared to the re-
sults found by SATIBEA? Is the improvement repeatable on feature
models with different sizes?
RQ2. How well does the new mutation operator affect the perfor-
mance of search techniques?
RQ3. Is the new crossover operator actually more effective than the
classic 1-point crossover used by SATIBEA?
RQ4. How much does the smart replacement operator affect the re-
sults?
RQ5. How does the algorithm implemented by SATIBEA+ work ac-
cording to performance compared to SATIBEA?

5 EXPERIMENTAL DESIGN
5.1 Experimental Subjects
The study uses 4 feature models from the public feature model repos-
itories SPLOT2 and LVAT3. The characteristics of these feature mod-
els used in the experiment are summarized in Table 1 with the repos-
itory information (Repository), the name of the feature model (Mod-
el), the number of features (#Fea.), and the number of constraints
(#Cons.).

Web Portal is a small demo feature model, which we are using to
illustrate our approach (Figure 1). eCos and Linux X86 are exam-
ples of middle and big-sized feature models. They were reverse engi-
neered by analyzing source codes, comments, and documentations of
Linux kernel and eCos operation systems. Following the experiments
used by [5, 9, 12, 15], each feature of used feature models is aug-
mented by 3 attributes: cost ε R≥0, defects ε Z≥0 and used before
ε Boolean. The values for these attributes have been set arbitrari-
ly in the feature model with an uniform distribution (cost in (5.0,

2 Software Product Line Online Tools, http://splot-research.org/
3 Linux Variability Analysis Tools, http://code.google.com/p/
linux-variability-analysis-tools/

15.0), defects in (0, 10) and used before in (true, false)). There is
only one dependency which should be considered by the generation
of attribute values. It can be formulated as: if (not used before) then
defects=0.

Repository Model #Fea. #Cons.
SPLOT Web Portal 16 26

LVAT
eCos 1244 3146

FreeBSD 1369 62183
Linux X86 6888 343944

Table 1. Feature models used in the experiment

5.2 The optimization problems
For the feature models introduced above, we are optimizing the fol-
lowing objectives formulated as minimization problems uniformly.
They are calculated by the formula defined in Table 2.

• Correctness: Any constraint violation is not allowed in the final
configurations. But as an objective in the optimization framework,
we intend to minimize it.

• Richness of features: In a configuration, we want to have as many
features selected as possible. It implies that the number of unse-
lected features should be minimized.

• Cost: The total cost for a configuration should be minimized.
• Defects: The number of defects, which are caused by selected fea-

tures, should be also minimized.
• Feature used before: In order to reduce the product risk, we are

seeking to find the configurations that have minimized number of
unused features.

Objective Calculation formula for objectives
Correctness

∑
Cons.(violated = true)

Richness of features
∑

Fea.(selected = false)
Cost

∑
Fea.(selected = true).cost

Defects
∑

Fea.(selected = true).defects
Feature used before

∑
Fea.(selected = true&used before = true)

Table 2. Objectives used in the experiment

5.3 Implementation and Experimental Settings
1. Implementation:

We used jMetal[3], an open-source Java framework for multiob-
jective optimization and SAT4j[1], a open-source library of SAT
solvers to implement SATIBEA+. In addition, we compared SAT-
IBEA+ with the original SATIBEA algorithm4.

2. Parameter settings:
All the experiments were performed on a computer with Quad
Core@2.90 GHz CPU and 16 GB RAM, running on Windows
7. In order to compare with SATIBEA under fair conditions, we
used exactly the same parameters for the evolutionary algorithm
as the ones of [5]. Thus, SATIBEA+ differentiates SATIBEA only
from EA-operators. Table 3 lists the used parameter settings and
gives for each parameter a short description. To evaluate the in-
fluence of the smart replacement, we execute our experiment in
two variations, namely with smart replacement and without smart
replacement (last row of Table 3). In order to avoid the problem of
genetic drift (diversity loss) described in [14], the smart crossover
and smart mutation is only executed with low frequencies. Please

4 Implementation of SATIBEA, http://research.henard.net/SPL/
ICSE_2015/

Yibo Wang and Lothar Hotz. 101

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

note, the focus of this paper, was on comparing SATIBEA+ with
SATIBEA, rather than tuning the parameters to achieve the best
performance, which could be explored in future work.

Parameter Explanation Setting

Population size Number of new configurations in
the current population 300

Archive size Number of configurations from the
last population 300

Crossover
probability

Probability that a crossover is
executed 0.05

Probability for
using standard

mutation

Probability that a standard
mutation is executed 0.98

Probability for
bit flipping in the

standard
mutation

Probability that a changeable
feature (not mandatory and dead

feature) is flipped
0.001

Probability for
using smart

mutation

Probability that a smart mutation is
executed 0.01

Probability for
using smart
replacement

Probability that a smart
replacement is executed 0.01 or 0

Table 3. Parameter settings

5.4 Performance metrics
To evaluate the studied approach, we measure the calculated Pare-
to front in three directions: convergence, diversity, and computation
time. Convergence metrics evaluate the effectiveness of the solutions
in terms of their closeness to the optimal Pareto front, while diversi-
ty metrics measure the distribution of the solution set. Computation
time is the length of time required to perform an algorithm, which
represents its computational complexity. In our approach, they are
represented by the following three indicators:

1. Hypervolume (HV)
The hypervolume indicator, associated with a solution set S is giv-
en by the volume of the objective space portion that is weakly
dominated by the set S [14]. It combines convergence and diversi-
ty measurement in a single indicator. In jMetal, all objectives are
to be minimized and the Pareto front is inverted before the HV is
calculated. Thus, the more HV value a solution set has, the more
qualitative it is.

2. Pareto front size (PFS)
Like HV, it is a combined indicator for the measurement of conver-
gence and diversity. Although correctness is defined as a separate
objective to be minimized in Table 2, there might be still some in-
valid configurations (with constraint violations) in the results. We
use PFS to measure the number of unique and valid solutions in
the obtained Pareto front. Because duplicated configurations are
treated as a single one, it also gives a hint about the diversity of
the solution set. A higher PFS value is preferred, because more
valid configurations can be presented to the user.

3. Execution time (ET)
This run-time indicator calculates the duration of the evolutionary
algorithm for a given number of iterations. In each iteration, oper-
ations such as crossover and mutation will be executed. A higher
ET value denotes a higher time complexity of an algorithm.

6 EXPERIMENTAL RESULTS
This section presents the results when applied to the 4 feature mod-
els. The performance metrics achieved by SATIBEA+ and by SAT-

IBEA have been compared to each other. To investigate the contri-
bution of the smart operators independently, three combinations are
designed as followings:

1. The original SATIBEA with Smart Mutation: the original ap-
proach

2. SATIBEA+ with Smart Mutation+ but without Smart Crossover:
the filtered SATIEBA+ approach

3. SATIBEA+ with Smart Mutation+ and with Smart Crossover: the
SATIBEA+ approach

For each combination, we run the algorithm 30 times and for each run
with a given number of objective evaluations. The number of objec-
tive evaluations equals the execution times of crossover and mutation
in jMetal. Then we reported the medium values of the metrics.

6.1 With smart replacement vs. without smart
replacement

As described above, the smart replacement will add a valid configu-
ration to the population with a probability of one percent. If it had a
strong influence on the result, then it would “flood” the contribution
of the other smart operators. Thus, we executed our experiment with
and without smart replacement separately. Each run is executed with
25000 objective evaluations (default value set by jMetal). The results
are recorded in Table 4 and 5. When interpreting the results, we make
the following observations:

Model
Perfor-
mance

indicators
SATIBEA

Filtered
SATI-
BEA+

SATI-
BEA+

Web Portal
HV 0.066 0.067 0.067
PFS 24 27 27

ET (ms) 12909 12938 12980.3

eCos
HV 0.244 0.236 0.227
PFS 82 203 215

ET (ms) 16161 15925 15869

FreeBSD
HV 0.257 0.254 0.258
PFS 41 47 148

ET (ms) 64558 67647 67639

Linux X86
HV 0.237 0.241 0.238
PFS 40 112 151

ET (ms) 247084 256192 257110

Table 4. Evaluation results with smart replacement (25000 objective
evaluations)

Model
Perfor-
mance

indicators
SATIBEA

Filtered
SATI-
BEA+

SATI-
BEA+

Web Portal
HV 0.069 0.066 0.069
PFS 24 26 26

ET (ms) 13073 13809 13385

eCos
HV 0 0.203 0.209
PFS 0 196 190

ET (ms) 16971 17832 16184

FreeBSD
HV 0 0.255 0.254
PFS 0 55 148

ET (ms) 70034 66574 71213

Linux X86
HV 0.010 0.245 0.243
PFS 0 138 177

ET (ms) 224468 264858 270617

Table 5. Evaluation results without smart replacement (25000 objective
evaluations)

Answering RQ4 (compare Table 4 and Table 5): The result of
the experiment is “glamorized” with smart replacement. Although

102 Optimal Feature Selection via Evolutionary Algorithms and Constraint Solving.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

SATIBEA was not able to find any valid solutions for complex FMs
(eCos, FreeBSD and Linux) without using smart replacement (Table
5), a couple of valid configurations could be found by using it (Table
4). A main reason is that more conflicting features can be adapted by
the SAT-solver in consideration of connected features. In addition, no
big difference in terms of HV can be seen by using smart replacement
(Table 4). It is obvious that the result has been drastically affected by
using smart replacement, because this operation adds valid solutions
to the population periodically. Thus, we treated the result in Table 4
as “invalid” and only used the results of Table 5 for further analysis.
Answering RQ1 (compare column 3 with 5 in Table 5): SATI-

BEA+ outperforms SATIBEA in terms of HV and PFS significantly,
particularly for the middle-complex (eCos and FreeBSD) and high-
complex FMs (Linux X86). For the simple FM (Web Portal), the dif-
ference is less notable. In addition, it is notable that for the complex
FMs (eCos, FreeBSD and Linux), no valid configurations could be
found by using SATIBEA. In contrast, SATIBEA+ could find many
valid configurations for them.
Answering RQ2 (compare column 3 with 4 in Table 5): Filtered
SATIBEA+ outperforms SATIBEA in terms of HV and PFS signif-
icantly, particularly for the middle-complex and high-complex FMs.
For the simple FM, the difference is less notable. Fitlered SATIBEA+
found also valid configurations for the complex FMs by using the en-
hanced smart mutation.
Answering RQ3 (compare column 4 with 5 in Table 5): SATI-

BEA+ outperforms filtered SATIBEA+ in terms of PFS significantly,
particularly for the middle-complex and high-complex FM (except
for the FM of FreeBSD). For the simple FM, the difference is less
notable. In addition, there is no remarkable performance improve-
ment in terms of HV by using smart crossover.
Answering RQ5 (compare ETs in Table 5): For each feature

model, there is no significant differences in terms of ET. The exe-
cution time of all algorithms are in a comparable range.
Other findings: For the simple feature model, there is no notable

differences between SATIBEA, filtered SATIBEA+ and SATIBEA+
for all performance indicators. Thus, this feature model was not con-
sidered in further experiments.

6.2 Further Runs
In order to analyze the development of performance metrics by in-
creased objective evaluations (also by increased execution times), we
performed further runs with 12500 and 50000 objective evaluations
on the 4 FMs separately. Because smart replacement changed the re-
sults too radically, it was not applied by the further executions. Con-
sidering the results in Table 5 and Table 6, we make the following
observations:

• PFSs get improved significantly by the increased times of objec-
tive evaluations. One exception is the feature model FreeBSD. It
generates less valid solutions with more objective evaluations.

• HVs also get improved by the increased times of objective evalu-
ations, but slightly.

• ETs are proportional to the times of objective evaluations.
• For the feature model eCos, SATIBEA+ performs a little bit worse

in terms of PFS than filtered SATIBEA+.

7 DISCUSSION
Comparison of SATIBEA+, filtered SATIBEA+, and SATIBEA

In this section, we reason about our findings and discuss their im-

Model

Objec-
tive

evalua-
tions

Perfor-
mance

indicators

SATI-
BEA

Filtered
SATI-
BEA+

SATI-
BEA+

eCos

HV 0 0.200 0.199
12500 PFS 0 158 141

ET (ms) 8113 8393 8358
HV 0 0.231 0.194

50000 PFS 0 228 209
ET (ms) 32281 31768 31894

FreeBSD

HV 0 0.248 0.248

12500 PFS 0 83 135
ET (ms) 34887 36768 41682

HV 0 0.260 0.267
50000 PFS 0 28 135

ET (ms) 132204 134914 134129

Linux X86

HV 0 0.242 0.241

12500 PFS 0 122 126
ET (ms) 116686 144918 145726

HV 0 0.247 0.244
50000 PFS 0 138 183

ET (ms) 457070 492015 451761

Table 6. Evaluation results without smart replacement (12500 and 50000
objective evaluations)

plications. First of all, we ask why SATIBEA+ performs much bet-
ter than SATIBEA? The performance improvement is essentially
achieved by the smart+ operators used by SATIBEA+. Firstly, the
smart+ mutation beats the native smart mutation in repairing an in-
valid configuration. The reason for that is that we “relax” the scope of
the mutation. In SATIBEA+, a feature and its related (by constraints)
features will be considered as a whole mutable-able unit. Thus, the
SAT-solver searches for a valid solution in an expended range. Sec-
ondly, the smart+ crossover repairs an invalid configuration much
better than the standard 1-point crossover, because it follows the mot-
to “learn from the best”. In SATIBEA+, a configuration will get re-
paired (at least partly) by learning “good” feature assignments from a
valid configuration. Thus, the number of feature violations of a con-
figuration will be reduced and finally more valid configurations will
be produced. To sum up, we embed the specific problem informa-
tion (feature configuration) into an evolutionary algorithm, together
with a problem-dependent local search method (with smart+ opera-
tors); therefore, the performance of the algorithm will be improved
according to the No Free Lunch theorem [18].

