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Abstract The article describes the transport phenomenon
of some commonly used laboratory organic solvents which

differ in their solubility parameter value through polymer

blend nanocomposites membrane prepared by melt mixing.
The three solvents that were used are hexane, toluene and

xylene which differed widely in their solubility parameter

values. The motivation for the study was to know the effect
of solubility parameter on the diffusion transport properties

of NR/NBR (natural rubber/nitrile rubber) blends. The sol-

vent uptake, diffusion, sorption and permeation constants
were investigated and were found to decrease with organi-

cally modified montmorillonite (OMt) content at lower

loading. The mode of transport through NR/NBR nano-
composites was found to be anomalous. The difference in

solubility parameter value greatly influenced the transport

properties. The dependence of various properties on OMt
content was supported by morphological analysis data. The

effect of blend ratio, solvent size and OMt loading on the
diffusion of aromatic and aliphatic solvents through NR/

NBR blend systems were investigated. The swelling coef-

ficient values also decreased upon the addition of fillers
indicating the presence of hindered path for solvents to

diffuse into the polymer matrix. The better reinforcement at

lower filler loading was confirmed from the cross-link
density values and mechanical properties. The transport data

obtained were applied to mathematical models for predict-

ing the diffusion behaviour through nanocomposite mem-
branes and to elucidate the physical mechanism of transport.

Introduction

Polymer composite science and technology is a very large

and rapidly growing area. Although the polymer compos-
ites may not corrode via the same mechanisms as metals,
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when exposed to moisture, hazardous solvents, UV radia-

tion etc, polymer composites have a tendency to undergo
plasticization and degradation. This results in deterioration

of mechanical properties and reduction in the life of

composite structures. Polymer nanocomposites, made by
dispersing nanosized particles, can solve this problem to a

great extent by reducing the diffusivity of moisture and

other molecules in polymer composites. One of the unique
properties of nanocomposites, especially layered silicate

layered silicate filled nanocomposites are their resistance to
penetration of solvents and gases which make it applicable

in many fields. Solvent resistant membranes have a strong

potential for a variety of applications. This can be used as a
technique to elucidate the relation between processes of

mass transport, solubility, transport in polymers, their

molecular properties, nature of penetrates, polymer mor-
phology of the interface, deformation and morphology. The

transport of small molecules through polymer membrane

occurs due to random molecular motion of individual
molecules [1] Therefore, the transport behaviour of various

organic solvents and gases through polymers is of great

technological importance and it plays a vital role in a
variety of barrier applications [2].

The effect of fillers on the transport characteristics of

polymers has been of immense interest to scientists. The
effect of fillers on the diffusion and sorption processes has

been reported [3, 4]. The sorption of chloroform by an

epoxy resin was lowered by about 70 %, when 5 % filler
was incorporated [5]. The study of diffusion, sorption and

permeation in blend structures provide valuable means for
additional characterization of polymer blends [6]. Blend

composition, miscibility and phase morphology are the

main determining factors of transport properties through
polymer membranes. For immiscible blends, the nature of

the two polymers and the interface influence the transport

properties. Solvent resistant properties of nano-structured
layered silicates filled blend of NR and carboxylated sty-

rene butadiene rubber (XSBR) were investigated by

Ranimol et al. [7, 8] The study of barrier properties through
poly (ethylene-co-vinyl acetate)/clay nanocomposites with

Table 1 Properties of the materials used

Molecular
weight

Molar
volume

Structure d
MPa1/2

qg/cc Others

Toluene 92.14 106.29 18.3 0.867

Xylene 106.17 120.64 18.2 0.860

Hexane 86.18 131.60 14.4 0.655

Natural
rubber

Mn = 7.79xl05 16.6 0.92 Mooney Viscosity
85 ML (1 ? 4)
at 100 !C

Nitrlie
rubber

19.4 0.97 Mooney Viscosity
38-45 ML(1 ? 4)
at 100 !C

Cloisite
10A

C.E.C 125 mequv/
100 g, d-spacing-
19–2 Å(l–98 nm)



different organic modification revealed that the incorpo-

ration of OMt in the polymer, increased the barrier prop-
erties [9, 10]. The swelling properties of filled natural

rubber/linear low-density polyethylene blends was inves-

tigated by Ahmad et al. [11] and was found that the
swelling index decreased with increase in filler loading.

