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Fluid Coating from a Polymer Solution

Alain de Ryck® and David Quéré*-*

Ecole des Mines d’Albi, route de Teillet, 81013 Albi CT Cedex 09, France, and Laboratoire de
Physique de la Matiere Condensée, URA 792 du CNRS, College de France,
75231 Paris Cedex 05, France

New experiments on coating of a wire with aqueous poly(ethylene oxide) solutions are reported. Ifthese
experiments are compared with coating with a pure liquid of the same physical characteristics, a strong
thickening of the liquid layer is observed. This effect is described by considering the normal stresses,
which allows us to obtain an analytical expression for the coated thickness in good agreement with the

data.

1. Introduction

Fluid coating is a process of practical importance in
numerous industrial contexts, which consists of drawing
a solid out of a bath of liquid (or conversely in moving a
liquid on a fixed solid). First studied by Goucher and
Ward,' this problem was modelized by Landau, Levich,
and Derjaguin.?? If the solid is a thin fiber (of radius b
much smaller than the capillary length «~' = (y/pg)"?,
where y and p are the surface tension and specific mass
of the liquid and g is the acceleration of gravity), the
thickness e of the coated layer is given by

e=134bCa*? (1)

where Ca is the capillary number, which compares the
viscous forces to the capillary ones: Ca = »V/y, with 5
being the viscosity of the liquid and V the withdrawal
velocity of the fiber from the liquid bath.

We have recently checked the validity of eq 1 at small
capillary numbers.* In addition, we have shown that for
high withdrawal velocities (above typically 1 m/s), the
film thickness increases faster with Ca than predicted by
eq 1,because of the liquid inertia which tends toeject the
liquid out of the reservoir. Here, we present an experi-
mental study of the coating at low velocity (where eq 1 is
supposed tobe valid) by a polymer solution. Then,a model
is proposed in order to understand the data.

2. Experiments

The experiments were achieved with nickel wires of radius
b=63.5um and aqueous solutions of poly(ethylene oxide) (PEO)
of molecular weight of M =4 x 10°g. The corresponding overlap
concentration ¢*is 107*g/g. Five concentrations were used: 1073,
1074,1073,5 x 1073,1072 (all expressed in g/g), thus lying below,
around, and above c¢*. The polymer, purchased from Aldrich,
was used without further purification and dissolved in tridistilled
water by softly shaking (24 h) and then warming (1 h) at 50 °C
to prevent the formation of aggregates.”> The surface tensions
were measured by the ring method and the viscosities estimated
by an Ostwald viscometer. All these characteristics are sum-
marized in Table 1.
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Table 1. Characteristics of the PEO Solutions Used in
This Study?

viscosimeter experiment

% concn y n i Vie n
(g/g) (mN/m) (mPa-s) (s71) s™H (mPa-s)
0.001 60.5 1.1 500 17000—170000 1.1
0.01 61.6 1.2 500 9700—32000 1.2
0.1 61.7 2.7 180  1940—6200 1.7-1.9
0.5 61.7 37.3 10 1720—1800 8—9
1 61.8 515 1 680—870 38—225

4 The concentration is given in mass (the overlap concentration
being ¢*=0.01%). For each solution,surface tension and viscosity
are measured and reported; the shear rate corresponding to the
viscosity measurement is indicated, and the one endured by the
liquid during the experiments is evaluated (it is of order V/e, where
both the withdrawal viscosity V and the film thickness e are
measured),from which the actual viscosity can be evaluated thanks
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Figure 1. Experimental setup for measuring the thickness of
the film entrained by a fiber drawn out of a reservoir and sketch
oftheregion where the film forms (so-called dynamic meniscus).

Actually, the solutions above c¢* are non-Newtonian and their
viscosities depend on the shear rate u#: at high #, the viscosity
decreases with # because the flow disentangles the polymer.
Powell and Schwarz® provided extensive data for the (i)
dependence for various concentrations of water solutions of PEO
of comparable molecular weight. Thanks tothese data,we could
estimate the actual viscosity for each experiment,takinga shear
rate (at the place where the film forms) of order V/e, where both
Vand ewere measured. The intervals for the shear rate and the
viscosity are also reported in Table 1.