The results of experiments reveals also some abnormality. One is
for the feature model eCos, less valid configurations could be found
by SATIBEA+ than by filtered SATIBEA+. The other is for the fea-
ture model FreeBSD, the performance indicator PFS could not get
converged with increased number of runs. It indicates that the per-
formance is sensible to the characteristics of a feature model (such
as the number of cross-tree constraints). We are planing to investigate
this phenomena in the future work.

Threats to Validity A prerequisite for applying optimization tech-
nologies, such as SATIBEA+ is that the objectives have to be calcu-
lated from the feature attributes. For attributes such as cost this is
given by the trivial sum, however, other attributes might be more
complex to evaluate. The test set for the Web-Portal is a theoretical
one, i.e., the attributes and their values are set randomly, however,
this will not influence our experimental results. Moreover, the exe-
cution time of our experiments are limited to 10 minutes, because
SATIBEA+ could already outperform the original algorithm SATI-
BEA during this short time.

More interesting is the choice of the connected features (see Sec-

Yibo Wang and Lothar Hotz. 103

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

tion 3). In our case, we only select the directly connected features
(i.e., depth 1). Hence, in very complex domains it might be the case
that no solution will be found. In future work, we will investigate in
features connected indirectly through multiple constraints.

8 RELATED WORK
A key challenge in the Software Product Line community is to deter-
mine how to select a set of features from a feature model, which not
only satisfies feature constraints but also optimize the different objec-
tives of customers. [17] uses Filtered Cartesian Flattening to calcu-
late the optimal feature sets subject to the given resource constraints.
They transform a feature selection problem as a Multi-Dimensional,
Multiple-Choice (MDMC) knapsack problem and introduce a heuris-
tic to filter choices.

Using the task planning technique HTN (Hierarchical Task Net-
work), [13] proposes a framework to select suitable features that sat-
isfy both the stakeholders’ functional requirements (FRs) and non-
functional requirements (NFRs). For optimization, they aggregate
qualitative and quantitative properties into a single object value. [4]
presents a genetic algorithm GAFES to optimize feature selections
in the face of resource constraints. In the fitness function, they use
weighting to reflect the different importance of resources. However,
it is not trivial to find a proper utility function to change a multi-
criteria problem to a single-criterion problem. Moreover, only one
“best” solution will be calculated, while a set of solutions (Pareto
set) is expected for multi-criteria problems.

[12] shows that Indicator-Based Evolutionary Algorithm (IBEA)
works better than other dominance-based EAs in solving feature se-
lection problems for large models and many optimization objectives.
[9] propose a multi-objective evolutionary algorithm IVEA to opti-
mize the selection of features with FRs and NFRs. They treat con-
straint violations in a feature model as a separated dimension besides
the optimization of NFRs. They define a violation-dominance func-
tion to guide the environment selection and mating selection. How-
ever, only the standard crossover and mutation operators are applied
in these approaches and therefore the performance improvements are
limited.

[15] incorporate feedback-directed mechanism into the EA for
multi-objective feature selection problem. Similar as the smart
crossover of SATIBEA+, an invalid configuration gets repaired by
copying all of the non-error features from an another configuration.
The difference is that our approach is mini-invasive which copies on-
ly a minimal set of feature assignments (only for “bad” features). For
configuration optimization, [10] propose a two tasks approach. First-
ly, a rough approximation of Pareto front is searched and presented to
the user. Then the user indicates the areas which he interested in. In
[6], optimal products are chosen from a feature model by using SIP,
a two steps multi-objective evolutionary algorithm. They concentrate
primarly on the number of constraints that hold and then on the other
objectives.

9 CONCLUSION AND FUTURE WORK
In this work, we have demonstrated that our approach SATIBEA+,
for the multi-objective feature selection problem, outperforms the
state-of-the-art algorithm SATIBEA [5] in the quality and amoun-
t of found configurations. In addition, we have also show that our
approach scales to the complex feature models with thousands of
features and constraints. Still, the question may arise regarding the
effectiveness of SATIBEA+ in consideration of other characteristics

of feature models (such as number of cross-tree constraints, which
may be the subject of further investigation). Other directions for fu-
ture work regarding optimal feature selection problems could be:
1. Comparison of performance of constraint-based approaches and
constraint-first approaches [6].
2. Incorporate customer requirements during the search in all phases
of the optimization process.
3. Further experiments with complex feature models with real at-
tribute values.

REFERENCES
[1] Daniel Le Berre and Anne Parrain, ‘The sat4j library, release 2.2, sys-

tem description’, Journal on Satisfiability, Boolean Modeling and Com-
putation, 7(2010), 59–64, (2010).

[2] K. Czarnecki, S. Helsen, and U. Eisenecker, ‘Formalizing Cardinality-
based Feature Models and their Specialization’, Software Process: Im-
provement and Practice, 10(1), 7–29, (2005).

[3] Juan J Durillo and Antonio J Nebro, ‘jMetal: A Java framework
for multi-objective optimization’, Advances in Engineering Software,
42(10), 760–771, (October 2011).

[4] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang,
‘A genetic algorithm for optimized feature selection with resource con-
straints in software product lines’, Journal of Systems and Software,
84(12), 2208–2221, (December 2011).

[5] Christopher Henard and Mike Papadakis, ‘Combining multi-objective
search and constraint solving for configuring large software product
lines’, in ICSE’ 15 Proceedings of the 37th International Conference
on Software Engineering, pp. 517–528, (2015).

[6] Robert M Hierons, Miqing Li, Xiaohui Liu, Sergio Segura, and Wei
Zheng, ‘SIP: Optimal Product Selection from Feature Models Us-
ing Many-Objective Evolutionary Optimization’, ACM Transactions on
Software Engineering and Methodology, 25(2), 1–39, (April 2016).

[7] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon, C. Bagley, and
K. Wolter, ‘Configuration Knowledge Representation & Reasoning’,
in Knowledge-based Configuration – From Research to Business Cas-
es, eds., A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, chapter 6,
59–96, Morgan Kaufmann Publishers, (2013).

[8] K C Kang, J Lee, and P Donohoe, ‘Feature-Oriented Product Line En-
gineering’, IEEE Software, 19(4), 58–65, (2002).

[9] Xiaoli Lian and Li Zhang, ‘Optimized feature selection towards func-
tional and non-functional requirements in Software Product Lines’, in
2015 IEEE 22nd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), pp. 191–200. IEEE, (March 2015).

[10] Paul Pitiot, Michel Aldanondo, Elise Vareilles, Thierry Coudert, and
Paul Gaborit, ‘Improving configuration and planning optimization: To-
wards a two tasks approach ’, in 15th International Configuration
Workshop, eds., M. Aldanondo and A. Falkner, pp. 35–40, Vienna, Aus-
tria, (2013).

[11] Handbook of Constraint Programming, eds., F. Rossi, P. van Beek, and
T. Walsh, Elsevier, 2006.

[12] AS Sayyad, T Menzies, and H Ammar, ‘On the value of user prefer-
ences in search-based software engineering: a case study in software
product lines’, in ICSE ’13 Proceedings of the 2013 International Con-
ference on Software Engineering, pp. 492–501, (2013).

[13] Samaneh Soltani, Mohsen Asadi, and D Gašević, ‘Automated planning
for feature model configuration based on functional and non-functional
requirements’, in SPLC’12, pp. 56–65, (2012).

[14] El-Ghazali Talbi, Metaheuristics: From Design to Implementation,
John Wiley & Sons, Inc., Hoboken, NJ, USA, June 2009.

[15] Tian Huat Tan, Yinxing Xue, Manman Chen, Jun Sun, Yang Liu,
and Jin Song Dong, ‘Optimizing selection of competing features via
feedback-directed evolutionary algorithms’, in Proceedings of the 2015
International Symposium on Software Testing and Analysis - ISSTA
2015, pp. 246–256, New York, New York, USA, (2015). ACM Press.

[16] Edward Tsang, Foundations of Constraint Satisfaction, Academic
Press, London, San Diego, New York, 1993.

[17] Jules White, Brian Dougherty, and Douglas C. Schmidt, ‘Selecting
highly optimal architectural feature sets with Filtered Cartesian Flat-
tening’, Journal of Systems and Software, 82(8), 1268–1284, (August
2009).

[18] Xinjie Yu and Mitsuo Gen, Introduction to Evolutionary Algorithms,
Decision Engineering, Springer London, London, 2010.

104 Optimal Feature Selection via Evolutionary Algorithms and Constraint Solving.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Interactive Configuration of Insulating Envelopes
Andrés F. Barco and Philippe Chantry and Élise Vareilles and Michel Aldanondo1

Abstract. This paper discusses how the functional programming
paradigm may support interactive product configuration. We do so by
describing our experience on the construction of an interactive prod-
uct configuration software dedicated to the configuration of façades
external insulating envelopes. The solution provides visual feed-
back to the user configuration actions thus assisting his/her decision-
making in real-time.

1 Introduction
In the aim of reducing energy consumption, buildings may be ex-
ternally retrofitted by covering them with insulating envelopes [1].
These insulating envelopes are based on the technical concept of rect-
angular panels: Wood-made insulating structures configurable in the
sense that their size and their position over the façade must be defined
prior to their manufacturing and shipment. An insulating envelope is
a set of configured panels that respects the geometry and structure of
the façade. The configuration is subject to the following constraints:

1. Panels size (width and height) is restricted to a given interval
(manufacture, transportation and installation conditions),

2. partially overlapping windows or doors is forbidden (manufacture
conditions),

3. panels overlapping is not allowed (insulation conditions),
4. insulating envelopes cannot contain holes (insulation conditions),
5. panels are attached by their corners in specific areas of the façade

(installation conditions).

The envelopes configuration presents a challenge to academics and
practitioners given the differences in geometry and structure of each
building. In regard of these conditions, one of the key problems of
this retrofit is to propose computational processes to support the man-
ual and automatic configuration of panels, consequently envelopes,
with respect to each façade to be retrofitted.

The authors have been working in the envelopes configuration
problem since 2013. Previous reports in the International Configu-
ration Workshop discussed the goals of the research [14] (2013), a
first greedy solution [2] (2014) and an on-line constraint-based sup-
port system for assisting this configuration [3] (2015). The proposed
solutions, however, do not allow manual configuration of envelopes
but rather automatic ones. In these setups, the user may adapt any
solution by removing and redefining panels (mainly to improve their
aesthetics) only at the end of the configuration process. Further, the
aesthetic flair, such as symmetric solutions, has not been taken into
account, leaving this critical architectural requirement overlooked.

This paper presents a manual interactive configuration of insulat-
ing envelopes. The solution applies a constructive approach [10] al-
lowing the user to visualize in real-time the impact of her/his own

1 Université de Toulouse, Mines d’Albi, Campus Jarlard, 81013 Albi Cedex
09, France, email: abarcosa@mines-albi.fr

panels configuration in regard to the industrial conditions. We do so
by using the methodology of divide and conquer implemented un-
der the functional programming paradigm. The solution may be im-
plemented in any functional language without relying on complex
black-box tools as constraint solvers, linear programming libraries
or meta-heuristics. Further, we propose a web-oriented Java-script
implementation that gives the possibility to have a real-time interac-
tion with the user by evading potential network traffic and delays (see
concept in Figure 1). What is more, partial envelopes configurations
may be finished by automated algorithms in a web-service setup (as
presented in [3]). Lastly, we show that interactive configuration im-
proves the transparency of the configuration process and generates
subjective-oriented envelopes.

Figure 1. Real-time manual interactive configuration.

The document is structured as follows. In Section 2, details about
the configuration problem are given. In Section 3, the interactive con-
figuration scheme is introduced. In Section 4, the benefits for using
functional programming over other paradigms is discussed. In Sec-
tion 5, the functionality division is presented. Finally, in Section 6, a
demonstration of the solution and conclusions are drawn.

