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The effect of weak inertia on the emptying of a tube

Alain de Ryck®
Ecole des Mines d’'Albi-Carmaux, route de Teillet, 81013 Albi Cedex 09, France

(Received 26 October 2000; accepted 1 April 2002; published 21 May )2002

We present an extension of the classical axisymmetric Bretherton theory giving the thickness of the
liquid film left on the walls of a drained tube, treating the case of weak inertia by a regular
perturbation method. The results obtained by numerical integration fit TaybrEuid Mech.10,
161(1961)] experiments, obtained with viscous fluidgycerine and strong sucrose solutigrend
Aussillous and Ques [Phys. Fluids12, 2367 (2000] experiments with low viscosity liquids
(hexamethyldisiloxane and wajewhen inertia becomes important. The discrepancies observed
between the theory and high Reynolds numbers experim@es 1000 are commented on.

© 2002 American Institute of Physic§DOI: 10.1063/1.1480267

I. INTRODUCTION the specific density of the fluid. The numerical constant is
obtained by matching the curvature of the meniscus with the
Coating flows, which are liquid flows leading to a depos-asymptotic curvature of the thin filf
ited liquid layer on the surface of a solid, have been exten- At higher velocity, some discrepancies are observed be-
sively studied for their practical importance in many tech- tween Eq/(1) and experimental results. For plate coating, the
nologies: Painting, printing, emulsion deposition in drainage by gravity of the film becomes non-negligible. For
photographic industry, air displacement in wetted porous methe tube (respectively wirg coating, a first semiempirical
dia. This last topic has received some attention for its relcorrection, proposed by White and Tallmadge for wire
evance to oil recovery and to the understanding of air pencoating® is to write x *=r—e (respectively,r +e). This
etration into the lungs. An idealized situation, sketched inextends the validity of the theoretical Bretherton law to situ-
Fig. 1, is the emptying of a pore or a capillary filled with a ations in which the thickness of the remaining film becomes
wetting liquid and drained by pushing a fluid of lower vis- comparable with the capillary radius. In the tube case, a lim-
cosity, leading to a deposited liquid layer. The experimentalting value at high capillary numbers is then founefr
work by Taylor? measuring the amount of several highly _, 1, quite different from Taylor's observatioRse/r — 0.34.
viscous ||qU|dS left behind when the IIqUId is blown out of a To go to h|gher Ve|ocitie5, Cé)proposed a theory giv_
tube, showed a limit in liquid recovery when increasing thejng the amount of liquid left on the walls of the tube based
drainage velocity. The thicknessof the deposited film has a on an exponential shape for the driving bubble but the fit
limiting value of approximately one third. ~ with the Taylor’s results is not so good. The two-dimensional
Brethertori studied, both experimentally and theoreti- finjte element calculation with a free interface by Reinelt and
cally, the drainage of a capillary at low velocity. His theory, saffman’ leads to a very good agreement with these experi-
valid when the deposited film is thin compared to the tubemental results, but does not take into account inertia. But, for
radius, also describes the two-dimensiof#d)) drainage be-  |iquids of low viscosity like water or ethanol, encountered in

tween two parallel plates, and is similar to the one proposegashing processes for example, the liquid inertia leads to a
by Landau and L_evu:‘hfor plate or wire coating. In all these nqticeable thickening of the remaining film, for drainage at
cases, the velocity dependence of the deposited film th'CkCapiIIary numbers smaller than unfty.

ness is written Giavedoni and Saifapresented numerical results, both

in the axisymmetric and plane cases, obtained by a boundary
e=1.34"1caB (1)  integral method? Their work included the inertial forces and
they found a thinning effect due to inertia for Reynolds num-

. ) ] bers up to 70. This work has been recently completed by
where Ca= 7V/y is the capillary number, which compares |1 i the 2D-channel case using a finite element method.

the viscous and capillary forcés; and y are, respectively, |t gemonstrates a small thickening effect due to inertia for
the viscosity and surface tension of the liquid ands the higher Reynolds numbers up to 280.

drainage velocity « is the difference of curvature between Here, we propose an extension of the Bretherton’s clas-
the static meniscusveakly deformed at low velocityand  gjca| axisymmetric analysis to include weak fluid inertia ef-

the thin film. For a tube of radius, a I—ltelle—Shaw cell of  tects. This study is an alternative of the Giavedoni and aita
spacingr, or a fiber of radius, weihlavex =r. Foraplate 5 Heit! works. Its numerical part is reduced to the reso-

withdrawn out of a liquid bathx™ "= yy/2pg, wherep is ytion of a third-order ordinary differential equatiéh*3and

is inspired by previous theoretical work introducing weak

dElectronic mail: deryck@enstimac.fr fluid inertia in platé*~'® and wire coatind/® and by 2D
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psh—asn=pyn—ycn, (6)

where vy is the surface tension of the liquid ampd the air
pressure. The subscriptmeans that the value is taken at the
liquid—gas interface. The vectar is normal to the surface
andg the viscous stress tensor. They are written

