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Abstract

This study deals with determination of the thermal conductivity tensor for orthotropic media and more specifically for multilayers with 
isotropic thermal characteristics in the planes parallel to the layers. The work described has been conducted using two ordinary experimental 
devices: a device based on the hot-wire method and a device based on the hot-strip method. Hot-wire measurements give the thermal 
conductivity in the planes parallel to layers. Introducing this value in a model adequate to describe orthotropic behaviour and using an 
appropriate identification method, hot-strip measurements then give the transverse thermal conductivity. The validity of this approach is 
demonstrated by the results obtained on a stratified medium with known thermal characteristics. Then, transverse thermal measurements 
were made on a non-woven wood fibre insulator.
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1. Introduction

In many industries (aviation, wood, textile, etc.), the
materials used have a highly anisotropic structure, making it
difficult to measure the thermal properties of these materials
using conventional measuring instruments (hot-wire and
hot-strip, flash method, guarded hot plate, etc.), since most
such instruments, as normally used, give an apparent total
conductivity of the material.
This being the case, certain measurement methods were

modified by adapting the models and associated identifica-
tion procedures to obtain thermal conductivity or diffusivity
values in the main directions of diffusion. This can be illus-
trated by the flash method, where partial irradiation of the
front and installation of two thermocouples at the rear al-
lowed identification of a radial diffusivity that was different
from the axial diffusivity [1]. The accuracy of the results
obtained strongly depends on how accurately the thermo-
couples are positioned. One way of solving this problem is
by the use of infrared thermography for the acquisition of a
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larger number of temperature measurements. This technique
allows measurement of the longitudinal diffusivities, ax and
ay , on a thin plate [2].
The hot-wire method [3–8] and hot-strip method [9–

14] allow direct identification of the thermal conductivity
of a material assumed to be homogeneous and isotropic.
The simplest devices are those for which the temperature is
measured on the heating element itself.
Few changes have been proposed to adapt this type of

device for characterisation of anisotropic materials. A re-
cent study concerns determination of the conductivity of the
strata forming a dual layer, where the strata are perpendicu-
lar to the wire axis [15]. In this application, the stated aim led
to instrumentation that was more complex than conventional
devices because of the necessity to place a thermocouple in
the location of each stratum.
Our approach was different since the aim was to use asso-

ciated two measuring devices in their simplest technological
version and to determine the components of the conductivity
tensor of an orthotropic material by adapting the identifica-
tion procedures.
Actually, because of the geometry of the hot-wire heating

element (very long cylindrical wire), the dissipated heat flux
diffuses into the medium perpendicular to the wire providedladevie@enstimac.fr (B. Ladevie).



Nomenclature

a thermal diffusivity . . . . . . . . . . . . . . . . . . . m2·s− 1
An,Bn,Cn,Dn terms of the sample matrix
b half-width of hot-strip . . . . . . . . . . . . . . . . . . . . m
e sample thickness . . . . . . . . . . . . . . . . . . . . . . . . . m
L sample half-width . . . . . . . . . . . . . . . . . . . . . . . . m
p Laplace variable . . . . . . . . . . . . . . . . . . . . . . . . s− 1
q linear heat flux . . . . . . . . . . . . . . . . . . . . . . W·m− 1

Q surface heat flux . . . . . . . . . . . . . . . . . . . . W·m− 2

r radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T0 initial temperature . . . . . . . . . . . . . . . . . . . . . . . . K
T ∗ temperature variation with respect to T0 . . . . . K
T ∗ Laplace transform of temperature T ∗ . . . . . s·K
x, y, z space variables . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

αn Fourier variable . . . . . . . . . . . . . . . . . . . . . . . . m− 1

ε volume fraction
φ Laplace–Fourier transform of the surface heat

flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J·m− 1

λ thermal conductivity . . . . . . . . . . . . W·m− 1·K− 1

λ∗ equivalent thermal conductivity . . W·m− 1·K− 1

ρcp specific heat . . . . . . . . . . . . . . . . . . . . . J·m− 3·K− 1

τ Laplace–Fourier transform of the
temperature . . . . . . . . . . . . . . . . . . . . . . . . . . s·m·K