The present study was motivated by a desire to know

how the nanoparticles in an immiscible blend system affect
its transport properties. No reports are there up to our

knowledge regarding the transport properties in NR/NBR
elastomer blend system, where OMt act as a reinforcing

and compatibilizing agent. Organic solvents are harmful to

humans and are identified as carcinogens, especially when
it comes into contact with the skin. Thus, the transport

studies in NR/NBR blend nanocomposites are of much

interest from many points of view, especially the potential
use of this blend in glove manufacturing industry. The

presence of fillers in this NR/NBR blend system can further

enhance the properties of gloves by improving its transport
and mechanical properties. The potential application of this

blend nanocomposites in glove manufacturing industry will

be a matter of future publication. The discussion in this
paper involves the work undertaken to investigate the

transport characteristics of NR/NBR blend nanocompos-

ites, in commonly used laboratory organic solvents which
differ in their solubility parameter values. The effect of

OMt on the blend composition, and clay loading, were also

taken into account while investigating the transport prop-
erties of these blend nanocomposites.

Experimental part

Materials

Natural rubber (NR) ISNR 5, supplied by The Rubber Board,

Kottayam, India had the number average molecular weight
of 3 9 105g/mol and a weight average molecular weight of,

Mw 7.8 9 105 g/mol, [12] and Mooney Viscosity 85 ML

(1 ? 4) at 100 !C. Nitrile rubber NBR (Chemigum" N344)
with 33 % acrylonitrile content with Mooney viscosity of

38–45 ML (1 ? 4) at 100 !C and specific gravity of about

0.98 was supplied by Eliokem industries Ltd. Mumbai. The
organically modified montmorillonite used in this present

study was Cloisite 10A (Montmorillonite with organic

modification dimethyl, benzyl, one alkyl tail i.e. hydroge-
nated Tallow (HT)(65 m %. C18, 30 m %. C16, 5 m %.

C14) modification provided by Southern Clay Products. The

cation exchange capacity (CEC) was equal to 125 meq/
100 g and an average dry particle size in the range 2–13 lm.

The solvents used were xylene, toluene and hexane. The

specifications regarding the materials used are given in
(Table 1) [13, 14].

Preparation of the blend nanocomposites

The nanocomposites were compounded according to the
formulation given in (Table 2) with the aid of a laboratory-

sized two roll mixing mill (150, 300 mm). The NR/NBR

blends were compounded according to ASTM D 3182
(American Society for Testing and Materials). For all the

mixes the nip gap, roll speed ratio, and the number of

passes were kept constant. The temperature range for
mixing was 70–90 !C. After mixing, the rubber composi-

tions were moulded in an electrically heated hydraulic

press to the optimum cure using moulding conditions. An
oscillating disc rheometer (MFR) was used to analyze the

cure characteristics and the analysis was done at a tem-

perature of 150! C (Table 3). The composites were cured at
their respective cure times in a hydraulic press under a

pressure of about 120 bar at 150 !C. Round shaped sam-

ples of 2 mm of thickness were used for the diffusion
study. All the blend compositions from now on will be

represented in the order of NR/NBR.

Procedure for sorption experiment

The pat and weigh technique was used for the diffusion
studies. The whole experiment was done at room temper-

ature. Uniform sized round cut samples of the nanocom-

posites samples were weighed on an electronic balance.
The cured samples cut into round shapes were put into

sample bottles with covers. Nearly 20 ml of solvent was

poured into each of the sample bottles. At the expiration of
the specified time, the samples were removed from the

sample bottles, wiped free of adhering solvent and weighed

using an electronic balance. The weighing was continued
till equilibrium swelling was attained. Each weighing was

completed at the earliest, so as to decrease the error due to

solvent evaporation from the sample surface. All the
experiment were done at a temperature of 30 !C and was

repeated for each nanocomposites studied.

Morphological analysis

The morphology of the cryofractured composites was ana-
lyzed by scanning electron microscopy FEI/Philips XL30

FEG ESEM, with electron backscatter diffraction analysis

and energy-dispersive X-ray capability. To assess the
quality of filler dispersion and morphological details, the

blend nanocomposite were investigated by means of TEM

(JEM-2100HRTEM). The micrographs were obtained in
point to point resolution of 0.194 nm, operating at an

accelerating voltage of 200 kV. The cryocut specimens
prepared using an ultra-microtome (Leica, Ultracut UCT)

were placed on a 300 mesh Cu grids (35 mm diameter) and

were analysed. XRD of the clay nanocomposites were done



using the XRD: SIEMMENS D 5000 with radiations Cu K

alpha at 40 kV and 30 Ma.

