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A SEMINUMERICAL APPROACH FOR HEAT DIFFUSION IN HETEROGENEOUS MEDIA: ONE EXTENSION OF THE ANALYTICAL QUADRUPOLE METHOD

The analytical thermal quadrupole method is suitable for the modeling of multidimensional transient heat diffusion in homogeneous media, especially when applied to multilayered media. Here, we propose a new approach in order to extend the quadrupole frame to heterogeneous media. A seminumerical general solution is proposed for transient heat transfer in finite or semi-infinite media in both axial and radial coordinate systems, when the variation of thermal properties is one-dimensional. The presentation of the method is explained with a 2-D two-layer slab case. Some application examples are then presented from this basic case. The analytical expressions allow deep insight about the physical phenomenon.

INTRODUCTION

The basic thermal quadrupole formalism is a very eÅcient method for onedimensional linear heat conduction modeling and calculation in multilayered systems [START_REF] Degiovanni | Conduction dans un ``mur''' multicouche avec sources: Extension de la notion de quadripoà le[END_REF][START_REF] Batsale | Extension de la notion de quadripole thermique aÁ l'aide de transformations inte grales: Calcul du transfert thermique au travers d'un de faut plan bidimensionnel[END_REF]. For transient conduction in a homogeneous material, a linear intrinsic transfer matrix relates the input and output temperature and heat ¯ux after a Laplace transformation and integral space transforms (Fourier or Hankel). The main advantage of this relationship is to make easy the representation of multilayered systems by multiplying the corresponding quadrupole matrices.

In the case of heterogeneous materials, numerous analytical solutions have been developed for anisotropic conductive heat transfer in some particular composite materials such as two-layer bodies [START_REF] Aviles-Ramos | Exact Solution of Heat Conduction in Composite Materials and Application to Inverse Problems[END_REF][START_REF] Yan | Thermal Characteristics of Two-Layered Bodies with Embedded Thin-Film Heat Source[END_REF]. The orthogonal expansion technique can be used to solve the homogeneous problem of a one-dimensional composite medium of ®nite thickness as the Laplace transformation is used for in®nite and semi-in®nite case [START_REF] Tittle | Boundary Value Problems in Composite Media[END_REF]. The Green's functions approach is proposed in [START_REF] Ozisik | Heat Conduction[END_REF] for solving the corresponding one-dimensional nonhomogeneou s problem. For those cases, a classical quadrupole multilayer approach would be eÅcient for solving the problem, especially when some direct relationship between interface temperature and heat ¯ux density taken as ``input'' and ``output'' variables are to be found [START_REF] Ph | A Two-Port Network Formalism for 3D Heat Conduction in Multilayered Media[END_REF].

The boundary-elemen t approach, based on discretized boundary integral equations [START_REF] Brebbia | Boundary Element Techniques: Theory and Application in Engineering[END_REF][START_REF] Pasquetti | Boundary Element Approach for Transient and Nonlinear Thermal DiÄusion[END_REF], is helpful when solving heat conduction problems in multidimensional cases. However, this approach is not suitable for heterogeneous media unless the number of interfaces is low. Nevertheless, the boundary-elemen t method exhibits some similarities to the thermal quadrupole formalism, provided that for both techniques the state variables and ¯ux are calculated ®rst on the boundaries, and not necessarily on the entire domain. This is an important point when a direct relationship between boundary temperature and heat ¯ux is sought, such as in the case of inverse methods implementation. Also, for both methods, not gridding the whole domain is of substantial bene®t when dealing with in®nite or semi-in®nite media.

The present study deals with the problem of ®nding a generalized intrinsic relationship between temperature and heat ¯ux at the boundaries of a heterogeneous medium with one-dimensional varying properties in the layer direction. Such cases are very important for applications to the development of thermal nondestructive evaluation methods by infrared thermography [START_REF] Mourand | New Sequential Method to Process Noisy Temperature Response from Flash Experiment Measured by Infrared Camera[END_REF]. The extension of the thermal quadrupole formalism is obtained from one-dimensional discretization in the properties variation direction, within a control-volum e formulation [START_REF] Patankar | Numerical Heat Transfer and Fluid Flow[END_REF], coupled with the semianalytical solution of the corresponding vectorial diÄerential equation. The principle of this new method is ®rst presented in the case of a two-layer basic case of heterogeneity in either Cartesian or radial coordinates, with homogeneous or nonhomogeneou s boundary conditions. Some aspects related to the usual analytical quadrupole method will be underlined. Some practical aspects of the use of the resulting functions of matrices will then be explained in the case of simple application examples such as a two-layered medium, a single squared heterogeneity, and a periodic medium.

NOMENCLATURE

BASIC CASE: TWO-DIMENSIONAL CONDUCTION IN ONE-DIRECTION, VARYING-PROPERTIES MEDIUM

In a medium with one-dimensional varying thermal properties, such as the one depicted in Figure 1, two-dimensional transient heat conduction is governed by the following equation:

k … z † x p q qx x p qT qx ≥ ´ ‡ q qz k … z † qT qz ≥ ´ˆrc … †… z † qT qt … 1a †
where p ˆ0 slab 1 cylinder

(
The system is assumed to be isothermal (T ˆ0) at time zero. We consider linear boundary conditions such as

¡ k … 0 † qT qz ≠ ≠ ≠ ≠ z ˆ0 ‡ h 0 T … x; 0; t † ˆf0 … x; t † z ˆ0; x 1 < x < x 2 … 1b † Figure 1. One-dimensional heterogeneous medium. k … e † qT qz ≠ ≠ ≠ ≠ z ˆe ‡ h e T … x; e; t † ˆfe … x; t † z ˆe; x 1 < x < x 2 … 1c † ¡ k … z † qT qx ≠ ≠ ≠ ≠ x ˆx1 ‡ h x1 T … x 1; z; t † ˆfx1 … z; t † x ˆx1; 0 < z < e … 1d † k … z † qT qx ≠ ≠ ≠ ≠ x ˆx2 ‡ h x2 T … x 2; z; t † ˆfx2 … z; t † x ˆx2; 0 < z < e … 1e †
Space discretization of Eqs. ( 1) is performed versus the z direction. N new variables are introduced as