Subscripts
Oxy in the Oxy plane
x in the x direction
y in the y direction
z in the z direction
s relative to the hot probe (wire, strip, etc.)
zn relative to zinc
pp relative to polypropylene
2 relative to brass

the wire axis is aligned with one of the main directions
of the conductivity tensor. If the conductivity is isotropic
in a plane perpendicular to the wire axis, the heat flux is
radial and the measurement provides a thermal conductivity
corresponding to the components denoted λx and λy , where
λx = λy = λOxy .
The hot-strip method is an extension of the hot-wire

method wherein the heating element has a different design.
The hot-wire is replaced by a hot-strip assimilated to a flat
source whose lateral extension is small but whose length is
assumed infinite.
The aim of the work described herein was to use both the

hot-wire and hot-strip methods. The hot-wire measurement
gives access to λOxy and the hot-strip allows identification
of the transverse conductivity λz based on the other two
components obtained by the hot-wire method.
After a brief review of the two methods and a description

of the devices used, we propose a model of the hot-strip
measurement on an orthotropic material, the associated
identification method and the initial validation results on a
well-known specimen material, the multilayer.

2. Experimental methods

2.1. Hot-wire

2.1.1. Principle of the method
The principle of the hot-wire-method is as follows: a re-

sistant wire is placed on the axis of a very long cylindrical
sample whose radial extension is assumed infinite. The sam-
ple, initially isothermal, is subjected to a pulsed heat flux
produced as a Joule effect by the resistant wire. If the wire
is assumed to have an infinite length and a negligible radius,

heat transfer is radial and the variation of the temperature in
a point located at a distance r from the sample axis is ex-
pressed [16]:

T (r, t) − T0 = q

4πλ

+∞∫

u= r2
4at

e− u

u
du (1)

where q is the linear heat flux dissipated by the wire, λ

is the thermal conductivity of the material, a is its thermal
diffusivity and T0 is the initial temperature of the medium.
Asymptotic development of the above integral leads to an
approximated solution with the form:

T (r, t) − T0 = q

4πλ

[
ln

(
t∗

) − C −
∞∑

n= 1
(− 1)n 1

t∗nnn!

]
(2)

where t∗ = 4at/r2 and C = 0.5772 is the Euler constant.
For sufficiently long times and/or for low values of r

(at/r2 ≫ 1), terms 1/t∗n approach zero. This then yields
a variation with time of the temperature which is linear in
ln(t), i.e.:

T (r, t) − T0 = q

4πλ

[
ln(t) + K

]
(3)

where K = ln(4a/r2) − C.
If a thermocouple is placed in a fixed point r to record

the variation with time of the temperature, the slope of
curve T ∗ = T (r, t) − T0 = f (ln(t)) over long times allows
identification of the thermal conductivity, where the linear
flux q produced by the resistant wire is assumed known.
When the resistant wire and thermocouple are one and the

same, the temperature from which the thermal conductivity
is identified is the surface temperature of the wire or the
average wire temperature.



Various papers [5–7] have shown that the inertia of the
hot-wire has no influence on the identified conductivity
provided the length of time is correctly chosen. As concerns
the existence of possible resistance at the interface between
hot-wire and sample, its influence affects the initial ordinate
value but not the slope of T (rs, t) − T0 = f (ln(t)) [3,
17]. We will therefore preserve this simple identification
procedure, considering that the time above which it is valid
is determined directly from the experimental thermogram.
For short times, the form of the thermogram is conditioned
by hot-wire thermal inertia effects. Then, after a certain time,
the temperature is observed to vary linearly as a function of
ln(t). Identification is carried out in this second part of the
thermogram.