2 Envelopes Configuration

The configuration problem here addressed raises when retrofitting
buildings to reduce their energy consumption levels. The retrofit is
done by attaching an insulating envelope composed of rectangular
insulating panels over each façade. Façades have a size, are of rect-
angular shape and are composed of rectangular frames (windows and
doors) and rectangular supporting areas (to attach panels’ corners).
Panels are rigid 2D rectilinear rectangles. Therefore their sides are
parallel to the façade reference axis. All the panels covering a façade

Andrés Felipe Barco Santa, Élise Vareilles, Michel Aldanondo and Philippe Chantry. 105

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

belong to an unique vertical plane with origin (0, 0) at the bottom-
left corner of the façade. Panels are configured by setting their size
and setting the position of the bottom-left corner. They have a given
orientation: If the panel’s height is bigger than its width, the panel
is vertical, otherwise it is horizontal. This information impacts the
inner structure of the panel and its laying direction onto the façade.
Due to the industrial conditions of the retrofit, panels have specific
size lower and upper bounds that must be respected when instantiat-
ing them. Plausibly, configuring panels using their size upper bound
leads to envelopes with a small number of panels. Their position must
be accurately set in such a way that all frames over the façade are cov-
ered with the condition that no partial overlapping is allowed. Also,
panels in an insulating envelope must avoid holes and overlapping in
order to guarantee the complete insulation. According to the above
description, the arguments and main decision variables refer to:

• Arguments: Façade size (width facw and height fach), for each
frame (window/door) its position of bottom-left corner (frx, fry)
and its size (width frw and height frh), for each supporting area
its position of bottom-left corner (sax, say) and its size (width
saw and height sah), width bounds [minw,maxw] and height
bounds [minh,maxh].

• Decision variables: Panels’ width pw ∈ [minw,maxw], length
ph ∈ [minh,maxh], coordinates px ∈ [0, facw] and py ∈
[0, fach] of bottom-left corner of the panel and its orientation por .

The industrial retrofit of buildings has to cope with a multiple and
diverse requirements, guidelines and constraints coming from urban
design guidelines, owners’ expectations, tenders’ wishes and archi-
tects’ skills and ability in design art. Within these, two key functional
requirement have been identified: a) been able to do manual and
(semi) automatic configuration of panels and b) have a web-oriented
support system. In the next section we discuss how the manual in-
teractive configuration is conceived for assisting architects decision-
making.

3 Scheme for Interactive Configuration

An alternative for manual configuration is to provide instantaneous
feedback to the architect actions. This means that the configuration
may be interactively guided by the support system. For when draw-
ing a panel the system may restrict a) its possible size to be smaller
than the upper bound and bigger than the lower bound, b) visually
inform of conflicts with frames and supporting areas, and c) com-
pletely avoid panels overlapping. An interactive manual configura-
tion of panels would work as follows:

1. The system presents a two-dimensional drawing of the façade.
2. The architect draws a panel while the system informs:

• If the size of the panel is too small or too big given panel
bounds,

• if the panel is entering in conflict with windows and/or doors,

• if the panel cannot be installed because its corners cannot be
attached,

• if the panel is entering in overlapping conflict with an already
configured panel,

• if the panel will block the configuration of further panels.

3. The architects iterates step 2 until satisfaction.

As a matter of choice, and if the graphical user interface (GUI) ca-
pabilities allows it, a given drawn panel may be re-configured by the
architect as part of aesthetics considerations or because, as far the
architect can tell, current constraint conflicts may get solved. This
means that in manual configuration, ill definition of panels should
be possible. Further, stopping ill definition of panels may be counter-
productive for the architects aesthetic flair. The underlying validation
algorithms inform the architect which constraints are violated but at
the end the architect decides the exact size and position of each panel.
Among the set of alternatives to support architects manual interactive
configuration we have chosen the following:

• Informing about constraint conflicts is done visually: Our design
choice is to set different colors for well-defined panels (green)
and ill-defined ones (red). Informing about these conflicts is done
in real-time.

• As an invariant, for configuring a new panel, each of the previ-
ously drawn panels must be well configured.

• Re-configuration of a given panel is possible. Colors of the panel
are changed interactively depending on constraint conflicts.

• Gaps between panels are not conflictive for the result. In other
words, when doing manual interactive configuration covering the
entire area surface is not mandatory (holes are irrelevant).

According to the established decisions, the support system has two
main responsibilities. Firstly, knowing that constraint conflicts exist
for the selected/drawn panel. Secondly, it must inform the user about
those conflicts. The former responsibility is fulfilled by the validation
algorithms described in Section 5. The latter responsibility is fulfilled
with the GUI capabilities2

4 Advantages of the functional programming over
other paradigms

As explained before, our efforts focus on providing to the architects
an interactive configuration of insulating envelopes in real-time. An
interactive configuration refers to the system reactions to the user ac-
tions in order to help him/her to reach her/his (configuration) goals
[4]. Interactive behavior has been widely studied in many knowledge
areas and industry sectors [7, 8, 9, 13]. Among other things, the hu-
man interface allowing the interactive communication is one of the
major study topics in computer science and informatics [4]. In regard
to interactive product configuration, operational research (OR) tech-
niques, such as constraint satisfaction, have proven their robustness
and capabilities [5, 6, 12].

On the other hand we have real-time support. Real-time support
refers to the capabilities of the support system to react to the user
actions in “no time”. Real-time interaction is needed, mostly, when
the user actions require a response within the next 100 milliseconds
(cf. Chapter 17 in [4]). For instance, for activities involving hand-eye
coordination, the system answer must be fast enough as to not block
the activity or deteriorate the results. In the envelopes configuration
case, immediate support must be given to architects when configur-
ing each panel. This means that the underlying support system must
execute validation or resolution algorithms in such a way that the
configuration process is continuously fed by the system responses.

At the beginning of our research, we have considered that con-
straint satisfaction techniques were appropriated for addressing the
envelopes configuration problem. Our results have shown us right

2 No discussion about the GUI capabilities are provided as they are of
marginal interest to our work.

106 Interactive Configuration of Insulating Envelopes.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

when assisting the automatic and (semi) automatic configuration of
envelopes. Further, the framework of constraint satisfaction is known
to address support interactive configuration. Nevertheless, for pro-
viding a real-time feedback we have relied on the simple yet pow-
erful concept of task division instead of OR and AI techniques. For
when using the OR and AI tools, such as filtering engines and con-
straint solvers, the time expend in having an output may exceed the
real-time requirements. Further, due to the functional requirement of
having a web-oriented solution, the communication with the underly-
ing constraint services (or linear solver, genetic library, etc) involves
a considerable time even when implemented with low latency pro-
tocols as AJAX [11]. In consequence, we have chosen to rely in the
most known paradigm of computer science; functional programming.

The main concept from functional programming is divide and con-
quer. This concept is implemented by means of functions that are as-
sembled together to provide a major functionality. The manual con-
figuration of envelopes is addressed under the functional program-
ming paradigm, meaning that the task to solve constraint conflicts
has been delegated to different functions. In this case, each constraint
is linked to a unique function.

5 Entrusting Responsibilities

In this section we present how functional programming is used to
implement validation algorithms for the constraints presented in the
problem. We give a brief behavior description for every function. The
return value for each function is true if the panel is well configured
and false otherwise. Examples of each function result are presented
in the next section as screen-shots.

1. Size constraint. The size constraint states limits for the width and
height of panels. The size constraint is implemented with respect
to the panels orientation and lower and upper bounds. Recall that
if the ratio pw

ph
is less than one, the panel orientation is vertical,

otherwise, horizontal. Taking into account this information, the
current panel width lies between pwl and pwu whereas its height
must lie between phl and phu, for horizontally oriented panels.
Conversely, for vertically oriented panels a swap between width
and height bounds is executed. This function is executed when de-
creasing or increasing the size of panel by means of the graphical
interface.

2. Non-overlapping constraint. The non-overlapping constraint
states that panels cannot overlap in at least one dimension. It uses
as input the position and size of the panel currently being config-
ured, and a list of already-defined panels (adp). To verify panels
overlapping, the current configured panel must be checked against
every already-defined panel. An overlapping exists between pan-
els p and q, if the projection of their widths and heights overlaps.
If an overlapping exists, the color of the current configured panel
is changed to red while the already defined panel remains green.
This function is executed in two cases. First, when decreasing or
increasing the size of panel by means of the graphical interface.
Second, when the defined panel is moved (re-configured) around
the façade surface.

3. Frames and interference constraint. The function checks whether
an initial origin point and size of a given panel, bottom-left corner
(px0, py0) and width (pw) and height (ph), violate frames con-
straint. It uses a stack to perform an ordered check of all frames
partially or completely overlapped by the panel. In the case there
is a conflict, the algorithm terminates informing that a conflict ex-
ists. This function is executed every time a new panel is drawn.

4. Installation constraint. The last function ties up a single panel defi-
nition and implements the validation of the installation constraint.
Recall that in order to attach panels, their corners must be matched
with supporting areas (sa). Also, supporting areas at the bottom
corners must be strong enough to support half the weight of the
panel. In essence, the function checks that every corner matches a
supporting area. To do so, it tests corners against every supporting
area, increasing a counter each time a corner is well located. The
panels’ weight and the supporting area load bearing capabilities
are only checked for the bottom corners. If at least one corner is
out of supporting areas then the panel is not well configured. It is
worth noticing that supporting areas do not overlap. This means
that a given corner can match at most one supporting area.

6 Conclusions
This short paper has discussed the manual configuration of insulating
envelopes for façades. We have shown first the industrial conditions
and details surrounding the configuration problem. In a second step
we have discussed how the manual configuration is made interac-
tive with a visual communication with the user (architect). Then, we
have argued that the functional programming paradigm may be bet-
ter suited to address the interactive configuration in comparison with
other paradigms and technologies. Further, we have discussed the
fact that functional programming allows the configuration support to
be executed less than 100 milliseconds thus providing real-time inter-
action with users. Finally, we have briefly presented four of the key
functions to support the configuration problem. The authors consider
important to highlight that the simple and well-known methodology
of divide and conquer may be used for teaching purposes in design
related fields (e.g. architecture, industrial design, applied arts). Fur-
ther, configuration, design and even manufacturing concepts may be
used in introductory courses of computer programming given real
ties with current industry problems.

To conclude the paper, interface and configuration process of our
support system over a real-life France façade are illustrated in Figure
2.

REFERENCES
[1] M. Aldanondo, A.F. Barco, E. Vareilles, M. Falcon, P. Gaborit, and

L. Zhang, ‘Towards a bim approach for a high performance renova-
tion of apartment buildings’, in Product Lifecycle Management for a
Global Market, eds., Shuichi Fukuda, Alain Bernard, Balan Gurumoor-
thy, and Abdelaziz Bouras, volume 442 of IFIP Advances in Informa-
tion and Communication Technology, 21–30, Springer Berlin Heidel-
berg, (2014).

[2] A.F. Barco, E. Vareilles, M. Aldanondo, and P. Gaborit, ‘Calpinator: A
configuration tool for building facades’, in Proceedings of the 16th In-
ternational Configuration Workshop, Novi Sad, Serbia, September 25-
26, 2014., eds., A. Felfernig, C. Forza, and A. Haag, volume 1220 of
CEUR Workshop Proceedings, pp. 47–54. CEUR-WS.org, (2014).

[3] A.F. Barco, E. Vareilles, M. Aldanondo, P. Gaborit, and J.G. Fages,
‘Coupling two constraint-based systems into an on-line facade-layout
configurator’, in Proceedings of the 17th International Configuration
Workshop, Vienna, Austria, September 10-11, 2015., eds., Juha Tiiho-
nen, Andreas Falkner, and Tomas Axling, pp. 47–54, (2015).

[4] A. Dix, J.E. Finlay, G.D. Abowd, and R. Beale, Human-Computer In-
teraction (3rd Edition), Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 2003.

[5] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based
Configuration: From Research to Business Cases, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1 edn., 2014.

[6] E. Gelle and R. Weigel, Knowledge Intensive CAD: Volume 1, chapter
Interactive Configuration based on Incremental Constraint Satisfaction,
127–136, Springer US, Boston, MA, 1996.

Andrés Felipe Barco Santa, Élise Vareilles, Michel Aldanondo and Philippe Chantry. 107

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

1) 2D view of original façade.

2) Well-configured panel.

3) Panel with frame conflicts.

4) Panel with installation conflicts.

5) Possibility of reconfigure panel size.

6) Well-configured panels (insulating envelope).

Figure 2. Demonstration: System actions through normal execution.

[7] D. Glover, D. Miller, D. Averis, and V. Door, ‘The interactive white-
board: a literature survey’, Technology, Pedagogy and Education, 14(2),
155–170, (2005).

[8] V.B. Godin, ‘Interactive scheduling: Historical survey and state of the
art’, A I I E Transactions, 10(3), 331–337, (1978).

[9] J. Jankowski and M. Hachet, ‘A Survey of Interaction Techniques for
Interactive 3D Environments’, in Eurographics 2013 - STAR, Girona,
Spain, (May 2013).

[10] R. S. Liggett, ‘Automated facilities layout: past, present and future’,
Automation in Construction, 9(2), pp. 197 – 215, (2000).

[11] L. D. Paulson, ‘Building rich web applications with ajax’, Computer,
38(10), 14–17, (Oct 2005).

[12] D. Schneeweiss and P. Hofstedt, Applications of Declarative Program-
ming and Knowledge Management: 19th International Conference,
INAP 2011, and 25th Workshop on Logic Programming, WLP 2011, Vi-
enna, Austria, September 28-30, 2011, Revised Selected Papers, chapter
FdConfig: A Constraint-Based Interactive Product Configurator, 239–

255, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
[13] W.S. Shin and A. Ravindran, ‘Interactive multiple objective optimiza-

tion: Survey icontinuous case’, Computers & Operations Research,
18(1), 97 – 114, (1991).