T i … x; t † ˆ1 Dz i Z i ‡ i ¡ T … x; z; t † dz … 2a †
where i ¡ and i ‡ indicate the ith grid interfaces. Equations ( 1) are then integrated relative to z:

k i Dz i x p q qx x p qT i qx ≥ ´ ‡ j i ¡ ¡ j i ‡ ˆrc … † i Dz i qT i qt … 2b †
where j is heat ¯ux density in the z direction. The heat ¯ux j is linearized, and the interface thermal conductances H i ¡ and H i ‡ are introduced in conservative form:

H i ¡ ˆDz i ¡ 1 2k i ¡ 1 ‡ Dz i 2k i ≥ ¡1 and H i ‡ ˆDz i 2k i ‡ Dz i ‡ 1 2k i ‡ 1 ≥ ¡1 … 2c † j i ¡ ˆHi ¡ … T i ¡ 1 ¡ T i † and j i ‡ ˆHi ‡ … T i ¡ T i ‡ 1 † … 2d †
Performing a Laplace transformation for i ˆ2 to N ¡ 1, such as

T i … x; s † ˆZ1 0 exp …¡ st † T i … x; t † dt … 3a †
and substituting this expression into Eq. (2b) yields

¡ H i ¡ T i ¡ 1 ‡ ‰ H i ¡ ‡ H i ‡ ‡ … rc † i Dz i s ä T i ¡ H i ‡ T i ‡ 1 ¡ k i Dz i 1 x p d dx x p dT i dx ≥ ´ˆ0 … 3b †
Both boundary conditions at z ˆ0 and z ˆe also have to be expressed in the same way in order to obtain the corresponding equations at node i ˆ1 and i ˆN.

For general boundary conditions such as Eqs. (1b), (1c), that is, homogeneous or nonhomogeneou s ones, the general corresponding equations at nodes 1 and N are given respectively by

‰ c 1 ‡ H ‡ 1 ‡ … rc † 1 Dz 1 s ä T 1 ¡ H ‡ 1 T 2 ¡ k 1 Dz 1 1 x p d dx x p dT 1 dx ≥ ´ˆF 1 … x; s † … 3c † ¡ H N ¡ T N ¡ 1 ‡ ‰ c N ‡ H N ¡ ‡ … rc † N Dz N s ä T N ¡ k N Dz N 1 x p d dx x p dT N dx ≥ ´ˆF N … x; s † … 3d †
where the coeÅcients c 1 , c N , F 1 , and F N are given in Table 1. F 1 and F N are expressed as Laplace transform functions, while c 1 and c N are real coeÅcients.

Introducing the vector T of the N Laplace transformed temperatures at the position x, Eqs. (3) can be written in the matrix form 

K ¡ 1 M == ‡ Gs ¡ ¢ T ¡ 1 x p d dx x p d T dx ≥ ´ˆF … 4 † with M == ˆc1 ‡ H 1 ‡ ¡ H 1 ‡ 0 ¡ H 2 ¡ H 2 ¡ ‡ H 2 ‡ ¡ H 2 ‡ 0 ¡ H 3 ¡ H 3 ¡ ‡ H 3 ‡ ¡ H 3 ‡ 0 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¡ H i ¡ H i ¡ ‡ H i ‡ ¡ H i ‡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¡ H N ¡ c N ‡ H N ¡ 2 
G ˆdiag f‰… rc † 1 Dz 1 … rc † 2 Dz 2 ¢ ¢ ¢ … rc † N Dz N äg K ˆdiag ‰… k 1 Dz 1 ¢ ¢ ¢ k N Dz N †ä T ˆ‰T 1 T 2 ¢ ¢ ¢ T N ä t and F ˆ‰F 1 0 ¢ ¢ ¢ 0 F N ä t
where the operator diag is used in order to build a diagonal matrix from the corresponding vector.

The square matrix K ¡ 1 … M == ‡ Gs † on the left side of Eq. ( 4) is independant of x.

Equation ( 4) can be solved directly by the diagonalization of this matrix. The diagonalization of this system yields where V is a diagonal matrix. Introducing the temperature vector in the new basis, 4) is then written as

K ¡ 1 … M == ‡ Gs † ˆPOP ¡ 1 … 5a †
V ˆP¡ 1 T … 5b † Equation (
OV ¡ 1 x p d dx x p dV dx ≥ ´ˆP ¡ 1 F … 5c †
It is very important to point out that in Eq. (5c), only the unknown vector V and boundary condition vector F can be x-dependent. The operator de®ned in Eq. (5a) can be generalized to a three-dimensional situation. This involves a spatial integral transformation in the third direction (y or y) if the medium is homogeneous following the third direction and generalizes matrix G. If the medium is nonhomogeneou s following the third direction, the gridding is then 2-D (following x and y or y) and only matrix M == must be changed.

The last expression (5c) is a simple second-order ordinary diÄerential diagonal system. Such a system can be solved with functions of matrices. This will be explained in the case of homogeneous or nonhomogeneou s boundary conditions. One advantage is then to obtain symbolic expressions in the case of in®nite media or asymptotic expansions for instance in the case of in®nitely thin layers.

Homogeneous Boundary Conditions

For homogeneous boundary conditions, F is zero. Each line of Eq. (5c) can be solved directly in a scalar way, due to the fact that V is a diagonal matrix, and the corresponding equation is homogeneous. The general results can be arranged in a matrix form, applying the quadrupole formalism results. Care must be taken not to commutate the matricial products.