Results and discussion

The sorption data of different solvents into NR/NBR blend

nanocomposites at different blend composition and filler

loading with different solvents were determined. It is
expressed as the molar percentage uptake (% Qt) of solvent

per gram of NR/NBR blends and was calculated using

(Eq 1)

%Qt ¼
Mt# Mo
Mw

Mo
$ 100: ð1Þ

Mt is the mass of the sample at time t Mo is the initial

mass of the sample and Mw is the molecular weight of the
solvent. The molar percentage uptake (% Qt) for the

solvent was plotted against the square root of time (Ht).
The sorption curves (% Qt moles of solvent sorbed per
100 g of rubber vs. Ht) are shown in Figs. 1 and 2. The

diffusion of solvent through a composite depends on the

geometry of the filler (size, shape, size distribution,
concentration and orientation), properties of the matrix

and interaction between the matrix and filler.

Effect of blend composition

A significant initial increase in uptake was shown for the
entire blend nanocomposite studied. This is due to the high

concentration gradient of solvent molecules with theT
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Table 3 Cure time data of the NR/NBR blend nanocomposites

Cure data of NR/NBR blend nanocomposites

Sample Ts2 T90

100/0(0) 1.75 5.03

100/0(2) 0.82 2.05

100/0(5) 0.63 2

100/0(10) 1.7

0/100(0) 2.7 6.4

0/100(2) 2.27

0/100(5) 1.64 5.04

0/100(10) 2.04

70/30(0) 1.61 3.39

70/30(2) 1.96

70/30(5) 1.63 3.39

70/30(10) 1.77

50/50(0) 1.19 3.48

50/50(2) 0.81 2.77

50/50(5) 0.58 2.07

50/50(10) 1.77



polymer. Also this initial solvent absorption rates in poly-

mers have been explained in terms of rapid cavitations,

which expose a greater surface area, thus enhancing solvent
percolation [15]. On the other hand, after a time period of

24 h at equilibrium, the solvent uptake is counter balanced

by solvent release from the polymer. From both Fig 1a, b, it
is observed that NBR has the lowest equilibrium uptake.

Also there is a decrease in the equilibrium uptake with the

increase in NBR content. This is due to the high resistance of
NBR to gas, organics and oil and also due to the higher

cohesive energy of NBR. Difference in solubility parameters

between the matrix and solvent is another reason for the
decreased permeability in NBR (Table 1). The uptake was

fastest in pure NR followed by 70/30 and 50/50 NR/NBR

blends. The preferential migration of OMt towards NBR due

to its polarity match further enhanced the solvent resistance
for the blend composition with higher NBR content. These

layers increase the path length for diffusion of solvent mol-

ecule to pass through the polymer. The increased path length
predicted better barrier properties for nanocomposites. The

uptake of solvent could be practically neglected for neat

NBR and for nanocomposites of NBR. The same trend was
also shown for the filled nanocomposites with pure NBR.

Effect of clay loading

For the given blend nanocomposites, the solvent uptake was

found reduced with increased OMt content (Fig. 2). There is
a decrease in solvent uptake with increase in filler loading up

to 1 phr. This can be explained based on the fact that the local

mobility of the polymer even after vulcanization [16] gets
restricted by reinforcement of nanofillers and improves the

solvent resistance. Thus, the reinforcement of blend by

nanofiller improves the solvent resistance to a good extent.
The diffusion of the penetrant solvent also depends on the

concentration of free space available in the matrix to

accommodate the penetrant molecule. The addition of OMt
reduces the availability of free spaces (Fig.3a, b) and also

creates a tortuous path for transport of solvent molecules.

The uptake of solvent molecules was thus reduced for OMt
filled composites compared to unfilled rubber. However,

after filler loading of 1 and 2phr there was an increase in

solvent uptake. The mechanical properties (Figs. 4 and 5)
also show the reinforcement at lower filler loading of

nanoclay. But at higher loading there is a decrease in

mechanical properties. This can be a result of the exfoliated
morphology of the blend nanocomposite which is confirmed

Fig. 1 % Qt versus Ht of different NR/NBR blends in hexane a at zero loading b at 5 % loading

Fig. 2 % Qt versus Ht of 50/50, NR/NBR blends nanocomposites in
hexane with different clay loading



from the XRD data given in Fig. 6. The nanocomposites with

1 and 2 phr clay loading is predominantly exfoliated and
enhanced the polymer/filler interactions. The intercalated

and exfoliated morphology of the blend nanocomposites

hinders the movement of penetrant molecules. Hindered
movement of the penetrant molecules in the presence of OMt

platelets are already reported [4]. The TEM image in Fig (7)

further clarifies this, showing an exfoliated morphology at
lower loading and agglomerated OMt at higher loading.