[14] E. Vareilles, C. Thuesen, M. Falcon, and M. Aldanondo, ‘Interactive
configuration of high performance renovation of apartment buildings
by the use of CSP’, in Proceedings of the 15th International Config-
uration Workshop, Vienna, Austria, August 29-30, 2013., eds., Michel
Aldanondo and Andreas A. Falkner, volume 1128 of CEUR Workshop
Proceedings, pp. 29–34. CEUR-WS.org, (2013).

108 Interactive Configuration of Insulating Envelopes.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

STUDYBATTLES: A Learning Environment for
Knowledge-based Configuration

Alexander Felfernig1 and Amal Shehadeh1 and Michael Jeran1 and Christian Gütl2 and
Trang Tran1 and Müslüm Atas1 and Seda Polat Erdeniz1 and

Martin Stettinger1 and Arda Akcay1 and Stefan Reiterer3

Abstract. E-learning is a complementary channel for learners to
acquire relevant knowledge. On the basis of an example e-learning
environment (STUDYBATTLES) we show how configuration-related
knowledge can be transferred to end-users (e.g., sales representa-
tives) as well as to knowledge engineers. In addition, we discuss an
approach to automatically generate product domain as well as engi-
neering learning content to be used in STUDYBATTLES. Finally, we
report the results of an initial qualitative study on the applicability of
STUDYBATTLES.

1 Introduction

Knowledge-based configuration is one of the most successfully ap-
plied Artificial Intelligence technologies [1, 4, 9, 15]. Configuration
systems improve business processes in various dimensions such as
reduced error rates and time efforts in product offering and reduced
costs of error management in follow-up production processes. De-
spite the successful application of configuration technologies, there
are still issues related to the transfer of configuration related knowl-
edge to employees.

In dialogs with customers, sales representatives should not only
rely on solutions and related explanations provided by the configu-
ration environment but should also have the needed domain knowl-
edge. Furthermore, engineers and domain experts engaged in knowl-
edge engineering processes should have the needed technical founda-
tions and be aware of engineering practices to minimize overheads in
knowledge engineering processes. Finally, domain experts in charge
of documenting configuration knowledge should be aware of stan-
dards on how to document knowledge in such a way that knowledge
engineers can formalize this knowledge easily. The goal of this pa-
per is to show how e-learning technologies [16] can be applied as
a means (in addition to traditional training programs such as sales
force training or trainings related to knowledge acquisition and main-
tenance) to support the mentioned knowledge transfer.

E-learning systems are often applied for creating a corporate
memory that is exploited to improve process-relevant knowledge of
employees (e.g., sales, marketing, and product management). Im-
provements triggered by the application of e-learning technologies

1 Institute for Software Technology, Graz University of Technology,
Austria, email: alexander.felfernig@ist.tugraz.at. ashehade@ist.tugraz.at.
mjeran@ist.tugraz.at.

2 Institute for Information Systems and Computer Media, Graz University
of Technology, Austria and Curtin University, Western Australia, email:
Christian.Guetl@iicm.tugraz.at.

3 SelectionArts, Austria, email: s.reiterer@selectionarts.com.

are manyfold. They reach from the increased accessibility of learn-
ing contents (users are much more flexible with regard to the time
of learning and training), increased opportunities to analyze the
strengths and weaknesses of employees with regard to organization-
relevant knowledge, and increased consumption frequency of learn-
ing content due to the application of different types of motivation
mechanisms (e.g., gamification and persuasion [7]).

In this paper we focus on two configuration-related types of
knowledge. First, we show how sales-relevant configuration knowl-
edge can be represented in an e-learning environment. Examples of
such knowledge types are product knowledge (e.g., for a specific set
of customer requirements, which configurations should be recom-
mended) and analysis knowledge (e.g., if no solution (configuration)
can be identified for a given set of customer requirements, which al-
ternatives should be proposed to the customer in order to maximize
the probability that the customer will accept the offer).

Second, especially less experienced knowledge engineers and do-
main experts should be educated with regard to best practices in
knowledge acquisition and maintenance. Examples of such knowl-
edge types are documentation knowledge (e.g., in which way should
incompatibilities between components types be documented on a
textual level) and knowledge representation knowledge (e.g., in
which context one should use compatibilities or incompatibilities to
express allowed combinations of component types).

The existing demand for complementary means of transferring
configuration-relevant knowledge to employees has already been
identified in earlier works. For example, Felfernig et al. [5] intro-
duce a gamification-based approach to learning the major technical
concepts of knowledge-based configuration and model-based diag-
nosis [13] – initial results of their studies show that the learning
success of students can be increased. Compared to this approach,
STUDYBATTLES does not only support the dissemination of tech-
nical product configuration knowledge but also allows to include
product domain knowledge into e-learning processes. Furthermore,
STUDYBATTLES includes gamification concepts which are imple-
mented as duels where different users can play against each other in
the context of a specific pre-selected learning application.

Felfernig et al. [6] analyze existing misconceptions of knowledge
engineers when interpreting textual domain descriptions and recom-
mend different measures that can help to reduce efforts related to
configuration knowledge acquisition and maintenance. Finally, an
analysis of the cognitive complexity of different types of knowledge
formalizations is presented in [14] – the authors show that different
types of representing logical implications can lead to significantly
different outcomes in terms of knowledge understandability. Fur-

A. Felfernig, A. Shehadeh, C. Guetl, M. Jeran, T. Tran, M. Atas, S. Polat Erdeniz, M. Stettinger, A. Akcay and S. Reiterer. 109

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

thermore, different approaches to structure constraints can also have
an impact on the underlying degree of understandability. Results of
these studies have been integrated into a STUDYBATTLES learning
application (see Figure 1).

Besides exploiting user communities, e-learning content creation
can be made more efficient by automated generation generation
mechanisms – see, for example, [8, 12]. In this paper we show
how configuration-related learning content (questions and related an-
swers) can be automatically generated from a given configuration
knowledge base. In addition to existing approaches to question gen-
eration from formal representations, we do not only focus on ques-
tions that refer to the set of possible solutions (configurations). We
also show how questions can be generated that refer to inconsistent
situations (e.g., no solution can be identified for a given set of cus-
tomer requirements or the knowledge base becomes inconsistent with
a given set of test cases) and to qualitative properties of knowledge
bases (e.g., redundancies and further well-formedness properties).

Our contributions in this paper are the following. First, we pro-
vide an overview of the STUDYBATTLES e-learning environment and
show how the mentioned types of configuration-related knowledge
can be represented in the system. Second, we show how configu-
ration knowledge bases can be exploited to automatically generate
e-learning content. Finally, we report initial results of a qualitative
study related to the applicability of STUDYBATTLES.

The remainder of this paper is organized as follows. In Section 2,
we provide a short overview of the different functionalities provided
in STUDYBATTLES. As a basis for introducing a question generation
approach, we define a configuration knowledge base from the domain
of financial services that serves as a working example throughout this
paper (Section 3). In Section 4 we show how questions can be auto-
matically generated on the basis of a given configuration knowledge
base. In Section 5 we present the results of a qualitative study related
to the applicability of STUDYBATTLES. In Section 6 we discuss fu-
ture research issues and conclude the paper.

2 STUDYBATTLES

The STUDYBATTLES4 start screen is shown in Figure 1 – it includes
a list of subscriptions to learning applications (LearnApps) and fur-
ther information regarding the ranking of the user in specific learning
applications. Mobile clients for STUDYBATTLES are available in An-
droid, iOS, and HTML-5 – Figure 1 depicts an example screenshot of
an iOS version. The system can be deployed in a company’s intranet
and is also available as global server solution.5 Users can join com-
munities and subscribe to learning applications in which they can
add learning content, practice exercises, and compete against other
learning application users in a (quiz-based) duel. Contents within
learning applications are organized in terms of categories, for exam-
ple, the learning application ”Master Of Configuration” includes the
categories Sales Knowledge, Conflicts, Diagnosis, Incompatibilities,
Knowledge Acquisition, and Knowledge Representation.

Deployments of STUDYBATTLES. One version of the system has
already been deployed and is applied by a large municipality and two
universities in Austria. At the two mentioned universities, STUDY-
BATTLES is applied in three Software Engineering courses (Object-
oriented Analysis and Design, Software Paradigms, and Require-
ments Engineering) and in two Artificial Intelligence related courses

4 STUDYBATTLES has been developed within the scope of the PEOPLE-
VIEWS research project which is funded by the Austrian Research Pro-
motion Agency (843492).

5 www.studybattles.com.

Figure 1. STUDYBATTLES start screen (iOS version) consisting of
learning applications (LearnApps) that can be subscribed by the user.

Percentages report the share of already successfully answered questions.
”Master Of Configuration” is the learning application that includes

configuration-related knowledge.

(Configuration Systems and Recommender Systems). The goal of the
STUDYBATTLES instance deployed at one Austrian municipality is
to increase employee’s knowledge in security-related topics and also
to transfer application-oriented knowledge related to a new account-
ing system. Currently, STUDYBATTLES is also deployed for one of
the largest financial service providers in Austria. The goal in this
context is to support sales representatives in learning processes re-
lated to product knowledge and sales practices. Experts from these
domains participated in a qualitative study where they gave feedback
on system applicability (see Section 5).

Learning and training. After a STUDYBATTLES learning applica-
tion has been subscribed, users of this application can select cate-
gories and questions they want to answer. After having selected an
answer to a question, immediate feedback is provided on the cor-
rectness of the answer. If an answer is wrong, related explanations
can be provided to the user. Explanations can only be shown if these
have been included by the expert who entered a question and related
answers, i.e., in the current version of STUDYBATTLES explanations
are not determined automatically.

Content creation and question types. STUDYBATTLES follows the
concept of crowd sourcing where users can enter questions/answers

110 StudyBattles: A Learning Environment for Knowledge-based Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

and expert users can evaluate the quality of the questions. The sta-
tus of a domain expert is reached if a certain treshold of correctly
answered questions is passed. Users are allowed to add additional
content in terms of documents, pictures, and movies which serve as
a basis for answering questions. When a user interacts with a learn-
ing application, questions are recommended [10] depending on their
relevance for the user. Questions related to a category where a user
has a low learning performance have a higher probability of being
recommended to the user.

STUDYBATTLES supports the definition of different types of ques-
tions – examples thereof will be discussed in the following. Figure
2 depicts an example of a multiple-choice question that is related to
the category Sales Knowledge. This question reflects relationships
between customer requirements and financial services (equity fund,
investment fund, and bankbook). The used abbreviations reflect the
set of customer requirements {wr = willingness to take risks, di =
duration of investment, and rr = expected return rate}.

Figure 2. STUDYBATTLES: representation of multiple-choice questions –
the check mark on the right hand side represents the answer of the user,
check marks on the left hand side represent the correctness feedback.

An example of an association task is depicted in Figure 3 – the
corresponding HTML-based definition interface is depicted in Fig-
ure 9. In association tasks, terms on the right-hand side have to be
combined (associated) with the terms on the left-hand side. In the
example of Figure 3, association tasks are exploited for asking ques-

tions that are related to the compatibility of customer requirements
and products. Association tasks can also be applied to ask questions,
for example, about the incompatibility of specific customer require-
ments. In the example of Figure 4 users are requested to combine
individual customer requirements of the left and right hand side in
such a way that the connected requirements become inconsistent. In
Figure 5, a question is posed to educate users with regard to logical
entailment (which situations lead to an empty set of solutions). In this
example, only a high willingness to take risks is logically entailed in
the item Equity Fund.

Figure 6 includes a question that is related to the correct usage of
implications [6]. If a certain constraint is specified on a textual level
(e.g., a low willingness to take risks can only be combined with a
bankbook), the corresponding logical representation should be clear
for all knowledge engineers. In order to avoid faulty translations, ex-
ercises such as the example depicted in Figure 6 can help to establish
a standard of formalizing such properties. Finally, Figure 7 depicts
an example question related to the identification of redundant con-
straints in configuration knowledge bases [4]. A constraint is consid-
ered as redundant if its deletion from the knowledge base is semantic-
preserving, i.e., the solution space remains the same. On the logical
level a constraint ca ∈ C is considered redundant if C − ca |= ca.

Figure 3. STUDYBATTLES: representation of associations tasks (concepts
on the left have to be connected with the correct counterparts on the right).

Gamification. Users who trigger duels are then randomly assigned

A. Felfernig, A. Shehadeh, C. Guetl, M. Jeran, T. Tran, M. Atas, S. Polat Erdeniz, M. Stettinger, A. Akcay and S. Reiterer. 111

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Figure 4. STUDYBATTLES: Association task related to the association of
incompatible requirements.

to opponents – duels can be performed asynchronously. User rank-
ing is visible on a local level (users are only able to see opponents
directly ranked before or after them in a certain learning application).
If a user wins a duel, he/she receives corresponding STUDYBATTLES

POINTS which is a major motivation for users to engage in games.
The higher the complexity of an answered question, the higher the
amount of received STUDYBATTLES POINTS. The complexity of a
question can be evaluated directly after having answered the question
(see the Evaluate link, for example, in Figure 5).