If F is zero, each line of Eq. (5c) is

1 x p d dx x p d v k dx ≥ ´¡ d k v k ˆ0 … 6a †
The general solution of Eq. (6a) has the form

v k ˆG1 H p 1 … x; s † ‡ G 2 H p 2 … x; s † … 6b †
where the basic functions H p 1 and H p 2 depend on the geometry: °p ˆ0, slab:

H 0 1 ˆcosh … ÅÅÅÅ Å d k p x † H 0 2 ˆsinh … ÅÅÅÅ Å d k p x † or H 00 1 ˆexp … ‡ ÅÅÅÅ Å d k p x † H 00 2 ˆexp …¡ ÅÅÅÅ Å d k p x †
°p ˆ1, cylinder:

H 1 1 ˆI0 … ÅÅÅÅ Å d k p x † H 1 2 ˆK0 … ÅÅÅÅ Å d k p x †
where I 0 and K 0 are the modi®ed Bessel functions of order zero of the ®rst and second kinds, respectively. The coeÅcient d k is a function of the Laplace variable s, but is independant of x.

The scalar thermal quadrupole formalism is derived from the solution of Eq. (6a), by eliminating the integration constants G 1 and G 2 in Eq. (6b) in order to ®nd a linear relationship between temperature and heat ¯ux in the Laplace domain [START_REF] Degiovanni | Conduction dans un ``mur''' multicouche avec sources: Extension de la notion de quadripoà le[END_REF].

Introducing the ¯ux expressed in the eigenvalues basis as

j k ˆ¡S … p † dv k dx with S … p † ˆ…2px † p … 6c †
the scalar thermal quadrupole at x 1 and x 2 location is written in the following form:

v k j k " # x1 ˆAk B k C k D k " # v k j k " # x2 … 6d †
The scalar terms of the quadrupole depend on the geometry [START_REF] Zhang | Me trologie par me thode quasi-instationnaire: Mode lisation, identi®cation, et application aÁ la caracte risation de solides[END_REF]. The same quadrupole formalism can now be implemented in a vectorial form. Using vector V of (v k ) and introducing the ¯ux J V as

J V ˆ¡S … p † dV dx … 7a †
and the equivalent vectorial form of the previous quadrupole expression is

V J V " # x1 ˆAV B V C V D V " # V J V " # x2 … 7b †
where A V , B V , C V , and D V are diagonal matrices built with the scalar terms corresponding to Eq. (6d ), as shown in Table 2. Index V refers to the fact that the temperature and heat ¯ux vectors are written in the eigenvalues basis of matrix 2, some functions of diagonal matrices are written: a function applied to a diagonal matrix is de®ned as an operator where the function applies to each diagonal element of the matrix. The boundary conditions following the x direction are given as a relationship between temperature and heat ¯ux such as Eqs. (1d)±(1e), but are unknown in the V basis. It is thus convenient to express J V as a function of heat ¯ux vector F:

K ¡ 1 … M == ‡ Gs † . In Table
F ˆ¡S … p † K d T dx … 8a † Table 2.
Quadrupole term in the eigenspace for slab and cylinder:

L ˆx2 ¡ x1; X1 ˆÅÅÅÅ Å V p x1; X2 ˆÅÅÅÅ Å V p x2 Geometry Slab (p ˆ0) Cylinder ( p ˆ1) Av cosh … ÅÅÅÅ Å V p L † X2 I0 … X1 † K1 … X2 † ‡ I1 … X2 † K0 … X1 † ‰ ä Bv sinh … ÅÅÅÅ Å V p L †… ÅÅÅÅ Å V p † ¡ 1 1 2p I0 … X2 † K0 … X1 † ¡ I0 … X1 † K0 … X2 † ‰ ä Cv … ÅÅÅÅ Å V p † sinh … ÅÅÅÅ Å V p L † 2pX1X2 I1 … X2 † K1 … X1 † ¡ I1 … X1 † K1 … X2 † ‰ ä Dv cosh … ÅÅÅÅ Å V p L † X1 I0 … X 2 † K1 … X 1 † ‡ I1 … X 1 † K0 … X 2 † £ ¤
The components of the diagonal matrix K are the thermal conductivity multiplied by the space step of each layer. The components of the heat ¯ux vector F are the heat ¯ux through each layer. Substituting Eqs. (5b) and (7a) into Eq. (8a) yields

F ˆKPJ V … 8b †
Using Eqs. (5b) and (8b), it is now possible to express the V-form quadrupole given by Eq. (7b) as a generalized thermal quadrupole in terms of temperature and heat ¯ux vectors, such as

P ¡ 1 T … KP † ¡ 1 F " # x1 ˆAV B V C V D V " # P ¡ 1 T … KP † ¡ 1 F " # x2 … 8c †
and the generalized thermal quadrupole is then

T 1 F 1 " # ˆA B C D " # T 2 F 2 " # with A ˆPA V P ¡ 1 B ˆPB V … KP † ¡ 1 C ˆKPC V P ¡ 1 D ˆKPD V … KP † ¡ 1 … 9 †
As an extension of the classical quadrupole formalism, Eq. ( 9) is a generalized intrinsic relationship between temperature and ¯ux (versus x) vectors on both boundaries of the corresponding heterogeneous medium. This formalism is useful for multicomponent heterogeneous systems, if only an ``input±output'' relationship is desired: in that case, the quadrupoles obtained for each element are to be multiplied. Equation ( 9) is also valid for the steady-state case, when replacing the matrix

K ¡ 1 … M == ‡ Gs † in Eq. (4) by the product K ¡ 1 M == .
It is necessary, however, to point out an important diÄerence from the scalar case: the ``determinant'' AD ± BC is not equal to the identity matrix (although A V D V ¡ B V C V is), and also A 6 ˆD, even if A V ˆDV . This result implies that the matricial quadrupole cannot be represented through an equivalent generalized electrical impedance approach, except in the eigenvectors space, where the potential is given by vector V, and the current by the gradient vector J V .

