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Abstract 

The superplastic forming is used in aeronautics in order to manufacture titanium parts with complex shapes. Regarding to others 
forming processes, it is important to save costs of superplastic forming. Using Infra-Red lamps to heat directly the blank is an 
economic way to raise the temperature as the heating time is cut to a few minutes instead of 24 hours. The tool core is not completely 
heated anymore, leading to greater efficiencies. 
 
Radiative flux model was developed and complex thermomechanical simulations have been used as a predicting tool of the infra-
red lamps power. The lamps power is adjusted throughout the forming step in order to obtain an optimized flux and thus to ensure 
a homogeneous temperature of the blank during the superplastic forming. Through these simulations, several TA6V sheets with a 
size of 500x500 mm2 were successfully formed by using this technology. The microstructure is not affected by the quick heating 
phase. Secondly, an aircraft part with a size of 1500x1000 mm2 were likewise formed which demonstrates the efficiency of the IR 
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1. Introduction 

TA6V is widely used in jet engines and airframe structures. It is a type alloy which can exhibit a good 
superplasticity thanks to this dual phases microstructure. Superplasticity is the ability exhibited by some fine-grains 
materials to be elongated a great deal with no failure. Mechanism of superplasticity is known as grain boundary sliding 
and also dislocation creep. The superplastic deformations are possible in a narrow gap of temperature (850°C to 920°C 
for TA6V for fine grain and can be reduced to 750°C for Ultra Fine Grain alloys). Then, it is necessary to keep a 
homogeneous temperature of the sheet during all the forming phase.  The deformation rate needs to be controlled too 
and maintained near 10-4s-1.  The titanium alloys combined with the SPF process offer large possibilities for complex 
part and can reduce assembly to a single part. 

A classical titanium alloy superplastic forming production run is conducted in several steps. The first one is 
the heating of the metallic or castable die till 900°C nearly by conduction inside the press-furnace. The second step 
consists in removing the die out of the press and placing the titanium sheet on it. As a third step, a holding time is 
needed to return to an isothermal configuration. The forming period is during one hour more. Finally, the formed 
titanium sheet is taken off the press. The heating platen technology is responsible of the duration of the global forming 
process (heating and forming phase). Therefore, the total heating time are much greater than the forming cycle time. 
The first heating time is needed to get the tools and press platen up to 900°C which can last 48h depending on the 
mass of the tools. The second heating time is used to re-heat the tool after unmolding the part and can last 1 or 2 hours. 
The shorter the heating time is, the higher the saving costs will be. 

Several technics have been developed in order to reduce the heating time and avoid the complete heating of 
the die. The direct heating of the sheet is possible by using induction [1] or infra-red lamps [2]. Aurock and Institut 
Clément-Ader (ICA) base their research in the development of the Infra-Red heater. The main issue is to ensure the 
homogeneity of the sheet temperature along the process. Aurock chooses to manage the temperature of the sheet with 
a numerical PID (PID means Proportional Integral Derivative –patented [3]) which takes into account the displacement 
of the sheet during forming and all the thermo-optical exchanges in the furnace. 

2. Experimentation, superplastic forming test 

To experiment the Infra-Red heating and to bear out the simulations, a laboratory device was developed in 
Institut Clément-Ader to form 500x500 mm2 sheets. It is a press-furnace equipped with 8 IR lamps of 3540W each 
and diffuse reflectors on the top and the side. The maximum hydraulic pressure available is 100Tons. Argon gas is 
used to form the sheet and to prevent oxidation. The maximum argon pressure available is 40bar. A second device 
was developed by Aurock to form industrial size sheets (1500x1000 mm2) with an equivalent heating device but 
containing 44 IR lamps. For both devices, the die is not heating before the forming phase: the sheet is placed on a cold 
die and it is directly heating. The pressure cycle and lamps intensity cycle can be programmed in the machine of the 
press-furnace. Those cycles can also be modified during the forming. A feedback is available from the pressure and 
temperature sensors in the die. The laboratory device is equipped with non-contact sensors to check the sheet 
temperature during the forming. Due to SPF conditions, the sheet temperature can lonely be measured locally. 
Therefore, the non-contact sensors cannot be used to control the power of lamps during the forming.  

3. FEM simulations and radiative flux model 

Lamps intensity cycle is obtained from FEM simulations, modelling the process forming, coupled with a 
numerical PID (developed in Fortran subroutines and already published [3][4]). For each numerical increment, Fortran 
subroutines give the intensity of lamps depending on the calculated sheet temperature during the forming. The process 
simulation needs to be modelled as close as possible to reality in order to determine the optimal power of lamps cycle. 
However, it was necessary to develop, in first time, a relevant radiative flux model in order to strictly describe the 
heat absorbed by the sheet along the forming steps. Indeed, in the superplastic forming, the temperature of the sheet 
has to be uniform and constant to ensure a correct forming. An incorrected model could bring local overheating on 
the sheet and damage the microstructure. The absorbed flux per element is calculated during the FEM simulation of 
the forming. Several studies [5] which calculate a radiative flux emitted by infrared lamps have already been done and 
used the equation (1). 