1 ( 1
n=
= i 2 _h
FIG. 1. Sketch of a tube full of liquid and drained by an air bubble. 1+hg X
and
channel drainag® In the latter case, the theory takes also o o ov
into account the drainage by gravity. 2(9— TN X
After the presentation of the equations describing the o=7 y y @

drainage of a cylinder in Sec. Il, they are solved at leading ~ _Jdu v du ’
order in Sec. Ill using the lubrication approximation. In Sec. ay  Ix X

IV, a first-order approximation is used, introducing the iner-

tial terms. Two cases are then studied: Highly viscous liquidsvhere the subscript means differentiation with respect to
and liquids of low viscosity. The results obtained are com-the axial coordinate. The curvatucds given by

pared, respectively, with the Taylor's experiméngmd the

recent ones by Aussillous and Qaé hyx 1

c= + :
(1+h)¥ " (r—h)1+h2

®

II. DESCRIPTION OF THE PROBLEM

We consider an infinite tube of circular geomefradius lll. LEADING ORDER SOLUTION

r), full of liquid and drained by air at a constant velociy Assuming the slope of the thin film to be small and

In a frame attached to the air bubble, we define the axial, i) velocity to be much smaller than the axial velocity, the
origin a_nd Q|rect!onx from the apex to the air side. The - ial component of the Navier—Stokes equati®nreduces
radial directiony is chosen from the tube wall inwards. In 9play=0. The pressure is then uniform in the thin film
these coordinates, the axial and radial liquid velocitiesiare . +'iq written, using the radial projection of Hd)
andv. In this frame, the walls of the tube have velocity
The profile of the film surrounding the bubble hgx), de-
creasing fronr to the constant value for x ranging from 0 P=Ps=Po— YC, With c=hy+ P 9
to infinity.

The steady-state Navier—Stokes equations in these COOEquation(6), in the axial direction yields
dinates are writteh

#u du 1 odu) dp du  au au ~0 (10)
n[m+ﬁ_)/2+_r—yﬁ]_&+p(v@+ua_X) (2) &ys
and Finally, Eqg. (2), the axial component of the Navier—Stokes

[ v v 1 dv 1 equation, reduces to
Moz T 52 T 50 = 20]

ax= gyt r=ydy (r—y) P a1

ap v du ay (r—y)w Zsz(f—y), (11
_W-i-p UW-FU&), (3)

may be integrated twice to give the velocity profile
where  and p are, respectively, the viscosity and specific

mass of the liquid, ang the pressure. The liquid is incom- 1 [(r=y)?> r? (r—=h)? r-y
; u=V+ —py —— I (12
pressible, so we have 7 4 4 2
Jv v ou . . . S .
———+—=0. (4)  Alast integration gives the fluQ, which is a constant in
day r-y X steady-state regime. Its value is related to the thickeess
The boundary conditions at the walls are the deposited film by
for y=0, u=V andv=0. (5) r '
On the air—liquid interfacey=h(x), neglecting the gas vis- Q= fh 2myu dy= L 2myV dy. (13

cosity, the stresses are due to the interface curvature and are
written Introducing Eq.(12) into Eq.(13) leads to



2104 Phys. Fluids, Vol. 14, No. 7, July 2002

(r—-h)2—(r—e)?
1

Ca "\ 8

(r—h)*
2

4

r* r2(r—h)?

2
r—h

In——|.

Finally, since the normalized thickne€s=e/r, ratio be-
tween the thickness of the deposited film and the tube radiu

r

remains a small parameter, we have truncated #j.to the

two first terms of its Taylor expansion closefe=0. It then
EZ

reduces to
1
- Ca2/3 YX ’

when using the same reduced variables as those used
Bretherton® A film thickness scaled bg, the thickness of the
film at infinity (h=eY), and an axial coordinate scaled by a
length ¢, where¢ =eCa ¥(x=¢X).

We then obtain a generalized version of
Landau—Levich* equation with the additional terms B
coming from the cylindrical geometry: The first from the

3 4
Cy +§(r—h)

14

Y3

Y —

+
1E2

Yxxx=3 (15

expression of the flux, the second from the radial curvature.