Nonhomogeneous Boundary Conditions

For nonhomogeneou s boundary conditions, at z ˆ0 and z ˆe, each line of Eq. (5c) is written as

1 x p d dx x p dv k dx ≥ ´ ‡ g k ˆdk v k … 10a †
where the apparent source term g k represents the kth element of vector P ¡ 1

F. The solution of Eq. (10a) has the form

n k ˆG1 H p 1 … x; s † ‡ G 2 H p 2 … x; s † ‡ y … x; s † … 10b †
where y … x; s † is a particular solution of Eq. (10a). This solution can be obtained from the following expansion [START_REF] Degiovanni | Conduction dans un ``mur''' multicouche avec sources: Extension de la notion de quadripoà le[END_REF]:

y k ˆd¡ 1 k g k ‡ d ¡ 2 k d 2 g k dx 2 ‡ d ¡ 3 k d 4 g k dx 4 ‡ d ¡ 4 k d 6
g k dx 6 ‡ ¢ ¢ ¢ … 10c † Equation (10c) can be expressed in more compact form as

Y ˆO¡ 1 P ¡ 1 F ‡ O ¡ 2 P ¡ 1 d 2 F dx 2 ‡ O ¡ 3 P ¡ 1 d 4 F dx 4 ‡ ¢ ¢ ¢ … 10d †
The general input±output relationship in the quadrupole form corresponding to Eqs. (5c) and (10d) is then implemented from its scalar equivalent [START_REF] Zhang | Me trologie par me thode quasi-instationnaire: Mode lisation, identi®cation, et application aÁ la caracte risation de solides[END_REF], and Eq. ( 9) for the nonhomogeneou s boundary conditions case turns out to be

T 1 F 1 " # ˆA B C D " # T 2 F 2 " # ¡ X W " # … 11 † with X ˆ¡P ‰ Y 1 ¡ A V Y 2 ‡ S … p † B V Y 0 2 ä W ˆKP … † ¡ 1 ‰ S … p † Y 0 1 ‡ C V Y 2 ¡ S … p † D V Y 0 2 ä
This development is similar to the corresponding homogeneous scalar case [13, Chap. 3, pp. 87±89].

Asymptotic Expansions for a Thin Medium

Functions of matrices consist of a symbolic representation of complex phenomena. One advantage is being able to implement asymptotic expansions in order to obtain simpli®ed expressions. One example can be considered in the case of an in®nitely thin medium. In fact, Eq. ( 4) can be solved for some particular cases by introducing such functions of matrices directly. For instance, in the slab case ( p ˆ0), with homogeneous boundary conditions (F ˆ0), Eqs. ( 4) and (8a) can be rearranged to

d dx T F " # ˆ0 ¡ K ¡ 1 ¡ M == ‡ Gs ¡ ¢ 0 " # : T F " # x … 12a †
Calculation of the previous system can be implemented by the use of functions of matrices. The formal solution of Eq. (12a) yields

T … x † F … x † " # ˆexp 0 ¡ K ¡ 1 x ¡… M == ‡ Gs † x 0 " # Á ! : T … 0 † F … 0 † " # … 12b †
and this equation can be written in a quadrupole way between 0 and L as

T … 0 † F … 0 † " # ˆexp 0 K ¡ 1 L … M == ‡ Gs † L 0 #! : T … L † F … L † " # … 12c †
The above example of using a function of matrices such as Eq. (12c) could also apply in a more general frame for Eqs. [START_REF] Pasquetti | Boundary Element Approach for Transient and Nonlinear Thermal DiÄusion[END_REF], and some equivalent matrix functions could be de®ned for the quadrupole matricial terms A, B, C, and D. In the case of various longitudinal multilayer slabs, the corresponding matrices are simply multiplied. Direct methods to compute the exponential of a matrix are generally less timeconsuming than classical numerical methods based on gridding versus x. However, no full eÅcient method exists to compute such functions easily. The two main methods [START_REF] Moler | Nineteen Dubious Ways to Compute the Exponential of a Matrix[END_REF] consist of the matrix decomposition method (diagonalization of the matrix to be applied to the exponential function) and the asymptotic expansion method (Taylor expansion of the exponential function). The main problem arising with both methods is the ill conditioning of the system, especially with increasing values of L.

The Taylor expansion of the exponential function yields, if the length L is low, a ®rst-order approximation with respect to L, and a quite simpli®ed model is

T … 0 † F … 0 † " # ˆI K ¡ 1 L … M == ‡ Gs † L I " # T … L † F … L † " # … 12d †
The previous expression is quite suitable for the thin heterogeneity case. When a thin insulating layer has to be considered (delamination in a composite multilayered sample), and the inertial and conductive eÄects in the z direction are negligible, it yields

T … 0 † F … 0 † " # ˆI K ¡ 1 L 0 I " # T … L † F … L † " # … 13a †
Thus the local heat ¯ux is conservative.

In the opposite case, if a thin metallic inclusion has to be considered, the temperature continuity is preserved and only a ¯ux redistribution will be added:

T … 0 † F … 0 † " # ˆI 0 … M == ‡ Gs † L I " # T … L † F … L † " # … 13b †
The asymptotic expansion allows us to avoid computing the eigenvalues and can be used as a direct model. Unfortunately, when L is increased, such an asymptotic expansion is not suitable. On the other hand, the analysis of the problem in the eigenspace can be considered in order to study a semi-in®nite medium.