Effect of solvent

On comparing the two aromatic solvents, (Fig. 8) there is a
decrease in solvent uptake when xylene is used as the sol-

vent. The solubility parameter difference between the blend

nanocomposites and the solvents varied with the solvents
used. Hexane having a larger difference in solubility

parameter from the blend nanocomposites showed lesser

diffusion compared to other solvents. The increase in

molecular size of the penetrant-xylene molecule, rather than
that of toluene [17, 18] also contributes to the lesser diffu-

sion. The extremely low penetration of hexane compared

with that of aromatic solvents can be attributed towards the
higher molar volume of hexane compared to the two aro-

matic solvents [19] (Table 1). For each blend nanocom-

posite diffusion decreases when the solvent is hexane.
Figure 9 shows the difference in solubility parameter values

of the solvent with that of the blend nanocomposites. The
plot of solubility parameter versus swelling of elastomers

was made based on the concept that materials with similar

solubility parameter mix well while swelling of polymers in
solvents with very high difference in solubility parameter

can be considered negligible. We have plotted the equilib-

rium swelling of selected blend nanocomposites against the
resultant solubility parameter determined by Eq. (2) where

UNR, UNBR, d NR, and d NBR are the volume fraction and

Fig. 3 Schematic showing a NR/NBR blend without OMt b with
OMt

Fig. 5 Modulus value for 50/50 NR/NBR blend at different filler
loading

Fig. 4 Tensile strength of 50/50 NR/NBR blend nanocomposite with
different clay loading

Fig. 6 XRD pattern for 50/50 NR/NBR blend at different filler
loading



solubility parameter of NR and NBR, respectively. The plot

clearly explains the trend that as the value of ds lies away

from that of the polymer blends system it produces a very
small change in equilibrium swelling. For hexane, the ds

(14.4) value is much different from that for the blend system

(*18) and the equilibrium swelling is very low when hex-
ane is used as the solvent. Table 4 gives the difference in

solubility parameter values of the solvent with that of the

equilibrium uptake and, it can be seen that as the solubility
parameter difference increases the equilibrium swelling

decreases.

deffective ¼ UNR:dNR þ UNBR:dNBR: ð2Þ

The plot of interaction parameter vs equilibrium uptake

also shows that for hexane the equilibrium swelling

decreased with increase in interaction parameter value. The

interaction parameter v expressed as a function of dA and
dB denote the solubility parameters of the polymer blend

system and of the solvent, respectively, by Eq. (3)

v ¼ Vr

RT
$ ðdA # dBÞ2: ð3Þ

Mode of transport

The mechanism of transport can be computed from the

diffusion data using Eq. (4) [20]

Qt= Q1 ¼ k:tn; ð4Þ

where k indicates the interaction between the penetrant and

the polymer and n represents the mode of transport. Taking

log on both the sides, we get Eq. (5) [21]. The value of n

Fig. 7 TEM images of NR/NBR (clay) nanocomposites, a 50/50 (2) b 50/50 (10)

Fig. 8 % Qt versus Ht of 70/30(1), NR/NBR blends nanocomposite
with different solvents

Fig. 9 Plot of solubility parameter versus equilibrium uptake in three
solvents for different NR/NBR nanocomposites with 0 and 5 phr clay
loading



and k are obtained from the slope and intercept of plot of

log Qt/Q? (Eq. 5)

logQt= Q1 ¼ logk þ nlogt ð5Þ

and is given in Table 5. For normal Fickian mode of

transport, where rate of polymer chain relaxation is higher

compared to the diffusion of penetrant, an n value of
approximately 0.5 have been reported. [22] The Fickian

diffusion, actually, refers to a situation where solvent

penetration is less than the polymer chain relaxation. When
n = 1, the transport approaches non-Fickian behaviour,

where chain relaxation is slower than the liquid penetra-

tion. If the value of n is in between 0.5 and 1, the mode of

transport is classified as anomalous. Nevertheless, when the
solvent penetration is much below the polymer chain

relaxation, it is possible to record the n values below 0.5.

This situation, which is still regarded as Fickian diffusion,
is named ‘Less Fickian’ [20], or quasi Fickian. This

mechanism indicates that the solvent diffuses slowly

through the swollen matrix and free spaces in the nano-
composite sample [23]. The estimated values of n and k for

70/30 and 50/50 blend nanocomposites are given in

Table 5. With a change in blend composition the value of n
varies from Fickian diffusion into an anomalous transport

of the penetrant molecules. Anomalous transport occurs

due to the coupling of Fickian and non-Fickian transport
mechanisms. Variation from Fickian sorption is associated

with the time taken by rubber segments to respond to

swelling stress and rearrange them to accommodate the
solvent molecules [4]. The reinforcement with the filler

particle imparts a high degree of restriction to the rear-

rangement of rubber chains. Both NR and NBR chains gets

Table 5 Values of n and k for different clay loading of NR/NBR
blend nanocpmposites