2.1.2. Experimental setup
The hot-wire probe we used is sold by TELEPH (38240

Meylan, France) and is based on the work of Quénard
and Sallée [18]. This probe is manufactured by a process
similar to that used for printed circuit boards. It consists
of a heating element (wire) and a thermocouple etched on
a composite copper-polyimide-constantan film ensuring the
mechanical strength of the system (Fig. 1). The heating
element is connected to a stabilised power supply and the
thermocouple signal is recorded after amplification on a
digital oscilloscope. The heating element has an effective
length of 5 cm and the probe thickness is approximately
4/10 mm. The probe must be placed between two identical
samples of sufficient size that they behave like a medium
with an infinite radial dimension with respect to the wire.

2.2. Hot-strip

2.2.1. Principle of the method
The principle of the method is similar to the hot-wire

method except for the difference in geometry of the probe, as
shown in Fig. 2. The hot-strip probe is totally symmetrical.
It consists of a rectangular heating element fitted with
a thermocouple that measures the temperature variations
of the probe itself. If the probe is placed in a medium
with an infinite extension, this temperature variation can be
expressed [9,11]:

Fig. 1. Design of the hot-wire device.

T (0, y,0, t) − T0

= 1
4λ

√
π

2
√

at∫

0

Q

[
erfc

(
y − b

u

)
− erfc

(
y + b

u

)]
du (4)

where b is the half-width of the hot-strip and Q the surface
heat dissipation.
This solution corresponds to the case where longitudinal

extension of the strip, 2h, is large compared with its
width, 2b, allowing the transfers along Ox to be neglected.
Furthermore, since the probe thickness is negligible (below
a few tenths of a mm), it is considered that the temperature
measurement is made in the neighbourhood of z ≈0.

2.2.2. Description of the manipulation
In the context of a study designed to measure the

conductivity of superinsulating isotropic materials, a device
based on the hot-strip principle was adapted and developed
at the Ecole des Mines of Albi (France) (Fig. 2). The
probe (2h = 80 mm, 2b = 3.2 mm, es = 0.5 mm), similar
in design to the hot-wire probe already described, was
placed between two identical rectangular samples (2L =
45 mm, e ! 20 mm and length = 100 mm), themselves
placed between two brass blocks (same size as the samples,
thickness = 55 mm). The strip temperature was measured by
thermocouple (Fig. 2). A stabilised power supply provided
a voltage across the heating element. The temperature rise
was recorded by an acquisition card. The waveform and
amplitude of the resulting signal were determined by the
thermal conductivity and specific heat of the material.
A model taking the inertial effect of the hot-strip and the

thermal resistance on the strip-sample interface into account
was developed using integral transformations of the transfer
equation and quadrupole formalism. It supplied an analytic
solution of the hot-strip temperature variation [14]. The
thermal values, i.e., the thermal conductivity and specific
heat, were identified by an iterative minimisation method.

Fig. 2. Design of the hot-strip device for characterisation of insulating
media.



Our contribution consisted of using the same approach
to model heat transfer in an orthotropic material in order to
identify the transverse component of the conductivity tensor.

3. Development of the procedure for measuring the
transverse conductivity λz

3.1. Modelling of heat transfer in the material

The symmetries of the problem led to modelling one
quarter of the domain (Fig. 3). Considering the aspect ratio
of the strip, its length was assumed infinite, allowing us
to neglect thermal diffusion along the strip (along Ox).
This reduced the problem to be solved to a two-dimensional
problem in plane Oyz. The conductivity in the plane z = 0
is denoted λOxy and that in directionOz is denoted λz

Assuming orthotropy, the 2D heat equation is written:

λOxy
∂2

∂y2
T (y, z, t) + λz

∂2

∂z2
T (y, z, t)

= ρcp
∂

∂ t
T (y, z, t) (5)

We used integral transformations to solve the problem an-
alytically, i.e., establish the expression for the strip temper-
ature to determine, by an appropriate identification method,
the thermal parameters to be used to reset it on the exper-
imental data. The heat equation was solved by applying a
Laplace transform to variable t then a Fourier cosine trans-
form to variable y . The solution itself is then obtained by
electrical analogy (quadrupole method [19]).
Below, we consider the temperature variationwith respect

to the initial time by setting T ∗ = T − T0, where T0 is the
initial sample temperature, assumed uniform. In the Laplace
space, the heat equation becomes:

λOxy
∂2T ∗

∂y2
+ λz

∂2T ∗

∂z2
− ρcppT ∗ = 0 (6)

where T ∗(y, z,p) is the Laplace transform of T ∗(y, z, t), p
being the Laplace variable.
Let τ (αn, z,p) be the Fourier cosine transform of T ∗(y,

z,p):

τ (αn, z,p)

=
L∫

0

T ∗(y, z,p) cos(αny)dy

=
+∞∫

0

L∫

0

T (y, z, t) e− pt cos(αny)dy dt (7)

where αn = nπ/L.

Fig. 3. Domain modelled.

This Fourier cosine transform is applied to the heat
equation in the Laplace space to arrive at the transfer
equation in the Laplace–Fourier space with the form:

d2

dz2
τ (αn, z,p) = k2nτ (αn, z,p) (8)

where

kn =
√

p

az
+ λOxy

λz
α2n, az = λz

ρcp
(9)

The general solution of such an equation has the form:

τ (αn, z,p) = K1eknz + K2e− knz (10)

We used the electrical analogy to obtain the solution
corresponding to our experimental context.
The entire device can be modelled as a sequence of

quadrupoles to relate the temperature and heat flux on the
temperature probe to the sample outlet temperature and heat
flux [19]. Each medium can be characterised by a transfer
matrix with dimension (2 × 2) relating the medium inlet
temperature and heat flux to the medium outlet temperature
and heat flux. The transfer matrices relative to each element
are obtained from the general solutions of the transfer
equation in the Fourier–Laplace space taking the specific
role of each element into account.

Matrix associated with the material (passive medium):
[

An Bn

Cn Dn

]
=

⎡

⎣ cosh(kne)
sinh(kne)

λzkn

λzkn sinh(kne) cosh(kne)

⎤

⎦ (11)

yielding:
[

τ (αn, es,p)

φ(αn, es,p)

]
=

[
An Bn

Cn Dn

][
τ (αn, e + es,p)

φ(αn, e + es,p)

]
(12)

Matrix associated with the probe (source term):
[

As Bs

Cs Ds

]
=

[
1 0

(ρcp)sesp
b
L 1

]
(13)

yielding:
[

τ (αn,0,p)

φ(αn,0,p)

]
=

[
As Bs

Cs Ds

][
τ (αn, es,p)

φ(αn, es,p)

]
(14)



The brass block, a very good heat conductor, is designed
to create a heat sink to absorb the heat dissipated by the
probe and thereby preferentially orient the heat flux toward
the brass masses instead of the sides of the sample. It is also
used to homogenise and control the temperature at the rear.
Furthermore, the brass mass can be considered as a semi-
infinite medium. These observations are expressed by the
relation:

φ(αn, es + e,p) = λ2

√
p

a2
+ α2n τ (αn, es + e,p) (15)

where λ2 and a2 are the thermal conductivity and diffusivity
respectively of the brass.
This gives a matrix equation relating the temperature and

heat flux on the temperature probe to the temperature and
heat flux at the rear of the sample with the form:
[

τ (αn,0,p)
φ(αn,0,p)

]

=
[

1 0
(ρcp)sesp

b
L 1

][
An Bn

Cn Dn

]

×
[

τ (αn, e + es,p)

φ(αn, e + es,p) = λ2
√

α2n + p
a2

τ (αn, e + es,p)

]

(16)
In this equation, the thermal contact resistance between

the hot-strip and sample and between the sample and brass
block were neglected. This approximation is valid insofar
as the thermal resistance of the sample is much greater
than 10− 4 m2·K·W− 1 [14]. This constraint thus defines the
domain of validity of the procedure proposed herein.