Semi-Infinite Medium

When one of the boundaries of the medium is located toward in®nity in the x direction (x 2 in Figure 1), the corresponding coeÅcient G 1 in the scalar Eq. (6b) has to be zero, in order to get a ®nite solution. Then, the vector of the constants G 2 can be determined through a particular value, and Eq. (6b) can be written in the matrix form

V … x † ˆHp … ÅÅÅ Å O p :x † : V … x 1 † H p … ÅÅÅ Å O p :x1 † … 14a †
where H p is the exponential function exp( ) if p ˆ0 (slab) or the modi®ed Bessel function of order zero of the second kind K 0 if p ˆ1 (cylinder), and x 1 is any particular point in the semi-in®nite medium. According to Eqs. (5b) and (14a), Eq. (8a) can now be expressed, for any x, as

F … x † ˆ¡S … p † K dT … x † dx ˆ¡S … p † KP dV … x † dx F … x † ˆ¡S … p † KP ÅÅÅ Å O p :x dH p … ÅÅÅ Å O p x † dx : V … x 1 † H p … ÅÅÅ Å O p :x1 † F … x † ˆ¡S … p † KP ÅÅÅ Å O p :x dH p … ÅÅÅ Å O p x † =dx H p … ÅÅÅ Å O p :x1 † P ¡ 1 T … x 1 † … 14b †
Equations … 14a † ±(14b) can also be arranged in order to ®nd a direct relationship between the Laplace temperature vector T 1 and Laplace heat ¯ux vector F 1 at the position x 1 :

T 1 ˆ¡ 1 S … p † P H p … ÅÅÅ Å O p :x1 † ÅÅÅ Å O p :x1 dH p dx ¡ ¢ … ÅÅÅ Å O p :x1 † P ¡ 1 K ¡ 1 F 1 ˆM1F 1 … 14c †
The operator M1 describing the semi-in®nite medium, and de®ned by Eq. (14c), yields a direct generalized relationship between the input temperature and heat ¯ux vectors of the semi-in®nite medium. Depending on the geometry, M1 can be expressed as a function of matrices such as °p ˆ0, slab:

M x ˆP 1 ÅÅÅ Å O p P ¡ 1 K ¡ 1 … 14d † °p ˆ1, cylinder of internal radius r: M r ˆ1 2pr P K 0 … ÅÅÅ Å O p r † ÅÅÅ Å O p K 1 … ÅÅÅ Å O p r † P ¡ 1 K ¡ 1 … 14e †
Such expressions are very eÅcient compared to classical numerical methods because they avoid gridding in the semi-in®nite direction.

TWO-LAYER SLAB CASE: ANALYTICAL SOLUTION AND VALIDATION

Two-Dimensional Conduction in a Two-Layer Slab

We consider steady-state conduction in a longitudinal two-layer slab as illustrated in Figure 2a. In this case, the analytical methods are diÅcult to implement, since the use of an integral transform relative to the z coordinate requires numerical calculation of the eigenvalues related to the two-layer heterogeneity.

Assuming, for instance, that the boundary condition at x ˆL is 9) and Table 2 yield the temperature ®eld as where T x is the temperature vector versus the z direction at the x location, and

T L ˆ0 ¢ ¢ ¢ 0 0 ‰ ä t , both Eqs. (
T x ˆP sinh ÅÅÅ Å O p … L ¡ x † h i ÅÅÅ Å O p cosh … ÅÅÅ Å O p L † h i ¡ 1 ª º KP … † ¡ 1 f … 15a †
f ˆq: Dz 1 ¢ ¢ ¢ Dz N ‰ ä t
is the wall heat ¯ux vector. Such an expression can present some diÅculties because the sinh and cosh functions can be unde®ned by the computer when L tends to in®nite or large values. This point is one of the disadvantage s related to the use of functions of matrices, such as cosh, sinh, or exp, which may introduce excessively large diÄerences between the lowest and highest eigenvalues of the matrix under consideration. One way to avoid such a problem is to regularize the eigenvalues, and this will be shown in the next example. Here, the input wall temperature vector at x ˆ0 can be expressed as 15b) is stable for any length L, because the hyperbolic tangent function is. Both Eqs. (15a) and (15b) also would be suitable for transient transfer, assuming they would be written in the Laplace space. The temperature ®eld computed from Eq. ( 15a) is shown in Figure 2b.

T 0 ˆP tanh … ÅÅÅ Å O p L † ÅÅÅ Å O p " # KP … † ¡ 1 f … 15b † Equation (

Analytical Solution and Validation for the Two-Layer Slab Steady-State Case

Solving analytically the previous two-layer slab case in transient state is also possible through an integral transform approach. Applying a cosine Fourier transform on x and Laplace on time to temperature in medium 1 yields the nonhomogeneou s equation

d 2 t dz 2 ¡ g 2 t ‡ q k 1 s ˆ0 … 16 † where t … b n ; z; s † ˆR 1 0 R L 0 T … x; z; t † exp …¡ st † cos … b n x † dx dt; g is the generalized frequency g ˆÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ b 2 n ‡ s=a 1
q and b n ˆ…2n ‡ 1 † p=2L are the discrete eigenvalues corresponding to the boundary-value problem relative to x. In the Fourier-Laplace space, a direct linear relationship can be deduced between temperature and heat ¯ux in the z direction, at z ˆ0 and z ˆe1 :

t … b n ; z ˆ0; s † c … b n ; z ˆ0; s † ˆ0 " # ˆA1 B 1 C 1 D 1 " # t … b n ; z ˆe1; s † c … b n ; z ˆe1; s † " # ¡ X 1 Y 1 " # … 17a †
where X 1 and Y 1 are obtained from a particular solution of Eq. ( 16) and A 1 , B 1 , C 1 , and D 1 are the classical slab quadrupole terms, but expressed in the Fourier-Laplace space:

A 1 ˆD1 ˆcosh … ge 1 † B 1 ˆ1 gk 1 sinh … ge 1 † C 1 ˆgk 1 sinh … ge 1 † X 1 ˆq k 1 sg 2 ‰ cosh … ge 1 † ¡ 1 ä and Y 1 ˆq sg sinh … ge 1 †
The same approach is applied to medium 2, assuming that temperature and heat ¯ux are conservative at the interface z ˆe1 :

t … b n ; e 1; s † c … b n ; e 1; s † " # ˆA2 B 2 C 2 D 2 " # t … b n ; e 2; s † c … b n ; e 2; s † ˆ0 " # ¡ X 2 Y 2 " # … 17b †
where index 2 indicates that the corresponding terms are calculated for medium 2. The temperature at the interface is calculated from Eqs. [START_REF] Quintard | One and Two-Equation Models for Transient DiÄusion Processes in Two-Phase Systems[END_REF] as

t … b n ; e 1; s † ˆsinh ‰ g … e 1 ‡ e 2 †ä k 1 cosh … ge 2 † sinh … ge 1 † ‡ k 2 cosh … ge 1 † sinh … ge 2 † q g 2 s … 18 †
This expression has to be inverted. For the steady-state case, g ≤ b n , only inverse Fourier transform has to be performed: 17) can also be used in order to determine the temperature at z ˆ0 and z ˆe2 . As a validation test for the quadrupole extension method, this analytical solution is compared to the closest nodes corresponding to the temperature vector given by Eq. (15b). Steady-state temperature versus x at z ˆ0 (boundary of medium 1) and z ˆe1 (interface) are ploted in Figure 3a. The resulting curves exhibit quite good agreement between the analytical solution and our quadrupole extension approach. The interface temperature diÄerence between the analytical and our semianalytical solution is shown as an error plot in Figure 3b. This error is less than 0.25%.

T … x; z ˆe1 † ˆ2 L X 1 n ˆ0 cos … b n x † t … e 1; b n † … 19 † Equations (
For clarity reasons, validation results are given only for the steady-state case, but they work as well for the transient case. A numerical Laplace inversion has to be performed, using for instance a Gavert-Stehfes t algorithm [START_REF] Stehfest | Remark on Algorithm 368: Numerical Inversion of Laplace Transform[END_REF].

APPLICATION EXAMPLES: SOME PRACTICAL ASPECTS

The numerical implementation of previous methods is very convenient with a matrix solver such as Matlab [START_REF]MATLAB User's Guide[END_REF]. Nevertheless, several numerical problems could arise and must be tackled, and will be explained in the case of some simple application examples such as a two-temperature model, a single squared heterogeneity, and a periodic medium.

Two-Nodes Problem or Two-Temperature Model in a Two-Phase Medium

The two-nodes problem is both a simple and an interesting case, because the matrices and functions of matrices are relatively easy to implement with only two eigenvalues. The corresponding matrices can be studied analytically, and thus make possible a better understanding of the respective contribution of the zero eigenvalue (related to the variation of the z-averaged quantities into the x direction) and the nonzero eigenvalue (related to the z-direction transfer). When studying heat conduction in a two-phase system, a two-equation model may be needed at the macroscopic scale when local thermal equilibrium is not ful-®lled. This approach is founded on homogenization or volume-averagin g techniques [START_REF] Quintard | One and Two-Equation Models for Transient DiÄusion Processes in Two-Phase Systems[END_REF], and is helpful when the thermal properties of the two constituents diÄer widely, or when fast transient states are observed.

The respective macroscopic temperatures of phase 1 and phase 2, namely, h T 1 i and h T 2 i , are solutions of the corresponding macroscopic two-equations model:

e 1 rc … † 1 q h T 1 i qt ˆK11 q 2 h T 1 i qx 2 ¡ h h T 1 i ¡ h T 2 i … † … 20a † e 2 rc … † 2 q h T 2 i qt ˆK22 q 2 h T 2 i qx 2 ¡ h h T 2 i ¡ h T 1 i … † … 20b † with h T 1 i ˆ1 e 1 Z e1 0 T 1 … z † dz and h T 2 i ˆ1 e 2 Z e2 0 T 2 … z † dz … 20c †
Applying a Laplace transform to Eqs. (20), and writing them in a vectorial way similar to Eq. ( 4), makes it possible to de®ne an equivalent matricial quadrupole form such as

K ¡ 1 M e h T 1 i h T 2 i " # ¡ d 2 h T 1 i h T 2 i " # Á ! dx 2 ˆ0 … 21 †
where

M e ˆe1 rc … † 1 s ‡ h ¡ h ¡ h e 2 rc … † 2 s ‡ h " # and K ˆK11 0 0 K 22 " #
This equation could also be obtained analytically as a two-node problem from Eqs. (17a)±(17b), but the implementation of such a solution is not within the scope of the present article.