A. Numerical integration

Since the profile does not depend explicitly xorwe use
the thicknessy as the variable of integration and integrate
numerically a second order differential equation &¢Y)
=Yy . This method leads to more stability in the numerical

integration(we have used a commercial code—ode45 rou-

tine from Matlab—based o a 4 to 5 Runge—Kutta

method®), but does not allow to find a nonmonotonous pro-

file since by construction, we impose a univocal relation be
tweeny and its derivativey, .

the

Alain de Ryck

S,

by

-5 -1

x/r

-2 -0.5
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FIG. 2. (a) Approximate curvatureBubble profile for Ca0.05 andE
=0.05, 0.0973, and 0.15. Dash and dotted lines: Walls of the tube. Dashed
lines: approximated spherey,(=—1/(r —y)). Circles: matching points;

there is no matching foE>0.0973.(b) Exact curvature Bubble profile for
Ca=0.05 andE=0.05, 0.1206, and 0.15.

The integration is started close to the thin film using the

linearized conditiong™ Y,=1+e%% Y.=se™* and Y/
=seSX wheree=e%* is a small quantity10~* in our cal-
culations and wheres is solution of the following equation
obtained by linearization of Eq15):

2

s+ @gsﬂa:o. (16)
The initial conditions forG then is written
dG
G(1+¢€)=-se, andd—Y(1+e)=s. (17)

For a given Ca ané, we integrateG from Y=1+¢€ to 1/E.

With this matching, we insure that the profile ends with a
static zone where the pressure is constant. This matching is
represented in Fig. (). The profiles are matched at the
circle point with a curve solution df,,= —1/(r —h) (dotted
lines). E=0.0973 is the highest value allowing a matching at
Ca=0.05. There is no matching feasible fér=0.05 for this
value of the capillary number.

B. Results

In Fig. 3, we have compared this maximum matching
thickness(dotted ling with the experimental values obtained
by Taylor (denoted by squargsin the same figure, these

Figure Za) shows several bubble profiles obtained for Cayesults are also compared to the asymptotic matching by

=0.05.
We observe that there is a critical thickngsat which a

Bretherton[Eq. (1), dashed and dotted liheBoth are only
valid for very small capillary numbers, but the denominator

matching to a sphere is possible, i.e., there exists a point op Eq. (18 ensures a saturation effect.

the profile (small circles in Fig. 2 where the two radii of
curvature are equal

E 1

Vo C#BI—EY (18

In order to improve the accuracy, we used the full ex-
pression of the curvature. The film profile is then given by

Y( Y—1)’

CX=3T 1+E—— (19

2
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0.45 T—— (r—h?—(r—e)?
0.4+ ’ - UOZV 1+8 7 > 2 7 7
i r*=4ar(r—h)“+3(r —h)*—4(r —h)*In(r —h)/r
035+ | i T e o
I .e~" op o o OO a Yo —\v)2 2 _h)z r—
034 ; go-u8” ©0® ((r y) r (r Y))
B X In . (23
L, 025 J—/ n?f’—@ 2 2 2 r
0-2 7/ ,” The pressure profile inside the thin film is given by E3).at
0.15 115+ first order:
01 g au ap
0.05 S e
0 0.5 1 1.5 2 and leads together with E¢R2) to
Ca
. N . dUq JUq Uos
FIG. 3. Thickness of the deposited film scaledrbys the capillary number. p=—yCc—n—71| —p—+27 h.. (25)
Dashed and dotted line: E¢l). Dashed line: Maximum thickness allowing ox S ox r—h*

a matching with a spherical cap using an approximated curvature. Solid line:
the same, but using an exact curvature expression. Squares: Taylor's expefit this same order, Eq2) is written

ments(Ref. 2.
1 9 oW ap U, U,
"(m@(“‘” W)]: ooy e
whereC is the normalized curvature )
The last step is to integrate this equation three times in order

C= Yxx + E 1 _ to obtain the flux as in the previous section and then to
(1+CaPy3)3? * Ca® (1-EY)(1+Ca®v3)*? expand the expression vers&s We obtain finally in the
(200 reduced Landau—Bretherton coordinates
With this correction, we obtain more realistic bubble profiles, 1-Y Y—1 calB 43— 7Y
as shown in Fig. @). As previously, for each capillary num- Cx=3—<z |1+E—— +3W[YxxY T
ber, a maximum thickness allowing matching is found. This
value fits the experimental data well for capillary numbers up —129+270Y - 61Y?
to 0.25 as can be observed in Fig(sdlid line). Neverthe- +E 240
less, we still observe some discrepancies for higher capillary 5
numbers which here do not come from inertia since, in the +v2 —41-2y +E41_ 39y -2y H
Taylor’'s experiments, the Reynolds numbers {R¥r/7) X 20 40
were always lower than unity.
1 ;3YX 2
+3—5FECa4 el 6(—9+Y+Y?
IV. FIRST-ORDER SOLUTION 1728-1131Y — 171Y%+134Y3
+E = : (27)