Composition n k

70/30(0) 0.68 1.2

70/30(1) 0.68 1.19

70/30(2) 0.65 1.13

70/30(5) 0.69 1.25

70/30(10) 0.68 1.35

50/50(0) 0.56 1.15

50/50(1) 0.54 1.15

50/50(2) 0.56 1.23

50/50(5) 0.56 1.24

50/50(10) 0.56 0.93

Table 4 The change in equilibrium uptake with solubility parameter
difference

0 1 2 5 10

dp–ds (Toluene)

1.6 1.76 1.40 1.55 1.56 1.87

0.7 1.39 1.21 1.31 1.35 1.39

0.2 1.04 1.02 1.10 1.002 1.13

1.2 0.79 0.52 0.53 0.55 0.49

dp–ds (Xylene)

1.7 1.95 1.85 1.99 2.13 2.39

0.8 2.31 1.77 2.27 2.09 2.59

0.3 1.69 1.45 1.21 1.68 1.83

1.1 0.92 0.81 0.86 0.74 1.17

dp–ds (Hexane)

2.2 0.97 0.79 0.90 0.95 0.98

3.0 0.66 0.51 0.49 0.56 0.92

3.6 0.46 0.41 0.48 0.48 0.46

5.0 0.005 0.002 0.004 0.003 0.005

Fig. 10 Plot of interaction parameter versus equilibrium uptake in
three solvents for different NR/NBR nanocomposites with 5 phr clay
loading

Fig. 11 Diffusion coefficient in hexane for different blend nano-
composites with different phr clay loading



restricted due to the interaction of the OMt. While, the

interaction between NBR is due to the polarity factors, the

NR phase also shows some interaction with the OMt due to
the presence of HT which is rich in alkyl groups. Thus, the

observed anomalous diffusion can be because of the

counteraction between the ability of rubber segments to
rearrange in the presence of solvents and the restriction

imparted to this by the reinforced filler particles. The

k values decrease for lower filler loading, indicating less
diffusion. ‘The value of k indicates the degree of rubber

interactions with the solvent. When polymer –filler inter-
action is good or when there is good dispersion of filler in

the polymer there will be less interaction between the

solvent and the polymer. The higher difference in solubility
parameter value also decreases the interaction of the sol-

vent with the blend system’.

Diffusion coefficient (D)

The diffusion coefficient or the diffusivity D of a solvent
molecule through a polymer membrane can be calculated

using Eq. (6) obtained using Fickian’s second law [24, 25],

D ¼ ðhh= 4Q1Þ2; ð6Þ

where h is the blend thickness, h is the slope of the initial

linear portion of the plot of % Qt against Ht, and Q? is
the equilibrium absorption. As we increase the NBR con-

tent, the diffusion coefficient decreases (Fig. 11) because

of the high resistance of NBR to gas, organics and oil. NBR
is having high cohesive energy density because of the

functional groups present in it. Therefore, the blend

nanocomposites exhibit lower diffusivity value at higher
NBR content. And it has been reported that the presence of

polar or bulky groups also influence the diffusion proper-

ties [26]. The sluggish motion of the polymer chains caused

by the presence of nitrile group in NBR can be another

reason for the low permeability.

The addition of OMt will reduce the availability of spaces
374 and restrict the mobility of chain segments. On analyzing

the blend nanocomposites with different clay loading, a sharp

decrease in diffusion coefficient for 50/50 NR/NBR blend
with 2 phr is observed. This can be attributed towards the

exfoliated morphology of the blend nanocomposite which is

confirmed from the XRD data given in [Fig. 6]. While the
d-spacing was found to be 19.6 Å for neat clay. The value was

shifted to 23.42 Å for 5 and 10phr OMt, where an intercalated
morphology was observed. Thus, the nanocomposites with 1

and 2 phr clay loading were predominantly exfoliated and for

5 and 10 phr it was intercalated. The intercalated and exfoli-
ated morphology of the blend nanocomposites hinders the

movement of penetrant molecules. The TEM images of 2 and

5 phr also confirm this. Hindered movement of the penetrant
molecules in the presence of nanoclay platelets are already

reported [4, 10]. The comparatively less rate of diffusion

coefficient value for 1 and 2 phr explains the better dispersion
of clay at this compositions.