Analysis of learning performance. STUDYBATTLES supports dif-
ferent types of statistics that help to analyze the strengths and weak-
nesses of the user community and to establish needed counter mea-
sures (e.g., improving/adapting some parts of the learning mate-
rial). In each learning application, each user has access to a ranking
where the ”direct-neighbor” opponents including their STUDYBAT-
TLES POINTS are shown. Administrators of a STUDYBATTLES com-
munity have access to statistics that indicate the overall learning per-
formance per learning application and also per topic inside a learn-
ing application. This way, strengths and weaknesses of a STUDY-
BATTLES learning community can be identified and corresponding
counter-measures, for example, in terms of improving specific learn-
ing contents, can be triggered.

Figure 5. STUDYBATTLES: representation of inconsistency-related
knowledge in terms of a multiple-choice question.

3 Example Configuration Knowledge Base

As a working example we introduce a simplified financial services
configuration task. Before introducing the example, we provide a ba-
sic definition of a configuration task and a corresponding solution
(configuration).

Definition 1 (Configuration Task). A configuration task can be de-
fined as a Constraint Satisfaction Problem (CSP) (V , D, C, REQ)
where V are variables, D are domain definitions for the variables, C
is a set of constraints6, and REQ is a set of customer requirements.

Definition 2 (Configuration). A configuration (solution) for given
configuration task (V , D, C, REQ) is a complete set conf of vari-
able assignments vi = a to the variables vi ∈ V (vi = a → a ∈
domain(vi)) with consistent(conf ∪C ∪REQ). The set of solutions
for a given configuration task is denoted as CONFS.

Configurations (one configuration task can have more than one
solution) can be ranked according their utility for the user (customer).
In this context, configurations with the highest utility for the user can
be regarded as recommendations – for details we refer to [4].

The following is a simple financial services configuration knowl-
edge base formulated as configuration task (see Definition 1). The
variables in V are the following: willingness to take risks (wr), du-

6 Note that C = {c1, c2, ..., cn} can also be represented as C = {c1 ∧ c2 ∧
... ∧ cn} since constraints are assumed to be connected conjunctively.

112 StudyBattles: A Learning Environment for Knowledge-based Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Figure 6. STUDYBATTLES: question related to the usage of implications.

ration of investment (di), expected return rate (rr), and itemname
is a variable which represents the name of a financial service.

• V = {wr, di, rr, itemname}
• D = {domain(wr) = {low, medium, high}, domain(di)

= {shortterm, mediumterm, longterm}, domain(rr) = {low,
medium, high}, domain(itemname) = {equityfund, investment-
fund, bankbook}}

• C = {c1 : ¬wr = low ∨ itemname = bankbook, c2 :
¬wr = medium ∨ itemname 6= equityfund, c3 :
¬di = shortterm ∨ itemname = bankbook, c4 : ¬di =
mediumterm ∨ itemname 6= equityfund, c5 : ¬(rr =
high∨rr = medium)∨itemname 6= bankbook, c6 : ¬(wr =
low ∧ rr = high), c7 : ¬(di = shortterm ∧ rr = high),
c8 : ¬(wr = high ∧ rr = low)}

• REQ = {r1 : wr = low, r2 : di = shortterm, r3 : rr = low}

A configuration for our example configuration task is the set of
variable assignments conf = {wr = low, di = shortterm,
rr = low, itemname = bankbook} since the customer require-
ments included in REQ are consistent with the constraints in C. If
we change the specification of REQ this can lead to situations were
requirements become inconsistent with the constraints in C, i.e., no
solution can be found. Such a situation is triggered in the case that
REQ = {r1 : wr = low, r2 : di = shortterm, r3 : rr = high},

Figure 7. STUDYBATTLES: question related to the identification of
redundant constraints in configuration knowledge bases.

i.e., REQ∪C is inconsistent. In such situations, model-based diag-
nosis [13] can be exploited to identify minimal sets of requirements
that have to be adapted or deleted such that a solution (configuration)
can be found. The identification of such adaptations can be formu-
lated as diagnosis task (see Definitions 3–4).

Definition 3 (Diagnosis Task). A diagnosis task is defined as a tu-
ple (C, REQ) where C is a set of constraints, REQ is a set of cus-
tomer requirements, and REQ ∪ C is inconsistent.

Definition 4 (Diagnosis). A set ∆ ⊆ REQ for a given diagno-
sis task (C, REQ) is a diagnosis if REQ − ∆ ∪ C is consistent,
i.e., ∆ is a set of requirements to be deleted from REQ such that
consistent(REQ−∆ ∪ C). ∆ is minimal if ¬∃∆′: ∆′ ⊂ ∆.

Diagnoses are often denoted as hitting sets [13]. The original al-
gorithm for determining minimal hitting sets is introduced in [13].

Finally, conflicts (also denoted as conflict sets) represent sets of
requirements (inREQ) that are able to induce an inconsistency with
C (see the following definition). Conflict sets can be exploited for the
determination of diagnoses but also for the determination of redun-
dant constraints in knowledge bases (see, e.g., [4]). There is a duality
between conflicts and diagnoses: a conflict set is a hitting set for a
set of minimal diagnoses and – vice versa – a diagnosis is a hitting
set for a set of minimal conflicts [4].

Definition 5 (Conflict Set). A set CS ⊆ REQ is a conflict set if
CS ∪ C is inconsistent. CS is minimal if ¬∃CS′: CS′ ⊂ CS.

A. Felfernig, A. Shehadeh, C. Guetl, M. Jeran, T. Tran, M. Atas, S. Polat Erdeniz, M. Stettinger, A. Akcay and S. Reiterer. 113

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Figure 8. STUDYBATTLES: association task related to the modeling
concepts of a configuration language.

Types of sales knowledge. Sales knowledge is included in differ-
ent forms in configuration knowledge bases. A configurator can de-
termine items that can be recommended (product knowledge) on the
basis of a given set of customer requirements (REQ). In situations
where no solution can be identified for a given set of customer re-
quirements, diagnosis algorithms [13] can determine the needed min-
imal changes to help the user out of the no solution could be found
dilemma (analysis knowledge). Finally, given a set of requirements
(REQ), a conflict detection algorithm [11] can determine a minimal
set of customer requirements which induce an inconsistency with C
(inconsistency knowledge). In the following we discuss how configu-
ration task definitions can be exploited for the automated generation
of related questions for STUDYBATTLES.

Types of engineering knowledge. Engineering knowledge en-
tails relevant practices when building and maintaining configuration
knowledge bases. Knowledge engineers need to understand how to
formalize different product related constraints (e.g., how should re-
quirements relationships be specified on a logical level – see Figure
6). It is also important to understand well-formedness criteria rele-
vant for knowledge base development and maintenance (e.g., what
are redundant constraints – see Figure 7). Furthermore, knowledge
engineers need to know the building blocks of the language used for
configuration knowledge representation. A simple related STUDY-
BATTLES question is depicted in Figure 8.

4 Generating Questions from Configuration
Knowledge Bases

Some of the STUDYBATTLES questions can be automatically gener-
ated from a configuration task definition. In the following we show
how questions (and related answers) can be generated for some of
the configuration knowledge types discussed in Section 3. Gener-
ated questions can be included in STUDYBATTLES and then used for
training purposes. These questions can be exploited by employees to
improve their configuration-related knowledge.

Product knowledge. The task of a user is to identify configura-
tions that are consistent with a given set of customer requirements
(REQ = {r1, r2, ..., rm}). Related correct and faulty answers can
be generated by a constraint solver on the basis of a configuration
task (V , D, C, REQ). A constraint solver calculates configurations
that satisfyREQ∪C. Furthermore, non-solutions satisfyREQ∪C.7

REQ = {r1, r2, ..., rm} then is the basis of a question, solutions
represent correct answer(s), and non-solutions represent faulty an-
swer(s). Since the potential number of solutions and non-solutions
can be high, a random number thereof is selected for inclusion in
STUDYBATTLES.

Product knowledge (example). Given our example configuration
task definition, customer requirements could be REQ = {r1 : wr =
low, r2 : di = shortterm, r3 : rr = low}, a solution (correct
answer) is {name = bankbook}, and non-solutions are {name =
equityfund, name = investmentfund} (see Figure 2). A related
question posed in STUDYBATTLES is: For the requirements ..., which
items to recommend?

Analysis knowledge. Assuming thatREQ∪C is inconsistent (and
C is consistent), the task is of a user is to figure out which minimal
set of ri ∈ REQ has to be deleted such that consistency can be
restored. More formally, analysis knowledge related questions can
be generated using a diagnosis task (C,REQ). The diagnosis task
definition (C,REQ) can be used for question representation, related
answers are represented by the diagnoses ∆i. Non-diagnoses can be
easily determined on the basis of a calculated set of diagnoses: if,
for example, ∆i = {ra, rb, rc} is a minimal diagnosis, then ∆in =
{ra, rb} is a corresponding non-diagnosis since a proper subset of
minimal diagnosis is not a diagnosis. Since the potential number of
diagnoses and non-diagnoses can be high, the answer set is composed
of a random number of selected diagnoses and non-diagnoses.

Analysis knowledge (example). Given our configuration task def-
inition with the customer requirements REQ = {r1 : wr = low,
r2 : di = shortterm, r3 : rr = high}. Alternative min-
imal sets of customer requirements (diagnoses ∆i) that have to
be deleted from REQ such that a solution can be identified, are:
{∆1 = {r1, r2},∆2 = {r3}}, i.e., deleting the requirements r1
and r2 restores consistency between REQ and C. An example of
a non-diagnosis related to diagnosis ∆1 is {r1}. A related question
posed in STUDYBATTLES is: Given the configuration task definition
... which one is a minimal set of requirements that have to be deleted
from REQ such that consistency can be restored?

Inconsistency knowledge. Assuming that REQ ∪ C is inconsis-
tent (and C is consistent), the task is of a user is to figure out which
minimal set of ri ∈ REQ is inconsistent with C. More formally,
inconsistency knowledge related questions can be generated on the
basis of a conflict detection task (C,REQ). The conflict detection
task (C,REQ) can be used for question representation, related cor-
rect answers are represented by the conflict sets CSi. Non-conflicts
(faulty answers) can be easily determined on the basis of a calculated

7 If C = {c1 ∧ c2 ∧ ... ∧ cn} then C = {¬c1 ∨ ¬c2 ∨ ... ∨ ¬cn}.

114 StudyBattles: A Learning Environment for Knowledge-based Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Figure 9. STUDYBATTLES: definition of an association task (specification of correct pairs) in the HTML-5 version.

set of conflicts: if, for example, CSi = {ra, rb} is a minimal con-
flict, then CSin = {ra} is a non-conflict since subsets of minimal
conflicts do not have the conflict property. Since the potential number
of conflicts and non-conflicts can be high, the answer set is composed
of a random number of selected conflicts and non-conflicts.

Inconsistency knowledge (example). Given our configuration task
definition with the customer requirements REQ = {r1 : wr = low,
r2 : di = shortterm, r3 : rr = high}. Alternative minimal sets
of customer requirements subset of REQ that are inconsistent with
C are: {CS1 = {r1, r3}} and {CS2 = {r2, r3}}. An example of
a non-conflict related to conflict set CS1 is {r1}. A related question
posed in STUDYBATTLES is: Given the configuration task definition
... which one is a minimal set of requirements that have to be deleted
from REQ such that consistency can be restored?

For questions related to the formalization of informal domain de-
scriptions and constraints (see Figure 6) we do not offer an automated
question generation mechanism. The same holds for modeling con-
cepts for the development and maintenance of configuration knowl-
edge bases. Questions related to well-formedness criteria for the de-
velopment of configuration knowledge bases can be automatically
generated. For example, a configuration knowledge base containing
redundant constraints (the question part) can be presented to the user.
The correct answers (redundant constraints) can be identified by cor-
responding redundancy detection mechanisms – for details we refer
to [4]. Other examples of well-formedness rules are discussed in [3].

5 STUDYBATTLES Evaluation
STUDYBATTLES has been evaluated within the scope of a qualita-
tive study (N=15 participants). Participants from different domains

(financial services, public administration, telecommunications, and
universities) provided feedback on the applicability and usefulness
of STUDYBATTLES. Major mentioned potential improvements that
come along with STUDYBATTLES are, improved knowledge reten-
tion in organizations, improved knowledge sharing between users
on the basis of community-based (crowd-sourced) knowledge acqui-
sition processes, increased motivation to learn, improved skills, in-
creased fun and interest in the topic, increased competition level be-
tween users (e.g., sales representatives), improved quality of service
with regard to customers, increased learning efficiency, and enhanced
possibilities of community knowledge analysis which provide a basis
for a fine-grained adaptation of learning material.

The application of an e-learning environment in configuration sce-
narios was motivated by discussions with different companies ap-
plying configuration technologies. Especially in distributed scenar-
ios where large-scale configuration knowledge bases have to be de-
veloped and maintained, additional learning mechanisms have to be
provided to establish a standard knowledge level that helps to re-
duce erroneous maintenance practices as well as suboptimal sales
practices. A major issue in this context is that existing commercial
configuration environments still do not provide intuitive knowledge
representation mechanisms and there is a need to further educate do-
main experts and knowledge engineers.