3.2. Obtaining of a model thermogram

3.2.1. General behaviour
In the Laplace–Fourier space, modelling by the quadru-

pole method gives the expression of the temperature over
time in the location where it is measured by the thermocou-
ple, i.e., in z = 0.

τ (αn,0,p)

=
{
An + Dnλ2

√
p

a2
+ α2n

}
φ(αn,0,p)

×
{
Cn + An(ρcp)sesp

b

L

+ λ2

√
p

a2
+ α2n

[
Bn(ρcp)sesp

b

L
+ Dn

]}− 1
(17)

The expression for φ(αn,0,p) is obtained by applying
a Laplace–Fourier transform to the thermal flux density Q
produced by the hot-strip in z = 0, i.e.:

φ(αn,0,p) = Q

p

sin(αnb)

αn
(18)

The temperature variation in the real space is then
determined during a first stage from an inverse Fourier
transform with the form:

T ∗(y,0,p) = 1
L

τ (0,0,p)

+ 2
L

∞∑

n= 1
τ (αn,0,p) cos(αn, y) (19)

Considering that the temperature is measured at y = 0, we
were particularly interested in:

T ∗(0,0,p) = 1
L

τ (0,0,p) + 2
L

∞∑

n= 1
τ (αn,0,p) (20)

The inverse Laplace transform recommended by [14] is
calculated numerically and leads to the model thermogram:
T ∗(0,0, t) = T (0,0, t) − T0 (21)
As can be seen from Eqs. (9), (11), (17) and (20), the

temperature variation on the probe depends of course on the
thermal characteristics of the sample (λOxy , λz and ρcp) but
also on the thermal characteristics of the hot-strip and the
brass blocks. The data for brass are widely available in the
literature. For the hot wire, a measurement was made with
reference samples to identify its specific heat once and for
all. Once all the invariant parameters have been determined,
only two quantities remain to be identified: the specific heat
of the sample, ρcp, and its transverse conductivity, λz.

3.2.2. Asymptotic behaviour over long times
After the initial moments, the capacitive effect of the hot-

strip is no longer detectable on the thermogram ((ρcp)s ≈
0). Similarly, for a sufficiently long time, the capacitive ef-
fect of the sample can be neglected (ρcp ≈0). Furthermore,
the conductivity of the brass is very high compared with
the insulating media for which the device is adapted, i.e.,
λ2 ≫ λz. Considering all these remarks, applying the same
approximations as for isotropic material [14], the general so-
lution (Eq. (17)) can be simplified to the following form:

τ (αn,0,p) = 1

λ2
√

p
a2

+ α2n

Q

p

sin(αnb)

αn

+
tanh

(
√

λOxyα2n
λz

e
)

λz

√
λOxyα2n

λz

Q

p

sin(αnb)

αn
(22)

which, after inverse transformation to return to the real
space, yields in y = 0:

T ∗(0,0,p) = Qb

L
√

πλ2(ρcp)2

√
t + eQb

λzL

+
∞∑

n= 1

2Q
λzL

tanh
(√ λOxy

λz
αne

)

√
λOxy

λz
αn

sin(αnb)

αn
(23)

This analysis of the system’s behaviour over a long time
shows that the thermogram approaches a straight line in

√
t

with an initial ordinate value for which the only unknown is
λz. This result is used to initiate the identification procedure
described in the next section.



Fig. 4. Experimental and estimated thermograms: Represention of residues
after minimization.