Equation ( 21) is similar to Eq. ( 4) if we replace the term … M == ‡ Gs † by M e , with F ˆ0. Equation (21) can be diagonalized, and the general quadrupole extension will apply. For the steady-state two-layer body as de®ned in the previous example (Figure 2), we have [START_REF] Quintard | One and Two-Equation Models for Transient DiÄusion Processes in Two-Phase Systems[END_REF] e 1 ˆe1 e

e 2 ˆe2 e K 11 ˆe1 l 1 K 22 ˆe2 l 2 h ˆ3l 1 l 2 … e 2 l 1 ‡ e 1 l 2 † e
and Eq. ( 21) is turned into

h 1 ¡ h 1 ¡ h 2 h 2 " # h T 1 i h T 2 i " # ¡ d 2 dx 2 h T 1 i h T 2 i " # Á ! ˆ0 … 22 † with h i ˆh= e i k i; i ˆ1; 2.
For that particular case, analytical diagonalization is possible, and the eigenvalues are 0 and h 1 ‡ h 2 . According to Eq. ( 9) and Table 2, an intrinsic quadrupole relationship can be deduced as

h T 1 i x h T 2 i x " # ˆPm L ¡ x 0 0 sinh ‰ dm … L ¡ x †ä dm cosh … dmL † " # P ¡ 1 m 1 k1 0 0 1 k2 " # q q " # … 23 †
where P m is the eigenvector matrix and

d m ˆÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Å h 1 ‡ h 2 p
is the nonzero eigenvalue square root. Since this matrix is easy to calculate, a complete analytical solution can be proposed. The corresponding solution associated to the validation test case is then

h T 1 i x h T 2 i x " # ˆ1 k ¤ e L ‡ k2e2 sinh ‰ dm … L ¡ x †ä k1 e1 dm cosh … dmL † L ¡ sinh ‰ dm … L ¡ x †ä dm cosh … dmL † L ¡ sinh ‰ dm … L ¡ x †ä dm cosh … dmL † L ‡ k1 e1sinh ‰ dm … L ¡ x †ä k2e2 dm cosh … dmL † 2 4 3 5 q:e 1 q:e 2 " # … 24 †
where k ¤ is the one-dimensional equivalent parallel thermal conductivity such as

k ¤ ˆ…k 1 e 1 ‡ k 2 e 2 † =e.
A generalized semianalytical solution such as Eq. ( 15a) can be integrated in order to compute the mean temperature values for both phases, and this solution is compared to the present analytical solution given by Eq. ( 24). The resulting curves are shown in Figure 4. Very good agreement is observed between the analytical macroscopic two-temperature model and our seminumerical quadrupole extension method.

It is important to point out that the ®rst eigenvalue of such a system is zero, associated to the z-averaged quantities following the gridding direction. This particular eigenvalue is relative to averaged heat transfer in the x direction. On the other hand, the second eigenvalue (as well as the other eigenvalues when gridding is greater than 2 nodes) is relative to heat transfer in the z direction, that is, the twodimensional eÄects superposed to averaged transfer. If the temperature vector is calculated at x ˆL from Eq. ( 24), a hyperbolic tangent function appears. When L is large, this function tends to 1, the nonzero eigenvalue is then relative to a boundarylayer eÄect, independent of L, which can be evaluated from a thermal constriction resistance. This important point can be expanded to a more general case when gridding with a higher nodes number: if the product of a particular eigenvalue with L is large enough, it is possible not to compute the corresponding hyperbolic sine or cosine functions. As shown in next section, that makes possible an eigenvalue regularization process.

Heterogeneity Problem with Quadrupole Matrix Product and Eigenvalues Regularization

The heterogeneous problem presented in Figure 5 can be solved by multiplying the three corresponding expanded quadrupoles obtained for the layers L 1 , L 2 , and L 3 in order to obtain a direct relationship between the temperature vector T 0 at x ˆ0 and the corresponding heat ¯ux function. In Laplace space,

T 0 F 0 " # ˆA1 B 1 C 1 D 1 " # A 2 B 2 C 2 D 2 " # A 3 B 3 C 3 D 3 " # 0 F 3 " # … 25a †
where the terms of the quadrupoles are given by Eq. ( 9) and Table 2 as 

A i ˆPi cosh … ÅÅÅÅÅ Å V i p L i † P ¡ 1 i B i ˆPi sinh … ÅÅÅÅÅ Å V i p L i † ÅÅÅÅÅ Å V i p … K i P i † ¡ 1
C i ˆKi P i ÅÅÅÅÅ Å V i p sinh … ÅÅÅÅÅ Å V i p L i † P ¡ 1 i D i ˆKi P i cosh … ÅÅÅÅÅ Å V i p L i †… K i P i † ¡ 1 … 25b † with i ˆ1; 2; 3. The matrices ÅÅÅÅÅ Å V i p
and Pi are obtained from the diagonalization of the corresponding matrices K i … M ==;i ‡ G i s † de®ned from Eq. ( 4). Eliminating the ¯ux F 3 in Eq. (25a) yields

T 0 ˆM1 M ¡ 1 2 F 0 … 25c † where M 1 ˆA1 … A 2 B 3 ‡ B 2 D 3 † ‡ B 1 … C 2 B 3 ‡ D 2 D 3 † £ ¤ M 2 ˆC1 … A 2 B 3 ‡ B 2 D 3 † ‡ D 1 … C 2 B 3 ‡ D 2 D 3 † £ ¤
The main problem arising is the possible ill conditioning number of some of the quadrupole terms given by Eq. (25c), especially when the layer length L i is large or when the dimension of the matrices is large (high number of discretized temperatures). It is then necessary to regularize the eigenvalues. The eigenvalues corresponding to the three layers (i ˆ1; 2; 3) are plotted in Figure 6, in the steady-state case, and with adiabatic boundary conditions at z ˆ0 and z ˆe. It is important to point out that the square roots of the eigenvalues are quite near to the previous b n ˆnp=e terms, that is, to the corresponding homogeneous medium boundary-valu e problem. This is true only in the steady-state case. For transient state, the diagonal terms introduced by the Laplace variable s would imply a diÄerent behavior. Due to spacial discretization, the eigenvalues exhibit an aliasing eÄect. For layer 2, small variations due to the local variation of thermal conductivity are observed. Layer 3 has to be regularized, due to its greater length. We used a truncation of the spectrum of the eigenvalues, which is close to a singular value decomposition. This regularization of the highest eigenvalues does not introduce an important bias, because a thick medium is a natural ®lter for high frequencies, ÅÅÅÅÅ

O i p L i µ 10.
Steady-state temperature pro®les are shown in Figure 7 for various geometric conditions. When the thermal conductivity contrast is lower, or the ®rst layer thickness is higher, this temperature pro®le is smooth, and it is diÅcult to ``see'' the heterogeneity. However, the mean temperature h T 0 i would contain the information relative to this heterogenity, and a global thermal resistance could be used. The dash lined curve shows how a thin heterogeneity is ``seen'' through a thick ®rst layer. The curves plotted with stars or diamonds are obtained thanks to an eigenvalue regularization in the second layer, due to their higher length L 2 value.