To achieve a more accurate solution when the thickness
of the deposited film increases, we need to obtain the firstwhereC is still the reduced curvature given by EQQ). F
order correction the leading order result described in the pre= pyr/ »?=Re/Ca is a nondimensional number which de-
vious section. Up to the first order in &% the terms previ- pends only on the nature of the liquid and of the radius of the
ously neglected have been written using the expressions afibe. For water in a tube of radius 1 mi=72000. For

the velocity obtained at the zeroth order. glycerol in the same tubé&; =0.36.
To first order, the pressure at the liquid—bubble interface  In Eq. (27), two new terms appears, compared to Eq.
is written (19), both expanded in powers & The first one is a cor-

rection to the lubrication approximation. After Bretherton,
Spierset al! introduced this correction in the case of plate
coating. The second one is an inertial correction. First intro-
duced by Esmail and Humntélfor the plate coating prob-
where the subscripgi means that the velocity is computed at lem, this inertial term has been shown to lead to a thickening
the zeroth order. Using the incompressibility of the liquid of the film entrained by a plat€or a fiber withdrawn from

(21)

C oyl
ps=—vC 77(9y

)
S

[Eq. (4)] leads to of a liquid bath'®
Together with Eq(20), Eq. (27) leads again to a third
el 2 9Uo 5 u_osh 22) ordinary differential equation for the film profile. The nu-
Ps=—Y "% . T e merical integration still starts from a point close to the thin

film: Y=1+eS% wheres is obtained by the linearization of
whereu, is given by Eqs(12) and (13 the system. With the new terms, E3.6) is replaced by
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0.45 0.3
0.4 +
0.35 1 0.25 -
0.3 1 0.2 -
w 9257
0.2 A w 0.15 -
0.15 - 01
0.1 1
0.05 # 0.05 +
o
0 ! z i
0 0.5 1 1.5 0 ' '
Ca 0 0.05 0.1 0.15
(a) Ca
FIG. 4. Taylor’s experiment&Ref. 2 and the maximum value & allowing
a bubble profile ending like a sphere fBr=0. 0.25
0.2 1 e
E? s 27 78
3 /32 o
$*+ —op ——=7+3-C&s?| —+E o
Ca” (1-E)? 10 ) 0.15 4 o
6 E W
+FEC&"s| —— = | =0. 0.1 4
5 2
The final step is the same as previously. For a given param ¢ o5
eter numberF, we search, for each value of the capillary j
number Ca, the maximum value of the reduced film thick- : :
nessk allowing a matching of the film profile with a spheri-
. . . : 0 0.05 0.1 0.15
cal cap. This has been done in two cases. First, With0, (b) Ca

for liquids of high viscosity, and then for parameter numbers

higher than 10 000, representative of liquids of low viscosity.FIG. 6. (a) Experimental deposited film thicknesses and the theoretical
maximum ones allowing a matching with a spherical cap. Black points:
Experiments with hexamethyldisiloxarief. 8 (p=0.76 kg/nt, 7=0.5 cP
and y=15.9 mN/m and a tube of radius 0.4 mni& 19 330). Solid line:

For highly viscous liquids, the inertial correction re- Theory with the same parameter. White points: Taylor's experimgres.

mains negligible for capillary number less than unity, as is2: Dashed line: Theory with=0. (b) Experimental deposited film thick-
nesses and the theoretical maximum ones allowing a matching with a spheri-

the case of the ex_perimen_ts by Tay:idF-igure 4 COMPAres  caj cap. Black points: Experiments with hexamethyldisiloxéRef. 8 and
them with the maximum thickness allowing a bubble profilea tube of radius 1.4 mmR=67 670). Solid line: Theory with the same

ending with a spherical cap witk=0. The agreement is Parameter. White points: Taylor's experime(Ref. 2. Dashed line: Theory
quite good. In Fig. 5, several bubble shapes obtained for C4t" F=0-
ranging from 0.001 to 1 are compared. The matching points,

A. Highly viscous liquids

not shown, are close to the axis of revolution except for
Ca=1. In that latter case, the matching occurs at half the