3.3. Material transverse conductivity identification
procedure

The model parameter sensitivity analysis made by [14]
for the case of an isotropic material shows that the thermal
conductivity and specific heat of the sample are effec-
tively identifiable, with greater sensitivity for the thermal
conductivity. Since our aim is to measure the transverse con-
ductivity λz of the material, only the results concerning this
parameter are presented.
Identification is carried out by a conventional method for

minimising the differences between the experimental ther-
mogram and the theoretical thermogram determined from
Eq. (21) (Nelder–Mead’s minimisation algorithm [20]).
Since the complete problem is not linear in the sense of the
parameters (Eqs. (17)–(21)), direct inversion is not possible.
The parameters are estimated by an iterative process. The it-
erative process is initiated using the conductivity determined
from the initial ordinate value of the constitutive equation
over long times (Eq. (23)). The quality of identification can
be illustrated by representing the residue of the estimate (dif-
ference between experimental and calculated thermograms)
due to measurement noise and the parameter estimation er-
ror. An example corresponding to the experimental results
described in the next section is given in Fig. 4.
The bias observed for short periods is related to the

fact that the model is less sensitive to specific heat, whose
influence predominates at first, than to thermal conductivity.
This bias does not disappear completely even when a much
larger number of experimental points are taken into account
over short periods.

4. Experimental validation and applications

4.1. Validation method

To validate our approach, measurements were made on
a two-phase laminated material for which it was possible

to accurately determine the components of the thermal
conductivity tensor. The measurement of the transverse
conductivity across the strata knowing the conductivity
parallel to the strata was compared with the expected
theoretical value and allowed us to validate our approach.
In a multilayer, the contrast between the transverse and

parallel thermal conductivity values is related to the intrin-
sic conductivities of the materials of the two phases and
their volume fraction. To obtain correctly differentiated val-
ues, we designed a laminate consisting of a good conductor
(zinc) and an insulator (polypropylene). Conventional mea-
surements were made to obtain the thermal conductivity
of the zinc (λzn = 116 W·m− 1·K− 1) and polypropylene
(λpp = 0.17 W·m− 1·K− 1). The thickness of the elementary
two-layer cell of the multilayer was e = 1.73 mm with a
thickness epp = 1.08 mm for the polypropylene and ezn =
0.65 mm for the zinc, corresponding to volume fractions
εpp = 0.624 and εzn = 0.376, respectively.
Conventionally, the thermal conductivity in the plane of

the strata is expressed:

λOxy = εppλpp + εznλzn (24)

and the transverse thermal conductivity by:

λz =
(

εzn

λzn
+ εpp

λpp

)− 1
(25)

To validate the orthotropic model, the thermal conduc-
tivity λz of the laminated medium was measured, including
in the data the thermal conductivity parallel to the strata
λOxy calculated before. Considering the thermophysical
properties of zinc and polypropylene, this yields λOxy =
43.7W·m− 1·K− 1. The expected value of the transverse con-
ductivity was λz = 0.27 W·m− 1·K− 1.

4.2. Validation measurement results

Measurements were made on several samples of different
thicknesses (variable number of elementary cells) varying
the heat flux produced by the hot-strip. Table 1 gives the
identification results obtained.
Although a dispersion in the measurements is observed

(from − 7% to 6%), the very small difference between
the average value of all these measurements (λ̄z = 0.275
W·m− 1·K− 1) and the expected value of the equivalent
transverse thermal conductivity (λz = 0.272 W·m− 1·K− 1)
demonstrates the reliability of the hot-strip measurement
method under the assumption of orthotropy.
If we consider the case of isotropic material [14], the

validity and identifiability domain of the methodwas defined
by a systematic study of the model’s sensitivity to various
parameters such as the lateral convective losses of the
sample, the thermal conductivity of the conductive blocks,
the thermal and dimensional characteristics of the probe
and the heat dissipated in the sample. The method is
validated if the thermal conductivity of the sample is less
than 0.5 W·m− 1·K− 1 and its specific heat is between



Table 1
Thermal conductivity measurements of a multilayer medium

Measurement 1 Measurement 2 Measurement 4 Measurement 5
(5 cells) (5 cells) (3 cells) (2 cells)

Sample thickness [mm] 8.65 8.65 5.19 3.46
Voltage across the strip [V] 5.5 6 7 7.5
Measured transverse conductivity λz

[W·m− 1·K− 1]
0.253 0.288 0.274 0.284

Relative difference between measured
and estimated values of λz

− 7.0% +5.9% +0.7% +4.4%

Table 2
Comparison between the estimated thermal conductivity of an isotropic model and an orthotropic model