The corresponding model remains valid for any thermal properties pro®le, in any of the three layers, either smooth or straight. Of particular interest is the study of such smooth cases for the implementation of inverse methods for thermal nondestructive evaluation techniques. 

Periodic Medium in Transient State

The last example shows how simple the implementation of the method is in the case of a periodic two-dimensional porous medium. Equation (25a) can be generalized by the simple use of power of matrices obtained in the previous example. For the transient case presented in Figure 8, this yields

T 0 F 0 " # ˆA1 B 1 C 1 D 1 " # A 2 B 2 C 2 D 2 " # A 3 B 3 C 3 D 3 " # Á ! m T s 0 " # … 26 †
where m is the blocks number and F 0 ˆQ: Dz 1 ¢ ¢ ¢ Dz N ‰ ä t . Such an expression is time-consuming when the number m of cells is great, but the implementation with a matrix solver such as Matlab is very direct and convenient. The numerical Laplace inversion is performed using a Gavert-Stehfest algorithm [START_REF] Stehfest | Remark on Algorithm 368: Numerical Inversion of Laplace Transform[END_REF]. The results, shown in Figure 9, are computed from Eqs. (25b) and (26). For thin layers, Eq. ( 12) can also apply. A signi®cant CPU time gain results, as diagonalization is no longer necessary.

Figure 9a shows temperature pro®le versus the z direction for diÄerent values of layer number m at time t ˆ2 s. This time was chosen as near to the half rising point of the temperature. The total length is the same for all values of m. Rear face averaged temperatures are ploted in Figure 9b as a function of time, for various values of m. These curves show how the medium tends to be similar to an equivalent homogenized medium as m is incremented.

CONCLUSION

An extension of the thermal quadrupole formalism has been proposed for heat conduction modeling in heterogeneou s media, when the variation of thermal properties is one-dimensional. The main problem was to ®nd a generalized intrinsic relationship between temperature and heat ¯ux at the boundaries of an heterogeneous medium. A semianalytical general solution was found for two-dimensional transient heat transfer in ®nite or semi-in®nite media in both axial and radial coordinate systems. The extension of the basic thermal quadrupole formalism was obtained from the one-dimensional discretization in the properties-variatio n direction, coupled with semianalytical solution of the corresponding vectorial differential equation. The generalization of the proposed method to a three-dimensional case is relatively easy, and two-dimensional gridding is then applied.

This approach is of great interest when dealing with semi-in®nite or multilayered media. One advantage is that complex heterogeneities can be modeled with simple matrix products, as allowed for homogeneous media with the classical thermal quadrupole formalism. Another gain is that not gridding in the in®nite or semi-in®nite case could bring a signi®cant simpli®cation. The transient case treatment, based on Laplace transform, cancels any accumulation of errors associated with a time-step approach. Furthermore, the semianalytical formalism is adapted to asymptotic expansion analysis for example in the case of in®nitely thin media. Thus, this kind of approach is suitable for solving inverse problems such as those found when dealing with thermal property measurement in heterogeneous media [START_REF] Ladevie | A New Simple Device to Estimate Thermophysical Properties of Insulating Materials[END_REF]. Some practical aspects of the use of the resulting functions of matrices have been explained in the case of simple application examples such as a two-layered medium and a single squared heterogeneity in two-dimensional steady state, and a periodic medium in transient state. The ill conditioning in several cases has been avoided by a regularization method.
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 2 Figure 2. … a † Two-layer slab; … b † steady-state temperature ®eld k1 ˆ0:1 W=m K, k2 ˆ10 W=m K, L ˆ0:5 m, e1 ˆe2 ˆ0:05 m, N ˆ40.
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 3 Figure 3. Temperature versus x, at z ˆ0 and z ˆe1: … a † Comparison of analytical solution ( J ) and quadrupole extension method, k1 ˆ0:1 W=m K, k2 ˆ10 W=m K, L ˆ0:5 m, e ˆ0:1 m; … b † interface temperature error plot.
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 4 Figure 4. Steady-state temperature pro®le versus x: Analytical two-temperature model ( J ) and quadrupole extension method (M).
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 5 Figure 5. Single squared heterogeneity problem.
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 6 Figure 6. Eigenvalues regularization: L1 ˆ0:01; L2 ˆ0:1; L3 ˆ0:2:
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 7 Figure 7. Temperature at x ˆ0 versus z: L3 ˆ0:2, k1 ˆ0:1, k2 ˆ10, N ˆ18, e ˆ0:5 m.
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 8 Figure 8. Periodic medium.
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 9 Figure 9. Rear face response to front heat pulse for diÄerent values of m: … a † Temperature versus z for a1t=L 2 ˆ0:125; … b † z-averaged temperature versus time, L1 ˆ0:001=m, L2 ˆ0:002=m, L3 ˆ0:001=m, k1 ˆ0:1, k2 ˆ10.

  

Table 1 .

 1 Boundary condition coeÅcients for z ˆ0 and z ˆe

	B.C. at z ˆ0

e … x; s † j … x; e; t † ˆhe ‰ T … x; e; t † ¡ T1 … x; t †ä
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