1900	 Damien Mauduit  et al. / Procedia Engineering 207 (2017) 1898–1903
 Damien Mauduit et al. / Procedia Engineering 00 (2017) 000–000 3 

 

 
(1) 

 
With, in the equation (1): 𝛼𝛼 = √𝑥𝑥2 + 𝐻𝐻2, 𝛽𝛽+ = 𝑦𝑦 + 𝐿𝐿/2, 𝛽𝛽− = 𝑦𝑦 − 𝐿𝐿/2, L and H are respectively the length (m) and 
the height (m) of the lamp, Q0 is effective radiative power of the lamp (W), x and y are the position of the sheet 
element and ε the emissivity of the material. In this formulation, the emission of the lamp is supposed isotropic, and 
its diameter is considered small relative to its length and other dimensions of the system (1D model of the lamp). 
Furthermore, the deformation of the plane are not considered and likewise the multiple reflections influences. 

The variation of the thermo-optical properties of TA6V from room temperature to forming temperature was 
also quantified as the thermo-optical properties of the IR heater and the cover. The thermal contact resistance of the 
sheet on the die was also determined. All data and phenomena are integrated in the FEM simulations to build the most 
relevant models and to assess the lamps intensity cycle. 

4. Results 

FEM simulations 
 

The equation (1) is only relevant for a plane sheet, In the case of a non-plane sheet, the direct incident flux 
must be recalculated by integrating the incident flux emitted by an elemental length ds of the lamp (1D model) and 
received by an elemental surface of the sheet which has a normal vector 𝑁⃗⃗𝑁  (equation (2)). 

 
(2) 

In order to simplify the calculation of equation (2) and to obtain an analytical formula for all points of the sheet, the 
coordinate system is changed from the global coordinate system R0 to the local coordinate system R (Figure 1). The 
problem thus becomes a flux calculation for a plane sheet and a lamp non-parallel to the sheet .It also deals with the 
situation when a part of the lamp is hidden (in the case θ21>90° on the Figure 1). This new radiative flux model is used 
to calculate the absorbed flux for each elements of the sheet along the simulation of the forming process. The model, 
coupling with the PID controller, is implemented in Abaqus by several subroutines. 
 

Figure 1: (a.) View factor from a point S in lamp [AB] to a point M on a non-plane sheet with a normal vector 𝑁⃗⃗𝑁 . 
(b) Lamp and sheet after changing the global coordinate system ℛ0(𝑂𝑂, 𝑥𝑥0⃗⃗⃗⃗ , 𝑦𝑦0⃗⃗⃗⃗ , 𝑧𝑧0⃗⃗  ⃗) for the local coordinate system 

ℛ(𝑀𝑀, 𝑇𝑇𝑥𝑥⃗⃗  ⃗, 𝑇𝑇𝑦𝑦⃗⃗⃗⃗ , 𝑁⃗⃗𝑁 ). 
In some case, the lamp may cut the plane z’=0: the intersection is noted C. The part [BC] of the lamp is hidden and 

does not send flux to the point M. 

4 Damien Mauduit et al. / Procedia Engineering 00 (2017) 000–000 

Each other relevant phenomenon is modelled: the friction coefficient between the sheet and the tool, the 
thermal exchange (radiative and convective) between the sheet, the tool and the internal atmosphere of the press-
furnace, and the thermal exchange of the cover with the outside at room temperature. For the simulation, a double 
symmetry is considered (Figure 2a). At the beginning of the simulation, all the components are at room temperature. 
Then the sheet is heated up to the forming temperature, then the optimized pressure cycle is applied. The intensity is 
controlled for each lamp and the temperature is assessed for each nodes facing the lamps. This simulation will give 
the lamp intensity cycle to ensure a constant temperature in the sheet during the forming. The target temperature is 
870°C during all the forming. An example of lamp intensity cycle obtained by the simulation for a 500x500 mm2 is 
presented in Figure 2b. 
 

 

Figure 2: (a.) Schema of the laboratory device (only a quart of the device is represented) and (b.) lamps intensity cycle for the forming of a TA6V 
500x500 mm2 sheet obtained from the FEM simulation, coupling PID and new radiative flux model. 

The pressure and the lamp intensity cycle are the recipe of the forming, used for the experimental tests. 
 
