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The effect of weak inertia on the emptying of a tube
Alain de Rycka)

École des Mines d’Albi-Carmaux, route de Teillet, 81013 Albi Cedex 09, France
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We present an extension of the classical axisymmetric Bretherton theory giving the thickness of the
liquid film left on the walls of a drained tube, treating the case of weak inertia by a regular
perturbation method. The results obtained by numerical integration fit Taylor’s@J. Fluid Mech.10,
161 ~1961!# experiments, obtained with viscous fluids~glycerine and strong sucrose solutions!, and
Aussillous and Que´ré’s @Phys. Fluids12, 2367 ~2000!# experiments with low viscosity liquids
~hexamethyldisiloxane and water! when inertia becomes important. The discrepancies observed
between the theory and high Reynolds numbers experiments~Re.1000! are commented on.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1480267#

I. INTRODUCTION

Coating flows, which are liquid flows leading to a depos-
ited liquid layer on the surface of a solid, have been exten-
sively studied1 for their practical importance in many tech-
nologies: Painting, printing, emulsion deposition in
photographic industry, air displacement in wetted porous me-
dia. This last topic has received some attention for its rel-
evance to oil recovery and to the understanding of air pen-
etration into the lungs. An idealized situation, sketched in
Fig. 1, is the emptying of a pore or a capillary filled with a
wetting liquid and drained by pushing a fluid of lower vis-
cosity, leading to a deposited liquid layer. The experimental
work by Taylor,2 measuring the amount of several highly
viscous liquids left behind when the liquid is blown out of a
tube, showed a limit in liquid recovery when increasing the
drainage velocity. The thicknesse of the deposited film has a
limiting value of approximately one third.

Bretherton3 studied, both experimentally and theoreti-
cally, the drainage of a capillary at low velocity. His theory,
valid when the deposited film is thin compared to the tube
radius, also describes the two-dimensional~2D! drainage be-
tween two parallel plates, and is similar to the one proposed
by Landau and Levich4 for plate or wire coating. In all these
cases, the velocity dependence of the deposited film thick-
ness is written

e51.34k21 Ca2/3, ~1!

where Ca5hV/g is the capillary number, which compares
the viscous and capillary forces~h and g are, respectively,
the viscosity and surface tension of the liquid andV is the
drainage velocity!. k is the difference of curvature between
the static meniscus~weakly deformed at low velocity! and
the thin film. For a tube of radiusr, a Hele–Shaw cell of
spacingr, or a fiber of radiusr, we havek215r . For a plate
withdrawn out of a liquid bath,k215Ag/2rg, wherer is

the specific density of the fluid. The numerical constant is
obtained by matching the curvature of the meniscus with the
asymptotic curvature of the thin film.3,4

At higher velocity, some discrepancies are observed be-
tween Eq.~1! and experimental results. For plate coating, the
drainage by gravity of the film becomes non-negligible. For
the tube ~respectively wire! coating, a first semiempirical
correction, proposed by White and Tallmadge for wire
coating,5 is to write k215r 2e ~respectively,r 1e!. This
extends the validity of the theoretical Bretherton law to situ-
ations in which the thickness of the remaining film becomes
comparable with the capillary radius. In the tube case, a lim-
iting value at high capillary numbers is then found:e/r
→1, quite different from Taylor’s observations:2 e/r→0.34.

To go to higher velocities, Cox6 proposed a theory giv-
ing the amount of liquid left on the walls of the tube based
on an exponential shape for the driving bubble but the fit
with the Taylor’s results is not so good. The two-dimensional
finite element calculation with a free interface by Reinelt and
Saffman,7 leads to a very good agreement with these experi-
mental results, but does not take into account inertia. But, for
liquids of low viscosity like water or ethanol, encountered in
washing processes for example, the liquid inertia leads to a
noticeable thickening of the remaining film, for drainage at
capillary numbers smaller than unity.8

Giavedoni and Saita9 presented numerical results, both
in the axisymmetric and plane cases, obtained by a boundary
integral method.10 Their work included the inertial forces and
they found a thinning effect due to inertia for Reynolds num-
bers up to 70. This work has been recently completed by
Heil11 in the 2D-channel case using a finite element method.
It demonstrates a small thickening effect due to inertia for
higher Reynolds numbers up to 280.