On comparing the diffusion coefficient for two solvents

Fig 12, there is a decrease in diffusion coefficient by
changing the solvent from toluene to hexane for every

system. Also this can be attributed towards the higher

molecular volume of hexane and its higher solubility
parameter difference with the polymer. (Table 1) [14]. The

solubility parameter of hexane shows good difference from

that of NR and NBR, while for toluene it is nearer to the
solubility parameter value of both the rubbers. Diffusivity is

thus greatly dependent on the size and solubility parameter

of the penetrant molecules. Many investigators [17, 18]
have reported a decrease in equilibrium penetrant uptake

with increasing penetrant chain length. The shape of

penetrant also plays a role in determining diffusion.

Fig. 12 Diffusion coefficient in hexane and toluene for 50/50 and 70/30 blend with different clay loading



Permeability coefficient (P)

The permeability coefficient (P) of toluene in the rubber

blends was obtained as follows [27]:

P ¼ D ( S; ð7Þ

where D is the diffusion coefficient and S is the sorption
coefficient.

The values of P are shown in Table 6. For both aliphatic
and aromatic solvents, the same trend was shown but the

magnitude was different due to the difference in penetrant

properties. For different NR/NBR blends with 5 % filler
loading, it was shown that the permeation coefficient

decreases on adding filler which can be well-explained due to

the tortuous path that the clay have made in the blend. While

its strong polarity match influences the migration towards
NBR the presence of HT causes the clay to migrate towards

the NR phase and to the interface. The presence of clay at the

interface, and in both the NR and NBR phases hinders the
movement of solvent molecules. For 50/50 blends with dif-

ferent clay loading, at 1 % loading permeability of aliphatic

penetrant increases while for aromatic it increases at 2 %
loading. This, as discussed earlier was found to be related to

the structural difference between the two penetrant mole-
cules and the diffusion path in the polymer intercalated clay

network, which paves way for the hexane molecule to pen-

etrate easily at 2 % loading. Thus, it was shown that per-
meability followed the same trend as the diffusion coefficient

and that diffusion process controls the permeability.

Swelling parameters

In order to assess the blends reinforced with OMt, the
swelling coefficients (b) have been calculated by Eq. (8). The

extent of swelling, interface strength and degree of dispersion

of fillers in the elastomer matrix can be inferred from the
swelling parameter value [28, 29]. The extent of swelling

behaviour of the blend nanocomposites were inferred from

the swelling parameters like swelling index, swelling coeffi-
cient etc. Swelling coefficient is an index of the ability with

which the sample swells. The swelling behaviour of the blend

nanocomposites was assessed (Table 7) using Eq (8) [30].

swellingcoefficentb ¼ ðM1 # M0Þ=M0 $ qs; ð8Þ
where Mo and M? are mass of the sample before and

after swelling, respectively, and qs is the density of the

solvent. Swelling index which is another parameter of
transport properties is calculated by the Eq. (9)

Table 6 Values of permeation coefficient

NR/NBR Clay % Permeation coefficient P*10-5 (cm2/min)

Hexane Toluene

100/0 0 4.15 10.88

70/30 0 9.99 35.68

50/50 0 2.58 10.06

0/100 0 1.5 9 10-6 0.902

100/0 5 61.8 25.0

70/30 5 18.9 24.1

50/50 5 3.91 11.1

0/100 5 6.4 9 10-8 033

50/50 0 5.-20 5.07

50/50 1 3.26 3.86

50/50 2 7.40 1.36

50/50 5 7.81 8.06

50/50 10 7.61 13.10

Table 7 Mol. wt bet. cross-link, Mc, cross-link density, swelling coefficient and swelling index of the NR/NBR blend nanocomposites

NR/NBR Clay % Mc (g/mole) t (mole/cc) X10-4 Swelling coefficient b Swelling index %

Toluene Hexane Toluene Hexane

100/0 0 951.3 5.26 3.3 2.1 288.69 144.4

70/30 0 1111.8 4.50 3.9 1.5 342.87 99.80

50/50 0 830.2 6.02 2.8 1.0 247.01 72.08

0/100 0 446.0 11.21 1.2 0.008 107.08 00.56

100/0 5 852.8 5.86 2.9 1.7 254.85 118.4

70/30 5 976.0 5.12 3.4 1.3 297.12 85.95

50/50 5 705.1 7.09 2.3 0.8 202.98 56.56

0/100 5 426.4 11.72 1.1 0.006 99.481 00.40

50/50 0 830.2 6.02 2.8 1.09 247.01 72.08

50/50 1 702.4 7.12 2.3 0.8 202.04 55.26

50/50 2 713.6 7.01 2.3 0.8 206.01 55.84

50/50 5 705.1 7.09 2.3 0.8 202.98 56.56

50/50 10 713.3 7.01 2.3 0.8 205.92 55.40



swellingindex% ¼ ðM1 # M0Þ=M0 $ 100 ð9Þ

The values of swelling coefficient (Table 7) decreases to

a good extent with filler loading. This is can be attributed

towards the presence of fillers that hinders the path of
penetrant molecules to an otherwise free path i.e. in the

pure NR phase.