6 Conclusions and Future Work
In this paper we introduced the idea of applying an e-learning envi-
ronment (STUDYBATTLES) as a complementary approach to transfer
configuration-related knowledge to employees (e.g., sales represen-
tatives and knowledge engineers). We provided an overview of differ-

A. Felfernig, A. Shehadeh, C. Guetl, M. Jeran, T. Tran, M. Atas, S. Polat Erdeniz, M. Stettinger, A. Akcay and S. Reiterer. 115

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

ent system functionalities such as community-based content develop-
ment, gamification, and automated question generation. In the con-
text of automated question generation we focused on the two aspects
of generating sales and engineering related knowledge. More fine-
grained question generation techniques that provide mechanisms to
more systematically pre-select answers to be included are within the
scope of future work. In this context we will also analyze potential
synergies with existing approaches to test case generation in soft-
ware engineering [2]. Especially in the context of educating sales
representatives, automated question generation becomes a key func-
tionality, since this reduces the overheads of manual content genera-
tion and management which is often the task of only a small group of
persons. In future versions of STUDYBATTLES, additional question
types will be included. For example, we will provide mechanisms
that allow to generate not only questions related to diagnoses (analy-
sis knowledge) but also to related repair actions (i.e., changes in the
requirements that lead to the identification of at least one solution).

REFERENCES
[1] M. Aldanondo and E. Vareilles, ‘Configuration for mass customization:

how to extend product configuration towards requirements and process
configuration’, Journal of Intelligent Manufacturing, 19(5), 521–535,
(2008).

[2] S. Anand, E. Burke, T. Chen, J. Clark, M. Cohen, W. Grieskamp,
M. Harman, M. Harrold, and P. Mcminn, ‘An orchestrated survey of
methodologies for automated software test case generation’, Journal of
Systems and Software, 86(8), 1978–2001, (1987).

[3] D. Benavides, S. Segura, and A. Ruiz-Cortez, ‘Automated analysis of
feature models 20 years later: A literature review’, Information Systems,
35(6), 615–636, (2010).

[4] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based
Configuration: From Research to Business Cases, Elsevier/Morgan
Kaufmann Publishers, 1st edn., 2014.

[5] A. Felfernig, M. Jeran, T. Ruprechter, A. Ziller, S. Reiterer, and M. Stet-
tinger, ‘Learning games for configuration and diagnosis tasks’, in 16th
International Workshop on Configuration, pp. 111–114, Vienna, Aus-
tria, (2015).

[6] A. Felfernig, S. Reiterer, M. Stettinger, and J. Tiihonen, ‘Towards un-
derstanding cognitive aspects of configuration knowledge formaliza-
tion’, in Vamos 2015, pp. 117–124, Hildesheim, Germany, (2015).

[7] BJ Fogg, Persuasive Technology, Morgan Kaufmann Publishers, 1st
edn., 2003.

[8] C. Gütl, K. Lankmayr, J. Weinhofer, and M. Höfler, ‘Enhanced auto-
matic question creator eaqc: Concept, development and evaluation of
an automatic test item creation tool to foster modern e-education’, Elec-
tronic Journal of e-Learning, 9, (2011).

[9] L. Hvam, N. Mortensen, and J. Riis, Product Customization, Springer,
1st edn., 2010.

[10] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender
Systems: An Introduction, Cambridge University Press, New York, NY,
USA, 1st edn., 2010.

[11] U. Junker, ‘Quickxplain: Preferred explanations and relaxations for
overconstrained problems’, in 19th National Conference on Artificial
Intelligence (AAAI04), pp. 167–172, (2004).

[12] S. Rakangor and Y. Ghodasara, ‘Literature review of automatic question
generation systems’, International Journal of Scientific and Research
Publications, 5, (2015).

[13] R. Reiter, ‘A theory of diagnosis from first principles’, AI Journal,
23(1), 57–95, (1987).

[14] A. Felfernig S, Reiterer, M. Stettinger, F. Reinfrank, M. Jeran, and
G. Ninaus, ‘Recommender systems for configuration knowledge engi-
neering’, in Workshop on Configuration, pp. 51–54, Vienna, Austria,
(2013).

[15] M. Stumptner, ‘An Overview of Knowledge-based Configuration’, AI
Communications, 10(2), 111–126, (1997).

[16] D. Zhang and J. Nunamaker, ‘Powering E-Learning In the New Mille-
nium: An Overview of E-Learning and Technology’, Information Sys-
tems Frontiers, 5(2), 207–218, (2003).

116 StudyBattles: A Learning Environment for Knowledge-based Configuration.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Finding pre-production vehicle configurations using a
Max-SAT framework

Marcel Kevin Tiepelt 1 and Tilak Raj Singh 2

Abstract. The increase in vehicle configuration induces new com-
ponents and interfaces requirement at the final assembly. Some of
these interfaces have to be tested prior to the series production. Each
test has a prerequisite set of product features required for testing. The
pre-production vehicles are required to cover each and every test de-
fined for the product. To minimize the cost of the testing, a minimal
number of the pre-production vehicles is required. However, find-
ing a small set of special configured vehicles in an enormously large
product variant is a daunting task. Each configuration is required to
satisfy complex feasibility rules among product attributes, in order
to be producible at the final assembly. Thus decision of finding a
minimal set of configuration for pre-production requires to satisfy all
configuration related rules as well. In this paper a Satisfiability based
framework, using SAT and Max-SAT models to find a possible set
of pre-production vehicles, is being discussed. Product configuration
rules and test requirements are converted to propositional logic which
then are solved using Max-SAT framework. The formulation leads to
a large scale optimization model which is solved using a greedy al-
gorithm applying a Max-SAT framework. Initial results are applied
to the automobile data.

1 Introduction
The configuration like product setup in automotive industry allows
customers to design their very own car. While the modular setup al-
lows to build near to unique vehicles for each customer, the larger
number of components greatly increases the product complexity [5].
The vast number of possibilities impact pre-production and planning
phases. Many features of the vehicle are being evaluated before pro-
ceeding to the production phase. Features tested on prototypes may
have a different behavior under real world conditions. To counter-
act unexpected behavior, tests can be performed on pre-production
vehicles. During the testing phase the pre-production vehicle is ex-
posed to extreme conditions, such as cold weather, extreme heat or
high speeds. In opposition to the prototype vehicle the pre-production
vehicle consists of a configuration aimed to behave similar to the
end product produced for the customer. The resulting complete car
features many of the characteristics of the costumer product, hence
can be used to identify flaws prior to mass production. Therefor pre-
production vehicles support the quality assurance by applying ex-
treme real world conditions on properties and parts before vehicle
features are released to the sales department.

The abstract representation of a vehicle is based on a large set
of car parts including all possible vehicle configurations and cus-
tomer choices. The assemble-to-order strategy used by many car-

1 Aalen University, Germany, email: tiepelt@dev-nu11.de
2 Mercedes Benz R & D, India, email: tilak.singh@daimler.com

manufactures allow customers to customize the vehicle based on a
predefined set of features, such as the built-in engine, or the inte-
rior. Providing a large set of customization options allows customers
to build an almost unique vehicle. Additionally to the customer ex-
posed set of features, an abstract car consists of a set of components
required to compose a complete vehicle. Many of these components
are implicitly implied by the customer choices, hence are necessary
in order to install the features chosen by the customer. Every physical
part is based on a characteristic part-rule consisting of instructions
which parts have to be included or excluded within the construction
process. Each feature chosen by the customer, as well as the condi-
tional interaction with mandatory parts, influences a large set of ad-
ditional physical parts and restricts the composition of car parts. The
set of rules and inter-dependencies between the components deter-
mine whether a configuration is valid. The large set of components
are their inter relations make it non-trivial to determine if a set of
components evaluate to a valid vehicle.

The extensive amount of automation used in the automotive in-
dustry reduces the amount of work necessary to construct a single
vehicle, unlike the construction of a pre-production vehicle. Pre-
production vehicles require separate assembly lines and manual pro-
cessing attempting to cover as many characteristics as possible and
meeting special construction constraints. In order to reduce the de-
velopment and evaluation cost of new features and considering the
complex construction process of pre-production vehicles, it is desired
to cover multiple features in each vehicle in order to conduct multiple
tests. The aim is therefor, to reduce the number of vehicles required
to cover all testing setups. Within the quality assurance process dif-
ferent evaluation methods are applied. Identifying flaws of vehicle
features is either based on the built-in parts or on characteristics of
the vehicle, such as sound isolation or cruise control. One of the test
setups may therefor include the exposure of pre-production vehicles
to extreme real-world conditions such as noise, or functionality of
driver assistance systems. The characteristics are based on rule-sets,
composites of physical parts, in order to implement the functional-
ities. A different setup may evaluate the effect of everyday use on
the physical components such as the tires, the engine or electrical
equipment.

Within the planning of abstract pre-production vehicles as well as
the construction multiple challenges can be identified:

1. To evaluate the effect on physical parts, finding a minimal set valid
vehicle configurations to cover all predefined parts.

2. To evaluate vehicle features and characteristics, finding a minimal
set of valid vehicle configurations covering certain rule-sets.

The main contribution of this work is a large-scale framework that
attempts to find a minimal number of pre-production vehicles based
on the above challenges. The framework is based on the part and

Marcel Tiepelt and Tilak Raj Singh. 117

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

rule-set configuration and utilizes a Max-SAT solver as a black box
to issue optimization. The contribution of this paper is the following:

1. An abstract representation of testing setups on pre-production ve-
hicles.

2. An heuristic approach to satisfy rule-sets and part coverage of pre-
production test setups.

3. A large-scale greedy like framework using Max-SAT to compute
a minimal set of pre-production vehicle configurations.

The work is organized as follows: The next section presents previ-
ous work in the field of product configuration and previous attempts
to the mentioned challenges. The third section introduces notations
and terms used throughout the paper. The forth section specifies the
challenges in detail and gives examples to illustrate problem state-
ment. In the following sections a general Max-SAT framework is in-
troduced and problem based specializations are described to engage
the problem of finding the pre-production vehicle configurations. The
sixth section describes the industrial sizes problem instances used to
evaluate the approach while the last section discusses the computa-
tional results obtained and gives an insight on further work that can
be done.

2 Previous work

Computation on product configurations based on a set of constraints
is a well-studied problem in many industrial areas. Carsten Sinz was
the first to apply Boolean Satisfiability methods to large automobile
configuration problem [11]. Walter et. al. [14] has applied Max-SAT
based approach to transform a in feasible configuration into a fea-
sible configuration by considering configuration rules and customer
preferences. This would help to reconfigure a configuration while
preserving a certain set of features. Singh and Rangaraj [10] have
used Hamming distance based models to describe distinction of mul-
tiple configurations. Singh et. al. [9] also introduce an approach to
generate a pool of configurations to cover a set of test rules using a
column generation model.

The Ford Motor company [2] has built a multi-phase mathemat-
ical model to solve a problem instance using a set cover approach.
The possible configurations are derived from a compatibility matrix
and computed with an integer linear programming model. In the first
phase of the model a set covering problem is solved in order to find
the minimal number of configurations needed to cover a set of pre-
defined test, each featuring different requirements and constraints.

In [6] Limtanyakul approaches a similar set cover problem paired
with the problem of scheduling tests. With regard to the set cover
Limtanyakul assumes that all prototype configurations are the same,
such that the computation of these is not necessary anymore. A dif-
ferent approach by [3] uses a heuristic to assign product configura-
tions to test variants and allows relaxing of the component configu-
rations to find better fitting results. A recent paper by Walter et. al
[13] suggests a similar approach to cover the equipment options of
test vehicles. In their paper they present a greedy like algorithm uti-
lizing SAT calls to test the configuration compatibility of equipment
options. Additionally they introduce exact algorithms using linear
search and branch & price.

3 Notations

In the following the problem of finding a valid and complete product
configuration is equivalent to finding a satisfying assignment to the

Boolean satisfiability problem (SAT), where the dependencies of car
parts and attributes are represented by Boolean constraints.