Here, we propose an extension of the Bretherton’s clas-
sical axisymmetric analysis to include weak fluid inertia ef-
fects. This study is an alternative of the Giavedoni and Saita9

and Heil11 works. Its numerical part is reduced to the reso-
lution of a third-order ordinary differential equation,12,13 and
is inspired by previous theoretical work introducing weak
fluid inertia in plate14–16 and wire coating,17,18 and by 2Da!Electronic mail: deryck@enstimac.fr
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channel drainage.19 In the latter case, the theory takes also
into account the drainage by gravity.

After the presentation of the equations describing the
drainage of a cylinder in Sec. II, they are solved at leading
order in Sec. III using the lubrication approximation. In Sec.
IV, a first-order approximation is used, introducing the iner-
tial terms. Two cases are then studied: Highly viscous liquids
and liquids of low viscosity. The results obtained are com-
pared, respectively, with the Taylor’s experiments2 and the
recent ones by Aussillous and Que´ré.8

II. DESCRIPTION OF THE PROBLEM

We consider an infinite tube of circular geometry~radius
r!, full of liquid and drained by air at a constant velocityV.
In a frame attached to the air bubble, we define the axial
origin and directionx from the apex to the air side. The
radial directiony is chosen from the tube wall inwards. In
these coordinates, the axial and radial liquid velocities areu
andv. In this frame, the walls of the tube have velocityV.
The profile of the film surrounding the bubble ish(x), de-
creasing fromr to the constant valuee for x ranging from 0
to infinity.

The steady-state Navier–Stokes equations in these coor-
dinates are written3

hH ]2u

]x2 1
]2u

]y2 1
1

r 2y

]u

]r J 5
]p
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where h and r are, respectively, the viscosity and specific
mass of the liquid, andp the pressure. The liquid is incom-
pressible, so we have

]v
]y

2
v

r 2y
1

]u

]x
50. ~4!

The boundary conditions at the walls are

for y50, u5V and v50. ~5!

On the air–liquid interface,y5h(x), neglecting the gas vis-
cosity, the stresses are due to the interface curvature and are
written

psnI 2s= snI 5ponI 2gcnI , ~6!

whereg is the surface tension of the liquid andpo the air
pressure. The subscripts means that the value is taken at the
liquid–gas interface. The vectornI is normal to the surface
ands= the viscous stress tensor. They are written
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where the subscriptx means differentiation with respect to
the axial coordinate. The curvaturec is given by

c5
hxx

~11hx
2!3/21

1

~r 2h!A11hx
2

. ~8!

III. LEADING ORDER SOLUTION

Assuming the slope of the thin film to be small and
radial velocity to be much smaller than the axial velocity, the
radial component of the Navier–Stokes equation~3! reduces
to ]p/]y50. The pressure is then uniform in the thin film
and is written, using the radial projection of Eq.~4!

p5ps5po2gc, with c5hxx1
1

r 2h
. ~9!

Equation~6!, in the axial direction yields

]u

]yU
s

50. ~10!

Finally, Eq. ~2!, the axial component of the Navier–Stokes
equation, reduces to

]

]y S ~r 2y!
]u

]yD5
1

h
px~r 2y!, ~11!

may be integrated twice to give the velocity profile

u5V1
1

h
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A last integration gives the fluxQ, which is a constant in
steady-state regime. Its value is related to the thicknesse of
the deposited film by

Q5E
h

r

2pyu dy5E
e

r

2pyV dy. ~13!

Introducing Eq.~12! into Eq. ~13! leads to

FIG. 1. Sketch of a tube full of liquid and drained by an air bubble.
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Finally, since the normalized thicknessE5e/r , ratio be-
tween the thickness of the deposited film and the tube radius,
remains a small parameter, we have truncated Eq.~14! to the
two first terms of its Taylor expansion close toE50. It then
reduces to

YXXX53
12Y

Y3 S 11E
Y21

2 D2
E2

Ca2/3YX , ~15!

when using the same reduced variables as those used by
Bretherton:3 A film thickness scaled bye, the thickness of the
film at infinity (h5eY), and an axial coordinate scaled by a
length,, where,5eCa21/3(x5,X).