The wires were coated by pulling them through a reservoir (a
Teflon tube of length 1.5 cm and radius 2 mm) at a constant
speed V, as pictured in Figure 1. The thickness of the coated
layer was measured by continuously weighting the reservoir.
Results aredisplayed in Figure 2. The film thickness (normalized
by the wireradius)is plotted as a function ofthe capillary number,

(6) Powell, R. L.; Schwartz, W. H. Rheol. Acta 1975, 14 729.
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Figure 2. Dimensionless thickness e/ b vs the capillary number
for five different concentrations (empty circles, ¢ = 0.001%;
empty squares, ¢ = 0.01%; gray circles, ¢ = 0.1%; full circles,
¢=0.5%;fullsquares,c=1%;overlap concentration c*is 0.01%).
The capillary number is calculated by evaluating the shear
ratein thedynamicmeniscus and then considering the dynamic
viscosity at this rate. The full line is the Landau law (eq 1).
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Figure 3. Dimensionless thickness e/ b vs the withdrawal
velocity. The data are the ones of Figure 2 (empty rhombi, ¢ =
0. 01%; full rhombi, ¢ = 0.1%; empty squares, ¢ = 0.5%; full
squares, ¢ = 1%). The full lines are the fits provided by eq 22.
For the dilute solution (full circles, ¢ = 0.001%), the line is the
Landau law (eq 1 or eq 22 with n =1 and N = 0).

calculated with the viscosity estimated as explained above. In
the same figure, the Landau law (eq 1) is drawn and compared
with the data.

In allcases,the thicknessis found toincrease with the velocity.
For the dilute solution (c=107°g/g), the data (empty circles) are
closetothe Landau law at small capillary number. Then,above
athreshold (Ca=0.025or V~ 1.3 m/s),the film thickness sharply
increases with the velocity, which is a consequence of inertia;*
the same inertial behavior can be observed around V =1 m/s
with the solution ¢ = 10™* g/g. This divergence does not occur
with the other solutions, which are of higher viscosity, so that
the withdrawal velocities are smaller. Note finally that when
the thickness becomes larger than the wire radius, some
saturation occurs, because of the finite size of the reservoir (see
ref 4 for a detailed analysis).

The new effect observed in Figure 2 is that, even at small
capillary numbers, data corresponding to semidilute solutions
(c = c¢*) are systematically above the Landau law: the presence
of the polymer causes a swelling of the film. The swelling factor
(ratioofthe actualthickness over the Landau one) varies between
2 and 8. In addition, it depends on the capillary number: the
thickness is roughly proportional to the velocity (in particular
at small V, where the thickness is much smaller than the wire
radius), which can be seen in Figure 3 where the same data are
displayed directly vs the withdrawal velocity.

3. A Model

3.1. General Equations. We interpret the swelling
ofthe film as a consequence of the Weissenberg effect, which
appears when the characteristic time for the flow (e/V) is
smaller than the characteristic time of response of the
material (the reptation time, for a semidilute solution). A
spectacular manifestation of the Weissenberg effect (also
called normal stress effect)is that jets of polymer solutions
expand rather than shrink when going out of a tube (see
ref 7 for example). Because of the normal stress, we
qualitatively understand that the coated layer is thicker
than expected,as seen in Figure 2. We propose toquantify
it by incorporating this effect in the equations of movement,
as in ref 8 where normal stresses were introduced for
predicting the thickness of a soap film drawn out of a
solution containing polymer. For small thicknesses, we
can work in Cartesian coordinates.

Using the notations of Figure 1, the stress tensor is
written as

Tox rxy 0
0= |Tyu Ty, 0 2
0 0 T,

with 7,, = (du/dy). For a Newtonian liquid, # is inde-
pendent of the shear rate, but for a polymeric solution, it
can be empirically written

/R ifu <,

o) 3)

= if i > i,
ay

where 7,,k,and n are constants which may be determined
experimentally. The diagonalterms contain the pressure
(Tx + 7,y + 7., = —3p). For a Newtonian liquid, we have:

Ty = Tyy = T;; = —p. With normal stresses, we only have
Ty~ 7. =0 @)

and we can define

T _Tyy

_ Yxx
R
dy
In addition and very generally, { is proportional ton*.° So,
the tensor matrix can finally be written

&)

ou\2n  du
p+N(8y) ay 0
— |, _, — Ly (0w
7= Ty P 2N(8y) 0
1. (Ou\2n
0 0 P 2N(8y)

(6)

defining the normal stress coefficient N. Then,the steady
Navier—Stokes equation is written in the lubrication
approximation