λOxy measured by λz measured by hot-wire λz measured by hot-strip
hot-wire (isotropic model) (orthotropic model)
[W·m− 1·K− 1] [W·m− 1·K− 1] [W·m− 1·K− 1]

Sample 1 0.112 0.080 0.058
Sample 2 0.109 0.075 0.050
Sample 3 0.097 0.075 0.058
Sample 4 0.103 0.075 0.056

5 × 104 J·m− 3·K− 1 and 106 J·m− 3·K− 1. In the example
discussed herein, the anisotropy was very pronounced and
the conductivity in the plane of the strata was very high
(λOxy = 43.7 W·m− 1·K− 1). This gives reason to believe
that the dispersion in the measurements observed is probably
related to a large lateral flux leading to non-negligible
convective losses in the case where the material is very thick,
since the largest differences are observed for a laminate with
a thickness of 8.65 mm (Table 1).
For the new application of this measuring device to

anisotropic media, it therefore appears necessary to plan a
complete sensitivity analysis to detail the constraints to be
satisfied for the two conductivity values, λOxy and λz. This
being said, the method described herein can already be used
advantageously to characterise orthotropic media.
The estimation error can be evaluated using a linear

model in the sense of the parameters over long times, by
calculating the covariance matrix [14]:

cov[eβ] = ([X]T[X])− 1σ 2 (26)

where eβ is the estimation error on parameter β , X is the
sensitivity matrix and σ is the standard deviation related
to the measurement noise. For the measurements made, the
error on the initial ordinate value is around 0.1% for a
standard deviation of 10%.

4.3. Thermal conductivity measurements on fibrous
materials

The method proposed was used to characterise non-
woven fibrous materials obtained by pneumatic layering,
which are isotropic in the plane of the layers because of
the random distribution of the fibres in each layer. The mea-
surements made by the hot-wire method, with the hot-wire

located perpendicular to the layers, give the value of λOxy .
Other measurements made by hot-wire, placing the wire par-
allel to the layers give an apparent thermal conductivity λ∗

z

(isotropic model). These values are compared with those
obtained by the hot-strip method (Table 2). These results
show that neglecting the orthotropic nature of the mater-
ial would lead to substantially overestimating the transverse
conductivity, by as much as 50% in the case of the material
considered, showing the interest of the work presented.

5. Conclusion

The initial results given in this paper are encouraging,
since they show how, using an existing manipulation and
without modifying the device, it is possible, with a dif-
ferent model, to identify the thermal conductivities of an
orthotropic material exhibiting transverse isotropy.
Certain points should be stressed. In work relative to

the hot-wire, certain problems may arise because of the
heterogeneous nature of the materials to be characterised.
Since the sample is assumed to be infinite, although the
observation is made on a macroscopic scale far larger than
the scale of the representative volume element, the scales
related to the observation time remain small, even if they
are long compared with the wire inertia. If the conductivity
contrasts are very large, on the wire-sample interface the
transfers are very different at the contact with each of
the two phases, and the description of the transfer on the
macroscopic scale by a conventional model is not possible
[21]. Since the hot-wire measurement is a given in our
problem of transverse conductivity identification, any error
in this value is reflected in the characterisation method. It
is therefore necessary to be very cautious if the contrasts



between phases are very large, which is the case for our
test material (λzn/λpp = 682). We therefore measured the
influence of an error in the determination of λOxy on the
identified value of λz . In this specific case, an error of ± 15%
on the value of λOxy leads to an error not exceeding ± 3% on
the identified value of the transverse conductivity λz which
is entirely acceptable.
Furthermore, it should be noted that the model developed

can be applied to any orthotropic materials such that λx ̸=
λy ̸= λz . In effect, since the hot-strip can be assimilated to an
infinite strip because of the length/width ratio, heat transfer
in the sample is two-dimensional. In this case, the remaining
problem is to measure the conductivity λx if it is different
from λy .
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