Superplastic forming tests 
 

In order to validate the simulation approach, two recipes are determined for each of the two parts geometry: the 
PID controller and the process simulations give the lamps intensity cycle and the pressure cycle. Forming tests are 
conducted with the laboratory and the industrial devices. The recipes are programmed and followed by the machines. 
The sheet temperature is not controlled by sensors during conventional SPF forming. However, for the adjustment 
and testing steps for IR heating device, the blank is unusually equipped with a few thermocouples. Unfortunately, they 
are often destroyed during the forming especially because of the pressure intensity and they only gave partial 
information about the sheet temperature. Figure 3 presents the global evolution of measured temperatures by the less 
damaged thermocouples during a forming test. It shows that the temperature stays in the [850°C 920°C] defined 
interval, even with the arrival of the gas pressure around 1500s which decreases the blank temperature. For both 
devices, the sheet are successfully formed, as seen on Figure 4. 
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Figure 3: Sheet’s temperature measured by some thermocouples (TC) during a forming test: Global evolution (a.) and details of the temperature 
variations (b.). 

 

Figure 4: Examples of sheets of 500x500 mm2 (a.) and 1500x1000 mm2 (b.) formed by superplastic forming using Infra-Red lamps. 

Although the thermocouples give an information about the temperature of sheet, it is necessary to control the 
thickness and the microstructure of the sheet to be sure that the forming happens as expected. Indeed, the final sheet’s 
thickness is correctly predicted by the FEM simulation and can be used as a comparison variable as done in 
conventional SPF. The SPF process must not affect the initial microstructure of the TA6V. It can be impacted by the 
forming temperature because the phase ratio highly decreases after 950°C. 

 
The thickness after forming was measured with a non-destructive ultrasonic sensor. The comparisons 

between experimental and calculated measurements are in agreement. The main gap is located at the bottom of the 
vertical face and the fillet radius, but the difference never exceeds 0.2 mm (initial thickness at 1.4 mm). The 
microstructures of the TA6V sheets before forming (Figure 5a) and after forming (Figure 5b) are also compared by 
Scanning Electron Microscopy (SEM). The analysed samples are taken off the deepest part of the shape where the 
strains are biggest. The phases are conserved after the forming as seen on Figure 5. 
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Figure 5: (a.) SEM image of the TA6V microstructure before forming shows the classical phases, (b.) SEM image of the TA6V 
microstructure after forming shows that the phases are conserved. 

5. Conclusions 

The direct heating of the sheet by using IR reduces the heating time and avoiding the complete heating of the 
die of the SPF process. A new radiative flux model and a numerical PID controller have been developed in order to 
control the power of the lamps taking care of all the thermal exchanges and the thermomechanical properties involved 
in that process. Several sheets with different sizes (500x500 mm2 and 1500x1000 mm2) were formed and answered to 
all the aeronautics quality requirement. These experimental results prove the feasibility and the relevance of Infra-
Red heating device, applied in superplastic forming. The next step is the development and use of the system in 
industrial cadence. In order to check the industrial interest of the IR technology, a cost study was done to compare the 
part production costs with the conventional SPF ones. Aurock is able to do this study as the company is producing 
parts with conventional SPF. For IR technology, the costs are evaluated based on the knowhow of the company. The 
calculation is done for a part size of 1500*1000mm2

. The duration of the forming cycle is 2 hours. The batch is 
produced with 2 shifts (production speed: 32parts per week).  Considering that, the use of IR reduces the part cost of 
30%. The process has other advantages which are not easily countable. By using IR technology, the process becomes 
more flexible: possibility to produce a single part. The maintenance of the die is easier and the process becomes more 
comfortable for the operators as the die is not heated any more at 900°C. Consequently, the use of Infra-Red is also 
interesting to save production costs.  

Acknowledgements 

The authors acknowledge the financial support awarded by the "Region Occitanie", the European fund FEDER and the “Direction 
Générale de l’Armement (DGA)” through the RAPID financial support. 

References 

[1] P. S. Gregg and M. R. Matsen, “Superplastic forming using induction heating,” US5410132 A, 1995. 
[2] T. E. Leistner and M. J. Acker, “Apparatus and process for superplastically forming metals,” US4474044A, 1982. 
[3] F. Nazaret, E. Lebard, Y. Le Maoult, L. Penazzi, V. Vidal, and V. Velay, “Procede de pilotage d’une machine de formage 

superplastique et machine correspondante,” FR3034690A1, 2015. 
[4] M. Le Fournier, F. Nazaret, O. Barrau, E. Lebard, and V. Vidal, “The use of Infra-Red heater in superplastic forming: a 

way of saving costs,” in Proceedings of the 13th World Conference on Titanium, 2015, pp. 1995–2010. 
[5] T. L. Turner and R. L. Ash, “Numerical and Experimental Analyses of the Radiant Heat Flux Produced by Quartz Heating 

Systems,” NASA Tech. Pap. 3387, 1994. 
 