(7) Bird,R.B.; Armstrong,R.C.;Hassager,O.Dynamics of polymeric
liquids; John Wiley: New York, 1977.
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where we have supposed that the shear rateislarger than
its critical value (see eq 3). The pressure inside the film
is given by the Laplace law, which writes for smooth
profiles: p = —y d?h/dx?. Ifthe liquid were pure, the flow
at small velocities would be a Poiseuille flow, with a
parabolic profile inside the film. We suppose that
introducing the polymer keeps the flow close toa Poiseuille
one, and write

2
u(xy) = V+A<x)(y3—yh) ®)

where £ is the thickness of the liquid layer at the place
where the film forms (see Figure 1). A is determined by
the flux conservation: A = 3V(h — e)/h?. After the
dimensionless variables are introduced, x = [X ([ is the
characteristiclength of formation of the film) and &2 = eV,
the y-variableis eliminated by an average on the thickness
ineq7 (amethod first proposed inref 10). Thus,we obtain

nj3 _ n
o _{k(3V) ! } ¥ - 1)

n+2

e y Y2n+1

Y 9)

NGV (v — D™ '3 = 2Y)
yAntl

2n
2n+1) v PLa

where the sign ' represents a derivation with respect to
X. By choosing / in order to make the first coefficient
equal to 1 and calling B the second one, we can reduce eq
9 to

=1y Y —-D*""'3G-21),
y'=- y2it +B yhntl Y' (10)

The thickness eis then obtained by using the matching
condition proposed by Landau.>!'! We write that the
curvature of the film tends to zero in the direction of the
reservoir:

I _ e,
b+e_,2Y . (11)

Thus, the end of the calculation consists of integrating
onceeq 10 and looking for the limit written ineq 11.Before
proposing an approximate solution, we first derive simple
scaling arguments.

3.2. Scaling Laws. The searched limit in eq 11 is a
number, sothat the matching condition dimensionally is
written as

[~ \Je(b + e) (12)

Then, we propose to treat separately the two non-
Newtonian terms of the right member ofeq 7. First,ifwe
have N =0 (nonormal stress), eq 7 dimensionally reads

e V"
Z_3N ken-H (13)

where the characteristiclengthsalongxand y (respectively
land e) were introduced. From eqs 12 and 13, we deduce
the scalinglaw for the thickness as a function of the velocity

(10) White, D. A; Tallmadge, J. A. AIChE J. 1966, 12, 333.
(11) Esmail, M. N.; Hummel, R. L. AIChE J. 1975, 21, 958.

V2

e~ (&)U(zn+l)v2n/(2n+l) (14)
where we have supposed that the thickness is smaller
than the fiber radius. Equation 14 should be valid for
shearrateslarger than u.(see eq3),which implies capillary
numbers larger than Ca* = (i.b/y)’. For capillary
numbers smaller than Ca*, the Landau equation should
be obeyed. Thus, as Ca increases, the film thickness
should successively follow eqs 1 and 14. Since we have
n < 1, the exponent in eq 14 is smaller than %/3, which
means that the effect of shear thinning is (logically) to
make the film thinner than predicted by Landau—a
situation which was not observed in our experiments.

Conversely, if we only consider in eq 7 the term
containing the normal stress, the latter equation dimen-
sionally is written as

4

Eliminating / with eq 12 (and supposing e < b) leads
toa linear variation for the thickness as a function of the
velocity:

o (NTb)WnV (16)

The film thickness is found tobe linear with the velocity,
in accord with the observations at small velocity in Figure
3. As V increases, the experimental curves bend and
exhibit some kind of slow divergence. It can simply be
understood as a curvature effect: the thickness increases
with the velocity and does not remain negligible,compared
with the radius. Thus, b in eq 16 must be replaced by (b
+ e) in eq 16, providing an implicit equation for the film
thickness which implies a smooth divergence. For ex-
ample,takingn =0.5 (a case close tothe most concentrated
of our solutions; see Table 3) yields an hyperbolic
divergence for the film thickness, which can be written as

[ =wv) a”

Thus,the scalinglaws allow us tounderstand qualitatively
the effect observed in the data. We can try now toderive
more quantitative predictions by carrying on the calcula-
tion presented above.