We then obtain a generalized version of the
Landau–Levich3,4 equation with the additional terms inE
coming from the cylindrical geometry: The first from the
expression of the flux, the second from the radial curvature.

A. Numerical integration

Since the profile does not depend explicitly onx, we use
the thicknessy as the variable of integration and integrate
numerically a second order differential equation forG(Y)
5YX . This method leads to more stability in the numerical
integration~we have used a commercial code—ode45 rou-
tine from Matlab—based on a 4 to 5 Runge–Kutta
method20!, but does not allow to find a nonmonotonous pro-
file since by construction, we impose a univocal relation be-
tweeny and its derivativeyx .

The integration is started close to the thin film using the
linearized conditions:3,13 Yo511esX, Yo85sesX and Yo9
5s2esX, wheree5esX is a small quantity~1024 in our cal-
culations! and wheres is solution of the following equation
obtained by linearization of Eq.~15!:

s31
E2

Ca2/3s1350. ~16!

The initial conditions forG then is written

G~11e!5se, and
dG

dY
~11e!5s. ~17!

For a given Ca andE, we integrateG from Y511e to 1/E.
Figure 2~a! shows several bubble profiles obtained for Ca
50.05.

We observe that there is a critical thicknessy at which a
matching to a sphere is possible, i.e., there exists a point on
the profile ~small circles in Fig. 2! where the two radii of
curvature are equal

YXX5
E

Ca2/3

1

12EY
. ~18!

With this matching, we insure that the profile ends with a
static zone where the pressure is constant. This matching is
represented in Fig. 2~a!. The profiles are matched at the
circle point with a curve solution ofhzz521/(r 2h) ~dotted
lines!. E50.0973 is the highest value allowing a matching at
Ca50.05. There is no matching feasible forE50.05 for this
value of the capillary number.

B. Results

In Fig. 3, we have compared this maximum matching
thickness~dotted line! with the experimental values obtained
by Taylor ~denoted by squares!. In the same figure, these
results are also compared to the asymptotic matching by
Bretherton@Eq. ~1!, dashed and dotted line#. Both are only
valid for very small capillary numbers, but the denominator
in Eq. ~18! ensures a saturation effect.

In order to improve the accuracy, we used the full ex-
pression of the curvature. The film profile is then given by

CX53
12Y

Y3 S 11E
Y21

2 D , ~19!

FIG. 2. ~a! Approximate curvature. Bubble profile for Ca50.05 andE
50.05, 0.0973, and 0.15. Dash and dotted lines: Walls of the tube. Dashed
lines: approximated spheres (yxx521/(r 2y)). Circles: matching points;
there is no matching forE.0.0973.~b! Exact curvature. Bubble profile for
Ca50.05 andE50.05, 0.1206, and 0.15.
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whereC is the normalized curvature

C5
YXX

~11Ca2/3YX
2 !3/21

E

Ca2/3

1

~12EY!~11Ca2/3YX
2 !1/2.

~20!

With this correction, we obtain more realistic bubble profiles,
as shown in Fig. 2~b!. As previously, for each capillary num-
ber, a maximum thickness allowing matching is found. This
value fits the experimental data well for capillary numbers up
to 0.25 as can be observed in Fig. 3~solid line!. Neverthe-
less, we still observe some discrepancies for higher capillary
numbers which here do not come from inertia since, in the
Taylor’s experiments, the Reynolds numbers (Re5rVr/h)
were always lower than unity.

IV. FIRST-ORDER SOLUTION

To achieve a more accurate solution when the thickness
of the deposited film increases, we need to obtain the first-
order correction the leading order result described in the pre-
vious section. Up to the first order in Ca1/3, the terms previ-
ously neglected have been written using the expressions of
the velocity obtained at the zeroth order.