Cross-link density

The cross-link density can be determined from equation

Crosslinkdensity; v ¼ 1= 2Mc; ð10Þ

where Mc by the molecular weight between two successive
crosslinks and is determined by Eq. (11)

Mc ¼ # ðqrVSu
1
3
rÞ

ln 1 # uð Þ þ urþ v/2

ð11Þ

where qr is the density of rubber, Vs is the molar volume of

solvent absorbed (toluene Vo = 106.3 cm 3/mole); urf is

the volume fraction of the rubber in the swollen material.
urf is given by the Eq. (12) of Ellis and Welding [32]

urf ¼
d# fw
qp

! "

d# fw
qp

! "
þ As= qs

; ð12Þ

where d is the deswollen weight, f is the volume fraction of
the filler, w is the initial weight of the sample, qp is the

density of the polymer, qs the density of solvent and As is

the amount of solvent absorbed. v the interaction parameter
i.e. the Flory–Huggins polymer–solvent interaction term

was calculated from the Hildebrand Eq. (13) [33]

v ¼ b þ
Vs ds # dp
# $2

RT
; ð13Þ

where b is the lattice constant, Vs is the molar volume, R is

the universal gas constant, T is the absolute temperature, ds
and dp are solubility parameter of the solvent and polymer

respectively.

The calculated result of molecular mass (Mc) and the
cross-link density t are listed in Table (8). As we increase the

NBR content in the blends a decreasing tendency for Mc is

observed. This may be attributed to the difference in nature
of the two elastomers [34]. The slight increase in cross-link

density with NBR content indicates the better reinforcing

effect of polar cloisite 10A with NBR matrix. This rein-
forcement due to better interaction between polymer and

clay, reduces the penetration of solvent molecules. The

schematic in Fig. 13a, b shows how the filler at lower con-
centration reduces the penetration by forming a network and

how at high concentration the clay agglomerates together

reducing the interaction between clay and polymer.

To compare with the theory, the molecular weight

between the cross links was compared with the affine limit

of the model [Mc(aff)] and the phantom network model
proposed by James and Guth using the equation [35, 36]

Eqs. (14) and (15), respectively.

Mc affð Þ ¼
qPV;

2
3

2c;
1
3

2m 1 # l
t ;

1
3

2m

! "

ð# lnð1 # /2mÞ þ /2m þ v/2
2m

ð14Þ

Mc phð Þ ¼ ð1 # 2= vÞqPV;
2
3

2c;
1
3

2m

# lnð1 # /2mÞ þ /2m þ v/2
2m

% & ; ð15Þ

where l and t are the number of effective chains and
junctions [37]. /2m is the polymer volume fraction of

swelling at equilibrium, and /2c, the polymer volume

fraction during crosslinking, where the chain may move
freely through one another where v is the junction func-

tionality [38]. The calculated Mc values along with the

experimental values are detailed in Table 8.
It was found that the Mc values of phantom network

model showed moderate agreement with the experimental

values rather than with the affine model. Here the chain can
move freely through one another, i.e. the junction points

fluctuate over time around their mean position without any

hindrance from the neighbouring molecules.

Kinetic modelling of diffusion

The major objectives of mathematical modelling are the

prediction of diffusion behaviour through polymers, opti-

mization of the diffusion kinetics and elucidation of the
physical mechanism of transport, by comparing diffusion

data using mathematical models [39]. Here we have used the

diffusion models like first-order kinetic equation, Higuchi
model, Korsmeyer Peppas model and Peppas-Sahlin equa-

tion to predict the diffusion behaviour. All these models are

based on the process in which penetrants migrate from the

Table 8 Values of Mc (Exp). Mc (ph).and Mc (aff).in g/cm3

Mc(Exp) Mc(Ph) Mc(Aff)

Hexane

50/50 (0) 103.5 389.0 50.9

50/50 (1) 113.3 327.7 44.7

50/50 (2) 112.9 329.7 44.9

50/50 (5) 112.4 332.2 45.1

50/50(10) 113.2 328.2 44.7

Toluene

50/50 (0) 401.9 959.9 79.5

50/50 (1) 350.5 837.0 67.2

50/50 (2) 355.0 847.8 68.3

50/50 (5) 351.5 839.5 67.5

50/50(10) 354.9 847.6 68.3



initial position in the polymeric system to the polymer’s

outer surface [40]. This is affected by factors such as the
physicochemical properties of the penetrant, the structural

characteristics of the material system etc. Applying these

models in polymeric system is thus justified. Also it has been
reported that, penetrant diffusion and polymeric matrix

swelling are suggested to be the main driving forces for

transport of penetrants containing polymeric matrices.
Specifically, Fick’s law of diffusion provides the basis for

the description of all these models. The equation and the

corresponding fitting parameters are given in Table 6. First-
order kinetics can be expressed by the Eq. (16) [41].

log Qt ¼ log Q1 # kt= 2:303; ð16Þ

where, Q? is the concentration of solvent at equilibrium,

k is the first-order rate constant and t is the time. The data
obtained are plotted as log Qt/Q? versus time (Fig 14).