Given a propositional ϕ over a set of Boolean variables V , if an
assignment to V evaluates ϕ to true, this assignment is called satis-
fying or a model of ϕ. In the following, car parts and attributes are
represented as a set of variables. The set of variables is limited to
a finite domain as the framework aims to be a practicable real-life
model. The dependencies and requirements between those parts and
codes are described by propositional Boolean formulas. To describe
a product configuration each part and code is assigned a unique vari-
able, such that a model consists of an assignment to the variables.
Each variable has to be assigned true if this part or code is included
in the configuration, or false otherwise. As for the SAT problem the
propositional formulas are in conjuncture normal form (CNF), that
is a conjunction of clauses C, such that each clause consists of a
disjunction of literals. A literal l is a variable or its negation:

SAT (ϕ) = C1 ∩ C2 ∩ ... ∩ Cn (1)

C = (l1 ∪ l2 ∪ ... ∪ lm) (2)

The Maximum satisfiability problem (Max-SAT) is a generalization
of SAT asking for the maximum number of the clauses that can be
satisfied. Partial Max-SAT is an extension to Max-SAT such that the
set of clauses is divided into two subsets hard, soft. A solution to
Partial Max-SAT (PMax-SAT) must satisfy all hard clauses and the
maximum number of soft clauses. The extension Weighted Partial
Max-SAT (WPMax-SAT) adds weights ωi to the clauses. Each hard
clause gets infinite weight ωhard =∞, each soft clause gets a finite
weight. An optimal solution to the WPMax-SAT problem asks for the
maximum sum of weight assigned to a model. Remark that WPMax-
SAT with same weight for all soft clauses is equivalent to Partial
Max-SAT. [1]

To abstract the task of covering a set of vehicle components
the set covering problem is introduced. Given a universe U =
{u1, u2, ..., un} and a collection of subsets of U : S :=
S1, S2, ..., Sm. The goal is to find the smallest collection of subsets
to cover all elements in U . [12]

4 Problem description

With thousands of components and attributes combined in a single
vehicle, finding a valid configuration tends to be a computation-
ally non-trivial task. Generating all possible unique configurations
may be infeasible in many cases, reducing to the well-known #P -
complete problem of model counting when only trying to find their
number [5]. The possibly exponential number of unique configura-
tions may make it infeasible to iterate over all models and select a
certain subset. Instead one can think of the set of constraints as an
abstract model implicitly containing all possible configurations. In
the following, the two different problems are considered leading to
different choices of configuration subsets.

It is assumed that the vehicle parts and constraints are represented
by Boolean formulas, such that each car part is mapped to a variable.
A car part can either be included in a vehicle configuration, resulting
in the variable being assigned true, or respectively excluded resulting
in the assignment false. With a vehicle being constructed by a finite
number of components the domain (respectively the co-domain) for
any SAT related problem statements or solutions in the following are
also finite.

118 Finding pre-production vehicle planning using Max-SAT framework.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

Problem I The introduction of new components into a product
line, in e.g. a face lift for an existing generation, the components in-
troducing new features have to be evaluated using a complete vehicle.
Facing the complex construction and planning process it may be de-
sired to get the most out of each constructed vehicle. Therefor each
vehicle must cover as many different new components as possible.

The abstract problem is to find a minimal choice of configura-
tions to cover the predefined set of new components, constrained by
inter-dependencies and part relations. In Problem I the universe U
represents all available vehicle components. It may suffice to con-
duct test on a subset of newly introduced car parts represented by a
subset UT ⊆ U of test components. The subsets S contains all the
valid configurations that can be possibly build with the parts con-
tained in the universe U , but constrained by the rule-set. The goal is
to find a subset of configurations ST ⊆ S to cover all the parts of the
test-universe UT .

Example I The universe U for the first vehicle configuration con-
sists of an engine(E), a chassis(H), a steering wheel(S) and
different sets of tires(T1, T2), hence U = {E,H, S, T1, T2}. The
aim is to evaluate the effect of high speed on the performance of
the tires, hence UT = {T1, T2}, while utilizing the least number of
different vehicle configurations as possible.

In order to perform a speed test a complete car is required, hence
the configuration must include each component as depicted in Table
2. The configuration constraint restricts the built-in tire sets to one
per vehicle. The goal is to find a set of configurations covering all
elements in U without raising a conflict with the constraints given in
Table 2.

Table 1. Component description

Component Variable name

Engine E
Chassis H

steering wheel S
tires T1, T2

Table 2. Configuration constraints for building a feasible configuration

Restriction Configuration constraint

[1] E ∧ S ∧H ∧ (T1 ∨ T2)
[2] −T1 ∨ −T2

Problem II The evaluation of vehicle characteristics such as noise
control, or heat resistance is being performed on complete vehicles.
In order to assure the smooth functioning of all features the suc-
cessful integration of all involved components must be guaranteed.
Therefor each characteristic features a rule-set of components which
have to be present in order to implement a certain characteristic.

Hence, finding the minimal number of pre-production vehicles can
be described finding a minimal number of configurations such that
the rule-sets mapped to all characteristics are satisfied. In Problem II
the universeU represents all available vehicle components. In contra-
diction to Problem I it is no longer required to cover a set of parts, but
rather a set of rules. Therefor the universe UT consists of rule-sets ri,

each featuring a set of rules constraining the included components.
The subset S contains all valid configurations to construct a vehicle.
The aim is to find a minimal subset of configurations ST ⊆ S such
that all rule-sets r ∈ UT are satisfied.

Example II For the second problem the universe U used in Ex-
ample I is extended by a active noise cancellation system(A),
a sealing(L) and a diesel engine(D). The aim is to provide con-
figurations for tests on noise protection and the speed limit with the
new diesel engine. The universe to cover consists of the rule-sets
UT = {r1, r2, r3} restricted by the constraints given in Table 3. The
minimal set of configurations to is constrained by the dependencies
given in Table 4.

Table 3. Test rule-set

Test requirement rule-set

r1: Noise cancellation A
r2: Noise protection L

r3: Speed limit D

Table 4. Configuration constraints for building feasible configuration,
Example II

Restriction Configuration constraints

[3] (E ∨D) ∧ S ∧H ∧ (A ∨ L)
[4] −D ∨ −E
[5] −D ∨ −A

5 Max-SAT Framework
The configuration constraint set is the implicit representation of all
possible configurations of a vehicle. Assuming it is impossible to
sample all valid configurations, the presented greedy like approach
is considered to select the most fitting subset of configurations. The
greedy algorithm has the best approximation to the set cover prob-
lem, when choosing the subset with the largest number of uncovered
elements in each iteration. As proven in [4], this results is the best
approximation ratio that can be expected unless P 6= NP .

To approach the first problem the set of elements U represents the
components which need to be covered. Therefore, the greedy like
algorithm selects a subset S which contains the largest number of
components who have not been included in any configuration. The
algorithm makes a choice for the SAT variables such that the Boolean
formulas are satisfied and simultaneously satisfy as many uncovered
components as possible. As it seems to be impossible to select a con-
figuration from a pre-computed list, a Max-SAT framework is con-
sidered to work on the implicit configuration set and generate candi-
date configurations.

Problem II is being approached by assigning each element u in U
a set of constraints which have to be satisfied in order to cover the
element u. The algorithm will therefor make a choice of variables
which simultaneously cover the configuration constraints as well as
the constraints assigned to a test u. In the following, the test con-
straints are referred to as test types.

The selection of the configurations covering the elements u builds
upon consecutively checking if a configuration including a set of el-
ements evaluates to true. The internal state of the Max-SAT frame-

Marcel Tiepelt and Tilak Raj Singh. 119

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

work consists of the Max-SAT solver, building on the configuration
constraints and the elements within the universe. Undergoing the so-
lution finding process the Max-SAT solver will choose a set of el-
ements, enforce their presence in a configuration and evaluate the
validity. The objective of maximizing the number of elements that
are chosen within a configuration is obtained by keeping track of the
so far maximal amount of elements satisfying a configuration. Once
the amount of cover-able elements does not increase any more, the
Max-SAT solver will terminate. All covered elements are excluded
from the next solution process.

While the framework will find the optimal (maximal) number of
interfaces to cover in each iteration, it cannot be guaranteed that the
number of configurations obtained to cover all elements is optimal.

5.1 Problem 1: Part coverage
The method used to approach Problem I selects a candidate config-
uration that covers a set of components, determines if the candidate
is a valid configuration and decides if the configuration can be added
to the solution set. The components to be covered are referred to
as interfaces. Given a set of Boolean constraints in CNF one can
validate a product configuration by checking for satisfiability. The
SAT model to validate a product configuration can be converted to a
equivalent partial Max-SAT model featuring hard clauses only. Due
to the fact that all of the configuration constraints have to be satisfied
to determine a valid configuration, all clauses within the configura-
tion constraints are considered hard clauses. To easily distinguish
between hard and soft clauses, the hard clauses are assigned weight
ωhard =∞ and the soft clauses are assigned weight ωsoft = 1. Let
Σ be the set of constraints and C1, ..., Cm′ the respective clauses. In
the partial Max-SAT model the resulting clauses are

Σhard = {(C1, ω1) ∧ (C2, ω2) ∧ ... ∧ (Cm′ , ωm′)} (3)

such that the weight for all hard clauses is infinite:

ωk =∞ ∀k = {1, 2, ...,m′} (4)

The resulting Partial Max-SAT instance does not have any soft
clauses and is equivalent to a SAT instance. We extend this Par-
tial Max-SAT instance by adding a set of unit clauses C1, ..., Ck

such that each interface is assigned a unit clause. The weights as-
signed to the interface clauses are equal to 1, such that the instance is
weighted, but it suffices to distinguish between hard clauses with in-
finite weight, and soft clauses with weight one. Let m be the number
of components, than the following clauses are conjunctive with Σ:

Σsoft = {Σ ∧ (C1, ω1) ∧ (C2, ω2) ∧ ... ∧ (Cm, ωm)} (5)

such that the weight of all clauses is equal to one:

ωk = 1 ∀k ∈ {1, 2, ...,m} (6)

As a result an instance that aims to find a configuration satisfying
as many components as possible while retaining integrity within the
basic constraints is obtained. The hard clauses represent the inter-
dependencies and constraints for each component, such that an as-
signment, satisfying the hard clauses, results in a valid configura-
tion. Therefore, each component is implicitly associated with a set
of valid configurations satisfying the hard clauses while choosing
this component. To ensure that the predefined test components are
chosen, the soft clauses map a weight to each component as unit
clause that is listed for testing. The algorithm maximizes the sum of

all weights, hence covers as many components C1, ..., Cm in each it-
eration as possible. At all time the infinite weight of the hard clauses
Cm+1, ..., Cm+m′ guarantees that no dependencies are violated:

ΣI = { (C1, 1) ∧ ... ∧ (Cm, 1), (7)

(Cm+1,∞) ∧ ... ∧ (Cm+m′ ,∞)} (8)

The presented greedy approach assumes the input of a partial Max-
SAT instance ΣI as described in Section (7) and (8). For each vari-
able to cover there exists a soft clauseCk where k = {1, ...,m}. The
input consists of the Boolean formula Σ and the set of soft clauses
C. Resolving the instance in each iteration results in a configura-
tion S which covers as many uncovered interfaces as possible. The
algorithm computes a set of configurations C, such that each config-
uration covers at least one Ck. In Algorithm 1 there is a black box
function solve(ϕ) considered that gives a solution to a Partial Max-
SAT instance ϕ.

Algorithm 1.

PartCoverage(ΣI , C)
C ← ∅
WHILE (C 6= ∅)
{

S ← solve(ΣI)
C ← C ∪ {S}
C ← C \ {Ck|S(k) = satisfied}

}
Return C
Taken the Example I in Section 4, the generated hard clauses contain
the configurations restrictions [1] and [2], the soft clauses contain the
unit clauses T1, T2, such that the Max-SAT instance in Equation (9)
follows:

ΣI = {(T1, 1), (T2, 1), (9)

(E,∞), (S,∞), (H,∞), (10)

(T1 ∨ T2,∞), (−T1 ∨ −T2,∞)} (11)

The algorithm consecutively tries to add the tire sets to a configura-
tion. When conflicting with the hard clauses each one of the tire-sets
is relaxed. Possible results for configurations covering the tire sets
are presented in Table 5.

Table 5. Possible configurations to cover tire sets

Configuration Included parts

1 E,S,H, T1

2 E,S,H, T2

5.2 Problem II: Test coverage
Problem II deals with the task of finding a minimal number of con-
figurations satisfying a set of test types, each assigned a constraint
set required to be satisfied in order to perform a test. In opposition to
Problem I in Section 5.1 it is no longer sufficient to satisfy a single
component, but rather necessary to satisfy all assigned constraints.

Let Σ be the basic partial Max-SAT model described in Section
5.1. Let m be the number of tests to be conducted. For each test

120 Finding pre-production vehicle planning using Max-SAT framework.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

there exists a variant σi with i = {1, 2, ...,m} consisting of a set of
propositional formulas in CNF.

σi = {C1, C2, ..., Cr} (12)

The index r represents the number of clauses assigned to variant i.
A new Boolean variable ti is introduced for each test which is being
used to determine the variants that are covered in a vehicle config-
uration. The Max-SAT instance is being extended by a set of hard
clauses ensuring that a variable assignment satisfies the configura-
tion constraints if and only if all of the variant clauses evaluate to
true. For a given test type σi the clauses Ci are added such that the
assignment of ti implies each included variant:

Σhardi = {(ti → C1, ω1) ∧ ... ∧ (ti → Cr, ωr)} (13)

ωk = ∞ ∀ k = {1, 2, ..., r} (14)

The implication ti → Cr ≡ ¬ti∨Cr in (13) requires that the assign-
ment of ti = true forces the satisfaction of Cr , since the clause has
infinite weight. While the clause (Cr → ti) would guarantee that
a certain configuration only satisfies those test, which are explicitly
assigned. This need not be reasonable in practical applications, since
the coverage of additional test may make the configuration instance
flexible for further processing, e.g. scheduling. Therefore, the impli-
cation of the relaxing variable ti is omitted for the rest of the work
without loss of functionality if such an assumption is required.