To first order, the pressure at the liquid–bubble interface
is written

ps52gc12h
]vo

]y U
s

, ~21!

where the subscripto means that the velocity is computed at
the zeroth order. Using the incompressibility of the liquid
@Eq. ~4!# leads to

ps52gc22h
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]x U
s

22h
uos

h
hx , ~22!

whereuo is given by Eqs.~12! and ~13!
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The pressure profile inside the thin film is given by Eq.~3! at
first order:
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, ~24!

and leads together with Eq.~22! to
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At this same order, Eq.~2! is written
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The last step is to integrate this equation three times in order
to obtain the flux as in the previous section and then to
expand the expression versusE. We obtain finally in the
reduced Landau–Bretherton coordinates

CX53
12Y

Y3 S 11E
Y21

2 D13
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Y3 H YXXYF4327Y

40
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21291270Y261Y2

240 G
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2F24122Y
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35
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1E
172821131Y2171Y21134Y3

32 G , ~27!

whereC is still the reduced curvature given by Eq.~20!. F
5rgr /h25Re/Ca is a nondimensional number which de-
pends only on the nature of the liquid and of the radius of the
tube. For water in a tube of radius 1 mm,F572 000. For
glycerol in the same tube,F50.36.

In Eq. ~27!, two new terms appears, compared to Eq.
~19!, both expanded in powers ofE. The first one is a cor-
rection to the lubrication approximation. After Bretherton,
Spierset al.21 introduced this correction in the case of plate
coating. The second one is an inertial correction. First intro-
duced by Esmail and Hummel14 for the plate coating prob-
lem, this inertial term has been shown to lead to a thickening
of the film entrained by a plate16 or a fiber withdrawn from
of a liquid bath.18

Together with Eq.~20!, Eq. ~27! leads again to a third
ordinary differential equation for the film profile. The nu-
merical integration still starts from a point close to the thin
film: Y511esX, wheres is obtained by the linearization of
the system. With the new terms, Eq.~16! is replaced by

FIG. 3. Thickness of the deposited film scaled byr vs the capillary number.
Dashed and dotted line: Eq.~1!. Dashed line: Maximum thickness allowing
a matching with a spherical cap using an approximated curvature. Solid line:
the same, but using an exact curvature expression. Squares: Taylor’s experi-
ments~Ref. 2!.
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The final step is the same as previously. For a given param-
eter numberF, we search, for each value of the capillary
number Ca, the maximum value of the reduced film thick-
nessE allowing a matching of the film profile with a spheri-
cal cap. This has been done in two cases. First, withF50,
for liquids of high viscosity, and then for parameter numbers
higher than 10 000, representative of liquids of low viscosity.

A. Highly viscous liquids

For highly viscous liquids, the inertial correction re-
mains negligible for capillary number less than unity, as is
the case of the experiments by Taylor.2 Figure 4 compares
them with the maximum thickness allowing a bubble profile
ending with a spherical cap withF50. The agreement is
quite good. In Fig. 5, several bubble shapes obtained for Ca
ranging from 0.001 to 1 are compared. The matching points,

not shown, are close to the axis of revolution except for
Ca51. In that latter case, the matching occurs at half the
bubble size. In all cases we observe that the bubbles are only
slightly deformed: the thin film of constant thickness is at-
tained above a distancex from the top of the cap close to
(r 2e).

B. For liquids of low viscosity

Finally, the system of equations has been integrated us-
ing as parameterF519 330 and 67 670, values representa-
tive of a low viscosity silicone oil drained out of a tube of
radius 0.4 and 1.4 mm. The maximum thickness curves are
compared in Fig. 6 with the Aussillous and Que´ré
experiments.8

We observe that the threshold and the beginning of
thickening due to inertia are well represented by the theory.
Nevertheless, for higher capillary numbers, the theory over-
estimates the experimental values obtained. Several hypoth-
eses may be put forward to explain this discrepancy. First,

FIG. 4. Taylor’s experiments~Ref. 2! and the maximum value ofE allowing
a bubble profile ending like a sphere forF50.

FIG. 5. From left to right: bubble shapes for Ca50.001; 0.01; 0.1, and 1.
Dash and dotted lines: Positions of the walls.