From the plot it is clear that the diffusion of solvent is not

proportional to the amount remaining in the polymer
matrix as the curve is not fitted well.

Higuchi equation tries to relate the release rate based on
simple laws of diffusion. The equation describes the

release/diffusion processes under Fickian mechanism, or

through non Fickian mechanism. In the case of Fickian
mechanism, the rate of diffusion is much less than that of

polymer relaxation. For Case II system or non Fickian, the

rate of diffusion is much larger than that of polymer
relaxation. The Higuchi model [41] is represented as:

Qt ¼ Kh ( t1= 2; ð17Þ

where Kh is the Higuchi dissolution constant, t is the time

and Qt is the molar percentage uptake. Power law equation

is more comprehensive very simple and semi-empirical
equation developed by Korsmeyer-Peppas [42]. From the

equation it can be related that the fractional diffusion is

exponentially related to diffusion time (Fig. 15). Another
analysis mechanism that consider diffusion in polymer

matrices as a result of two processes, i.e. diffusion into the

Fig. 13 Schematic showing the
clay network at lower loading
and aggregates at higher loading

Fig. 14 Model fitting of the solvent permeation through NR/NBR
blend nanocomposites using first-order Kinetics Fig. 15 Model fitting of the solvent permeation through NR/NBR

blend nanocomposites using Peppas–Sahlin, Haguchi and Korsmeyer-
Peppas



swollen polymer and matrix relaxation This was carried out

by fitting the data to the model proposed by Peppas and

Sahlin (Eq.18) [43]

Mt=M1 ¼ Kf t
m þ Krt

2m ð18Þ

given by the above equation: where Mt/M? is the fraction of

solvent released at time t, Kf is the diffusion Fickian con-
tribution coefficient, Kr is the relaxation contribution coef-

ficient and m is the purely Fickian diffusion exponent. When

Kf [Kr the release is mainly controlled by diffusion, when
Kr [Kf, the diffusion is mostly due to matrix swelling.

When Kf = Kr, the diffusion is a combination of diffusion
and polymer relaxation. The selection of the appropriate

model to ensure the effectiveness can be found out from

correlation coefficient (R) (Table 9) and it is found that the
experimental value fitted quite well into the model.

Conclusions

The transport properties of organically modified montmo-
rillonite filled NR/NBR blends were investigated. The

addition of layered structured nanofillers enhanced the

barrier property of the elastomer blend nanocomposites. It
was found that blend composition and clay loading played

a significant role in determining the diffusion parameters

like solvent uptake, diffusion and permeation coefficients.
For neat polymer the diffusivity was high. Nevertheless,

the presence of OMt showed lower diffusion at lower filler

loading, due to the fine dispersion leading to good polymer/
filler interactions. The claim was supported by the XRD

data, where an exfoliated morphology was shown. The

mechanical properties also supported the diffusion behav-
iour of nanocomposites. The slower diffusion was associ-

ated with the increase in tortousity. At higher loading of

OMt, overall diffusion was increased due to poor polymer/
filler interactions caused by OMt agglomeration. These

assumptions tally with the observations from the TEM

analysis. The shape and size of the solvent also played a
considerable role in determining the diffusion parameters.

The cross link density, an important characteristic, influ-

encing the properties of cured rubber was also determined
and an increase of the same was found at lower filler

loading. The experimental values were fitted with mathe-

matical models, and showed rather fine agreement with

theoretical values. Among the mathematical models used

for determining the molecular weight between the cross-
links, the phantom model shows more agreement with the

experimental values. At the same time., Kinetics of diffu-

sion fitted well for Peppas Sahlin model, where diffusion
was considered to be a combination of Fickian diffusion

and polymer relaxation process.

Highlights

• Addition of fillers could create hindered path for sol-

vents molecules to diffuse.

• Better dispersion at lower filler loading with a decrease
in diffusion .

• Good correlation between TEM, XRD and mechanical

property could be deduced.
• The experimental data of transport studies were com-

pared with theoretical values.
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