To complete the Max-SAT framework a set of soft clauses si with
weight one is added, featuring the relaxing variables ti:

Σsoft′ = {s1 ∧ s2 ∧ ... ∧ sm} (15)

sk = {(tk, ωk1) ∧ (tk, ωk2) ∧ ... ∧ (tk, ωkr)} (16)

ωki = 1, k = {1, 2, ...,m}, i = {1, 2, ..., r} (17)

The Max-SAT framework for Problem II consists of the hard
clauses containing the vehicle configuration constraints Σhard

and the additional constraints featuring the vehicle characteristics
Σhardi . Each characteristic is assigned a new variable representing
its coverage. The additional constraints must be satisfied if and only
if the characteristic is satisfied in a configuration. The new variables
represented by the soft clauses Σsoft′ with a finite weight ensure that
the Max-SAT optimization satisfies as many characteristics in each
configuration as possible:

ΣII = Σhard ∪ Σhardi ∪ Σsoft′ (18)

The greedy approach is applied in the same way as in Problem 5.1,
with a change in removing covered test types. While removing the
soft clauses relaxing the covered test types suffices to ensure that the
greedy algorithm finds a solution set, the relaxing variables ti will
remain as decision variables and enlarge the problem, while not hav-
ing direct impact on the generated configuration. To avoid this extra
computation, for each relaxing variable whose test type has been cov-
ered, one can add an additional hard clause forcing the variable to be
false. While this ensures that the variable will not be considered in
future decisions as well as not enforcing the assigned variant to be
satisfied, it allows the variant to be covered. If the aim is to ensure
that each test type is covered in a single configuration only, one can
include the reverse implication (Ck → tk).

If it is desired to enforce to cover the remaining test types and
additionally to cover as many variants as possible, this could be es-
tablished by a change in weights. Each relaxing variable is assigned

to a test type which is not covered by any configuration and is as-
signed a weight ωi = w(m) + 1. The weight w(m) is any number
larger than the sum of all covered variants while covered variants are
assigned weight ωi = 1. This ensures that the Max-SAT framework
primarily satisfies the uncovered variants, since their weight is larger
than the sum of weights of all covered variants. Additionally the hard
clauses enforcing the relaxing variables of the covered variants to be
false do not have to be added. During the rest of the paper this is
not considered any further.

The Algorithm 2 assumes the input of the Partial Max-SAT in-
stance as described in Equation (18) and the set of soft clauses C. In
each iteration Ct represents the clause featuring the additional vari-
able t. The algorithm computes a set of configurations C, such that
each configuration covers at least one additional variable, hence one
test type.

Algorithm 2.

TestCoverage(ΣII , C)
C ← ∅
WHILE (C 6= ∅)
{

S ← solve(ΣII)
C ← C ∪ {S}
C ← C \ {Ct|S(t) = satisfied}
ΣII ← ΣII ∧ {(¬t,∞)|S(t) = satisfied}

}
Return C

Completing Example II in Section 4, the generated hard clauses
contain the configurations restrictions as well as the rule sets with
the newly generated variables v1, v2, v3 for the respective rule-sets.
The soft clauses contain the unit clauses with the newly generated
variables, such that the Max-SAT instance in Equation (19) follows:

ΣII = {(v1, 1), (v2, 1), (v3, 1) (19)

(−v1, A,∞), (−v2, L,∞), (−v3, D,∞) (20)

(E ∨D,∞), (S,∞), (H,∞), (A ∨ L,∞) (21)

(−D ∨ −E,∞), (−D ∨ −A,∞)} (22)

Within each iteration the algorithm tries to satisfy all unsatisfied hard
clauses and the maximal number of new variables. If a conflict with a
hard clause occurs, the algorithm may relax one of the new variables
and find a solution to cover the rule-sets r1 and r2. Variable v1 and v2
and then added as negative unit hard clauses satisfying the enforced
satisfaction in Equation (20). In the next iteration the algorithm finds
a configuration that covers the diesel engine. A possible result for a
minimal number of configuration is presented in Table 6.

Table 6. Possible configurations to cover test rule-sets

Features covered Solution set

r3 D,S,H,L
r1, r2 E,S,H,A,L

6 Computational Experiments
An initial demonstration of the solution approach has been evaluated
with an industrial sized problem. The following section presents the
demonstrated problem, originating in the automobile industry.

Marcel Tiepelt and Tilak Raj Singh. 121

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

In Table 7 a representative snippet of the data used in the compu-
tational experiments is shown. While the snippet represents only a
minor part of the configuration rules, each part has additional depen-
dencies leading to a large set of clauses.

The raw data consists of propositional formulas. In order to al-
low generalized procession, the formulas are converted to CNF us-
ing the improved version of the Tseitin transformation introduced by
Plaisted and Greenbaum [8]. The transformation into CNF requires
the generation of many help variables to avoid exponential growth of
clause numbers.

Table 7. Description of cover-able parts

Part ID Name Rule-snippet

23308 Mirror1 −15179 ∧ −14927 ∧ −10382 ∧ 14520
23309 Mirror2 10382 ∧ 14729 ∧ 15055 ∧ 15097 ∧ 15179
23310 Locking System (−10380 ∧ 15073) ∨ (−14074 ∧ 15073)
23311 Door interior −17462 ∧ −14520 ∧ 14923
23312 Switch Block (−23312 ∨ −10380) ∧ 15179 ∧ −14074
23314 Steering wheel −23333 ∧ −23332 ∧ 15569 ∧ 23337
23322 Pedal systems −9452 ∧ 9485 ∧ 13965 ∧ 13970 ∧ 14959
23323 Host assembly (14565 ∨ 15205) ∧ −13953

The data in raw data snippet 1 shows some of the CNF clause re-
lated to the parts in Table 7 and their rule sets using the DIMACS
CNF format. Each lines represents a clause, such that the literals are
disjunctive. The trailing zero marks the end of a clause. The large
number ”2147483647” is the signed integer maximal value and rep-
resents the infinite weight of the hard clauses.

Raw data snippet 1.

2147483647 −17462 −14520 14923 23311 0
2147483647 −15179 −14927 −14074 10380 23312 0
2147483647 −23332 14729 23314 23333 0
2147483647 −23332 15471 23314 23333 0
2147483647 −23334 −23333 −23332 15099 23314 23335 0
2147483647 −23343 −23342 15224 23317 23344 0
2147483647 −23343 −23342 15392 23317 23344 0
2147483647 −23343 −23342 14642 23317 23344 0
2147483647 −15084 −14954 −14729 23317 23342 0
2147483647 −15084 −14954 −14642 23317 23342 0
2147483647 −23349 14641 23319 23350 0
2147483647 −23349 15222 23319 23350 0
2147483647 −23349 10380 23319 23350 0
2147483647 −23349 15392 23319 23350 0
[...]

The problems features 28413 configuration constraints as hard
clauses which have to be satisfied. The size of the universe U , in-
cluding all available parts, is 23355. The test-setup for the approach
of Problem I consists of 40 components, hence soft clauses, which
need to be covered in configurations. The approach for Problem II
was tested on the same configuration constraints with an additional
17 rule-sets resulting in 28430 hard clauses and 17 new soft clauses
representing the introduces test-variables. The results, as in Table 8,
were calculated in less than a second.

The computations were run on a Intel(R) Core(TM) i7-4800MQ
CPU with 2.7 GHz and 2 GB of main memory running 64 Bit
Arch Linux. The solution approach is implemented around the open-
source Max-SAT solver open-wbo [7]. The Max-SAT solver is uti-
lized as a black box to simulate the generation of a valid configura-
tion.

Table 8. Computational scenarios

Experiment Coverage #Configurations

PartsCoverage 40 parts 3
RuleCoverage 17 rules 3

7 Conclusion

Large sets of components and interfaces included in vehicle config-
urations may lead to impracticable complexity when computing ve-
hicle configurations. Special requirements can result in unnecessary
development cost. Due to the vast number of possible configurations
it may not be feasible to choose an optimal configuration set to con-
duct component and attribute tests. It is however, possible to describe
the set of valid configurations and respectively tests with an abstract
model represented by their constraints and inter-dependencies. For
different use cases it may be desirable to cover a predefined set of
components or a defined set of attributes, each being identified by a
rule-set.

The presented Max-SAT framework builds upon the Boolean con-
straint product configuration used in previous studies. The greedy
like approximation framework can compute near to optimal sets of
configurations to cover both component tests as well as attributes test
setups. Initial results demonstrate that the framework performed well
on industrial sized problems. The solution provided can be imple-
mented with an arbitrary Max-SAT solver as black box optimization
function. Future work may include the integration of different op-
timization models and heuristics as a substitution for the Max-SAT
solver.

REFERENCES

[1] A. Biere, M. Heule, and H. van Maaren, Handbook of Satisfiability:
Handbook of Satisfiability, volume v.185 of Frontiers in artificial intel-
ligence and applications, IOS Press, Amsterdam, 2009.

[2] Kenneth Chelst, John Kuechlin, WolfgangSidelko, Alex Przebienda,
Jeffrey Lockledge, and Dimitrios Mihailidis, ‘Rightsizing and Manage-
ment of Prototype Vehicle Testing at Ford Motor Company’, Interfaces,
31(1), 91–107, (2001).

[3] Uwe Clausen and Jörg Weber, ‘Prototypenplanung im nutzfahrzeug-
bau’, ATZ - Automobiltechnische Zeitschrift, 108(9), 740–744, (2006).

[4] Uriel Feige, ‘A threshold of ln n for approximating set cover’, J. ACM,
45(4), 634–652, (July 1998).

[5] Andreas Kübler, Christoph Zengler, and Wolfgang Küchlin, ‘Model
counting in product configuration’, in Proceedings First International
Workshop on Logics for Component Configuration, LoCoCo 2010, Ed-
inburgh, UK, 10th July 2010., eds., Inês Lynce and Ralf Treinen, vol-
ume 29 of EPTCS, pp. 44–53, (2010).

[6] Kamol Limtanyakul, Scheduling of tests on vehicle prototypes, Ph.D.
dissertation, Dortmund University of Technology, 2009.

[7] Ruben Martins, Vasco Manquinho, and Inês Lynce, Theory and Appli-
cations of Satisfiability Testing – SAT 2014: 17th International Confer-
ence, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 14-17, 2014. Proceedings, chapter wbo WBO: A Modular
MaxSAT Solver,, 438–445, Springer International Publishing, Cham,
2014.

[8] David A. Plaisted and Steven Greenbaum, ‘A structure-preserving
clause form translation’, J. Symb. Comput., 2(3), 293–304, (September
1986).

[9] Tilak Raj Singh and Narayan Rangaraj, ‘Generation of predictive con-
figurations for production planning’, 15 th International Configuration
Workshop, 79, (2013).

[10] Tilak Raj Singh and Narayan Rangaraj, ‘Optimization based framework
for transforming automotive configurations for production planning.’,
in Configuration Workshop, pp. 31–38, (2014).

122 Finding pre-production vehicle planning using Max-SAT framework.

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

[11] Carsten Sinz, Baubarkeitsprüfung von Kraftfahrzeugen durch automa-
tisches Beweisen, Diplomarbeit, Universität Tübingen, December 1997.

[12] Petr Slavı́k, ‘A tight analysis of the greedy algorithm for set cover’, in
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory
of Computing, STOC ’96, pp. 435–441, New York, NY, USA, (1996).
ACM.

[13] Rouven Walter, Thore Kübart, and Wolfgang Küchlin, Optimal Cover-
age in Automotive Configuration, 611–626, Springer International Pub-
lishing, Cham, 2016.

[14] Rouven Walter and Wolfgang Küchlin, ‘Remax – a maxsat aided prod-
uct (re-) configurator’, in Proceedings of the 16th International Con-
figuration Workshop, CEUR Workshop Proceedings, volume 1220, pp.
59–66. CEUR Workshop Proceedings, (2014).

Marcel Tiepelt and Tilak Raj Singh. 123

Proceedings of the 18th International Configuration Workshop
September 5-6, 2016, Toulouse, France

	Foreword
	Recommendation for product configuration: an experimental evaluation.
	Recommending and Configuring Smart Home Installations.
	Concurrent configuration of product and process : moving towards ETO and dealing with uncertainties.
	Assessing configurator user need for social interation during the product configuration process.
	Improved Performance and Quality of Configuration Systems by Receiving Real-Time Information from Suppliers.
	Deriving Tighter Component Cardinality Bounds for Product Configuration.
	Automatic Configuration of Hybrid Mathematical Models.
	Solving the Partner Units Configuration Problem with Heuristic Constraint Answer Set Programming.
	Towards Group-Based Configuration.
	Towards Configuration Technologies for IoT Gateway.
	Towards Modularization and Configuration of Services – Current Challenges and Difficulties.
	Determining New Components for Open Configuration.
	Benchmark for configuration and planning optimization problems: Proposition of a generic model.
	Optimal Feature Selection via Evolutionary Algorithms and Constraint Solving.
	Interactive Configuration of Insulating Envelopes.
	StudyBattles: A Learning Environment for Knowledge-based Configuration.
	Finding pre-production vehicle planning using Max-SAT framework.