3.3. Numerical Solution. The scaling analysis sug-
gests that we should treat separately the non-Newtonian
effect contained in eq 10 (shear thinning on one hand and
normal stress on the other one). For the first term, the
work was done by Gutfinger and Tallmadge,'?> who
integrated numerically once eq 10 (without the second
term: B = 0). They found for the limit

Yy, =0.646 —0.76 In n (18)

where the first number is the Landau limit. From this
point, the thickness dependence on the velocity could be
derived, leading to the scaling behavior presented in eq
14.

Fully considered and integrated once, eq 10 can be
written as

(12) Gutfinger, C.; Tallmadge, J. A. AIChE J. 1965, 11,403.



Table 2. Value of the Integral I(n)®

n I(n)
0.5 1/,

0.7 0.23
1 Y12

9 Which appears in eq 19 and is defined in eq 20, for the three
different values of N,the exponent for the decreasing of the viscosity
vs the shear rate (see eq 3), where N =1 is the case of a Newtonian
fluid.

Table 3. Values of the Non-Newtonian Parameters for
the Different Solutions?

% concn k n e (s7h N theo Nexp
0.001 0.01 1 0
0.01 0.012 1 2 x 1073
0.1 0.033 0.98 24 5x 1074 9 x 1074
0.5 0.85 0.7 9 0.07 0.35
1 10 0.52 2 3.2 4.7

“k,n,and i (all defined in eq 3) are given in ref 6. Equation 23
allows us to calculate Nheo Which is compared with the Nex, value
provided by the fit in figure 3.

) oY — 1)
Y |Hc=f_wwdx+31(n) (19)
with
+e(2x — 3)(x — 1)
1m= [, w20
X

Table 2 gives some values for this integral. But the
problem remains hard to solve, since the coefficient B
depends on the (unknown) thickness e. We propose as an
approximate solution todecouple the shear-thinning effect
and the normal stress effect. Thus we simply modify eq
18 with the term calculated in eq 20, which can be written
as

Y'y_,, =0.646 —0.76 In n + BI(n) 21
Together with eq 11, the latter equation provides an
expression for the thickness e:

1 ( V)n 2/3
5, = (0646 —0.76 In n){~ "7 em +

Vv
(2n T 1)( )—(—) (22)

This implicit equation can be drawn, since the values for
k and n are known for our experimental solutions (these
data come from ref 6 and are reported in Table 3). N only
is treated as an adjustable parameter, and the best fits
with the data provided by eq 22 are finally displayed in

Figure 3 (full lines). The agreement between the calcu-
lated curves and the experimental data appears tobe good.
In particular,the scaling features predicted in eqs 16 and
17 are well described by eq 22 (linearity at small capillary
number and smooth divergence as the thickness becomes
of order the fiber radius).

Itremainstocheck that the values for the normal stress
coefficient N deduced from the fit are reasonable. N can
be evaluated independently: as emphasized above, the
coefficient { defined in eq 5 is proportional to 72,
Dimensionally, a pressure is missing. We can write { ~
n?/t*, where t* is the threshold in stress above which the
disentanglement occurs. Since we have t* ~ n.u. ~ ki
(see eq 3), we get
~0. 36L (23)

uc

theo

where the numerical coefficient was calculated in ref 13.
For the less concentrated solutions (c = 107° g/g and
= 107* g/g), the shear-thinning effect is too small to

measure it.. For the other solutions, the values for N

deduced from the fit and from eq 23 are compared in Table

3 and found indeed to be comparable.

4. Concluding Remarks

When a fiber is coated out of a solution of polymer in
the semidilute regime, the film is found to be swelled (by
a factor of between 2 and 8), which is interpreted by
considering the normal stress induced by the presence of
the polymer. The (small)shear-thinningeffect which could
be induced by the polymer is found to be screened by this
(large) effect. The solution of concentration 107 g/g (on
the order of ¢*)is of particular interest because it does not
present any shear-thinning effect (n ~ 1) and has a
viscosity close the solvent one (y = k ~ 1.2 mPa-s).
Nevertheless, a strong swelling effect is observed for this
solution since the film is found to be 5 times thicker than
if were made out of pure water.

The most concentrated solutions donot exhibit a sharp
(inertial) increase of the thickness, since the withdrawal
velocities remain smaller than 10 cm/s as it can be observed
in Figure 3 (thus, inertia is always negligible). It should
be of interest but remains to be done to study the coating
with polymeric solutions at high velocity (where both
inertial and non-Newtonian effects should combine), a
case of practical importance in lubrication processes of
glass and polymeric fibers.
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