FIG. 6. ~a! Experimental deposited film thicknesses and the theoretical
maximum ones allowing a matching with a spherical cap. Black points:
Experiments with hexamethyldisiloxane~Ref. 8! ~r50.76 kg/m3, h50.5 cP
andg515.9 mN/m! and a tube of radius 0.4 mm (F519 330). Solid line:
Theory with the same parameter. White points: Taylor’s experiments~Ref.
2!. Dashed line: Theory withF50. ~b! Experimental deposited film thick-
nesses and the theoretical maximum ones allowing a matching with a spheri-
cal cap. Black points: Experiments with hexamethyldisiloxane~Ref. 8! and
a tube of radius 1.4 mm (F567 670). Solid line: Theory with the same
parameter. White points: Taylor’s experiments~Ref. 2!. Dashed line: Theory
with F50.
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the theory presented here includes inertia as a first order
perturbation and therefore has no reason to describe high
inertia situations. Secondly, the method used computes only
steady-state axisymmetric bubble profiles, with no oscilla-
tions of the film thickness and of maximum thickness for a
given capillary number. This solution is perhaps not the most
stable at high velocity. In particular, further work should be
made to check if the maximum thickness criterion leads, at
high velocity, to the less dissipative solution.

Finally, there are some limitations to this visco-inertial
regime in the Aussillous and Que´ré’s experiments.8 As de-
scribed by the authors, the finite length of the liquid reservoir
leads to a deposited film thickness limited by the viscous
boundary layer. Another point is that the steady-state visco-
inertial regime is not reached in these experiments, which
were performed with an air–liquid front displacement of
about 20 cm. But it can be observed in the simulations that
the size of the transition zone between the apex and the thin

film, given by L5,/s becomes very large compared to the
tube radiusr at high Reynolds numbers. As an example, we
have plotted on Fig. 7 the profiles obtained forF567 670.
We observe that, contrary to theF50 case~Fig. 5!, the
bubble is highly deformed for Ca>0.01. In Fig. 8, we have
plotted this lengthL of the transition zone, scaled byr, ver-
sus the capillary number. We observe that as long as inertia
remains negligible, the bubble length is small compared to
its width. But when inertia becomes important~Re.1000!,
the bubble length grows and may reach about 10 cm.

V. CONCLUDING REMARKS

We presented an extension of the classical axisymmetric
Bretherton theory, including weak inertial effects, based on a
regular perturbation method. By numerical integration of the
film profile and looking for the maximum value of the de-
posited film thickness allowing a matching with a spherical
cap, a velocity dependence of this thickness is obtained and,
for liquids of low viscosity, a thickening due to inertia is
observed. The agreement between these numerical results
and the experimental results up to moderate Reynolds num-
bers~Re,1000! is quite good. This thickening is not what is
reported by Giavedoni and Saita.9 They report a slight thin-
ning due to inertia for Reynolds numbers up to 70. We in-
deed retrieve this result when looking at low Reynolds orF
numbers, as shown on Fig. 9 whereE, the film thickness
scaled byr, is plotted versus the numberF for different
capillary numbers. In particular, it can be noticed that this
thinning, which may attain 20% for Ca51, is maximum for
Re around 100. This could explain why the last experimental
points by Taylor are slightly under the theoretical curve in
Fig. 4. The values ofF for the experiments he performed at
a capillary number greater than one may be evaluated at
around 0.5~glycerol and tube radius of 1.5 mm!. In Fig. 9, it
can be seen that this leads to a correction of 6% for Ca51.

Finally, some points remain to be investigated. The
thickness numerically obtained is a maximum thickness and
it is not clear why it is this thickness which gives good
correspondence with the experimental values.

FIG. 7. From left to right: bubble shapes forF567 670 and Ca50.001,
0.01, 0.1, and 1.

FIG. 8. Size of the transition zone scaled byr vs Ca. Black line:F50.
Dashed and dotted line:F519 330. Dashed line:F567 670.

FIG. 9. Maximum deposited thickness~scaled byr! E vs F for three capil-
lary numbers. The circles indicates Re51000.
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Another remaining issue is the description of the rapid
draining of capillaries, for Reynolds numbers higher than
1000. For the present problem, a finite Reynolds numbers
theory, like the numerical theory by Heil,11 is necessary.
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