2 F=0 2 gz : 8'8?1 ¢ 8: Z ?'1 bubble size. In all cases we observe that the bubbles are only
1B e LTI slightly deformed: the thin film of constant thickness is at-
-------------------- tained above a distancefrom the top of the cap close to
T = (r—e).
0.5} . . .
= B. For liquids of low viscosity
% 0 Finally, the system of equations has been integrated us-
_05) ing as parameteF =19 330 and 67 670, values representa-
d tive of a low viscosity silicone oil drained out of a tube of
A T——— radius 0.4 and 1.4 mm. The maximum thickness curves are
""""""""""" compared in Fig. 6 with the Aussillous and Qee
] experiments.
_ob We observe that the threshold and the beginning of
0 1 2 3 4 thickening due to inertia are well represented by the theory.

x/(r-€) Nevertheless, for higher capillary numbers, the theory over-

FIG. 5. From left to right: bubble shapes for €.001; 0.01; 0.1, and 1. ©stimates the experimental values _Obta_inec_l- Several hYPOth'
Dash and dotted lines: Positions of the walls. eses may be put forward to explain this discrepancy. First,
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2r 0.40 -
_ a:Ca=0.001 c:Ca=0.1 I
15 F=67670 b:Ca=001 d:Ca=1 0.35F
y o | Ca=1
030 T
0.25}
B “ 020} ca=01
=4 L .
0.15 |
010l ca=002 \_/
0.05 . \ . . . .
10" 10° 10' 10° 10° 10* 10°
-2 L F
0 1 2 3 4

FIG. 9. Maximum deposited thicknegscaled byr) E vs F for three capil-

x/(r-e) - -
lary numbers. The circles indicates R€000.

FIG. 7. From left to right: bubble shapes fér=67 670 and C&0.001,
0.01, 0.1, and 1.

film, given by L=¢/s becomes very large compared to the

tube radiug at high Reynolds numbers. As an example, we

the theory presented here includes inertia as a first OrdEHave plotted on Fig. 7 the profiles obtained for67 670
perturbation and therefore has no reason to describe higy, jhserve that cbntrary to tHe=0 case(Fig. 5) thé

inertia situations. Secondly, the method used computes Onl%ubble is highly deformed for G20.01. In Fig. 8, we have
steady-state axisymmetric bubble profiles, with no oscilla- o i

1 ¢ the film thick 4 of s hick ; plotted this length. of the transition zone, scaled by ver-
tions of the Tilm thickness and of maximum thickness for 8sus the capillary number. We observe that as long as inertia

given capillary number. This solution is perhaps not the MOSfamains negligible, the bubble length is small compared to
stable at high velocity. In particular, further work should be its width. But when inertia becomes importaiite>1000

made to check if the maximum thickness criterion leads, a{he bubble length grows and may reach about 10 cm
high velocity, to the less dissipative solution. '

Finally, there are some limitations to this visco-inertial
regime in the Aussillous and Qu&s experiment$. As de-  \, CONCLUDING REMARKS
scribed by the authors, the finite length of the liquid reservoir -
leads to a deposited film thickness limited by the viscous We presented an extension of the classical axisymmetric
boundary layer. Another point is that the steady-state viscoBretherton theory, including weak inertial effects, based on a
inertial regime is not reached in these experiments, whictiegular perturbation method. By numerical integration of the
were performed with an air—liquid front displacement of film profile and looking for the maximum value of the de-
about 20 cm. But it can be observed in the simulations thaposited film thickness allowing a matching with a spherical
the size of the transition zone between the apex and the thigap, a velocity dependence of this thickness is obtained and,

-2

10 : ;
107" 10° !

Ca

—2

107 10

FIG. 8. Size of the transition zone scaled bys Ca. Black line:F=0.
Dashed and dotted liné:=19 330. Dashed line= =67 670.

for liquids of low viscosity, a thickening due to inertia is
observed. The agreement between these numerical results
and the experimental results up to moderate Reynolds num-
bers(Re<1000 is quite good. This thickening is not what is
reported by Giavedoni and Sattahey report a slight thin-
ning due to inertia for Reynolds numbers up to 70. We in-
deed retrieve this result when looking at low Reynoldg$-or
numbers, as shown on Fig. 9 whee the film thickness
scaled byr, is plotted versus the numbét for different
capillary numbers. In particular, it can be noticed that this
thinning, which may attain 20% for Gal, is maximum for
Re around 100. This could explain why the last experimental
points by Taylor are slightly under the theoretical curve in
Fig. 4. The values oF for the experiments he performed at
a capillary number greater than one may be evaluated at
around 0.5glycerol and tube radius of 1.5 mmn Fig. 9, it
can be seen that this leads to a correction of 6% forCa
Finally, some points remain to be investigated. The
thickness numerically obtained is a maximum thickness and
it is not clear why it is this thickness which gives good
correspondence with the experimental values.
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