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Abstract Three-dimensional surface defect inspection
remains a challenging task. This paper describes a novel
automatic vision-based inspection system that is capa-
ble of detecting and characterizing defects on an air-
plane exterior surface. By analyzing 3D data collected
with a 3D scanner, our method aims to identify and ex-
tract the information about the undesired defects such
as dents, protrusions or scratches based on local sur-
face properties. Surface dents and protrusions are iden-
tified as the deviations from an ideal, smooth surface.
Given an unorganized point cloud, we first smooth noisy
data by using Moving Least Squares algorithm. The
curvature and normal information are then estimated
at every point in the input data. As a next step, Re-
gion Growing segmentation algorithm divides the point
cloud into defective and non-defective regions using the
local normal and curvature information. Further, the
convex hull around each defective region is calculated
in order to englobe the suspicious irregularity. Finally,
we use our new technique to measure the dimension,
depth, and orientation of the defects. We tested and
validated our novel approach on real aircraft data ob-
tained from an Airbus A320, for different types of de-
fect. The accuracy of the system is evaluated by com-
paring the measurements of our approach with ground
truth measurements obtained by a high-accuracy mea-
suring device. The result shows that our work is robust,
effective and promising for industrial applications.
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List of symbols

In this paper, we use the following notation:

A set of N points, p; is
the it* data point.
A point in three-dimensional

PN = {p17p27 "'7pN}

pi = (ina Yi» %i)
space.

PE =pi,ps,....pK The set of points which are

located in the k-neighborhood

of a query point p;.

The centroid of the data
e.g., given a set of points
Py, we have:

3

LN N N
P=x(2 2 ¥ > %)
i=1  i=1 =1
n; A surface normal estimated
at a point p;.
The dot product.
The cross product.

X
|| o The Euclidean norm of o.

1 Introduction

In the aviation industry, one of the most important
maintenance tasks is aircraft surface inspection. The
main purpose of fuselage inspection process is to de-
tect the undesired defects such as dents, protrusions
or cracks. This is a difficult task for a human opera-
tor, especially when dealing with small defects hardly
or not at all visible to the naked eye. In order to speed-
up the inspection process and reduce human error, a
multi-partners research project is being carried on to
develop a collaborative mobile robot named Air-Cobot,
with integrated automatic vision-based aircraft inspec-
tion capabilities.

Currently, coordinate measuring machines (CMMs)
are widely used in the field of three-dimensional (3D)
inspection. However, the inspection systems based on
CMM machines have extremely low scanning speed;
these systems are not suitable for working with the
large objects such as an airplane. Instead, the recent
advances of laser scanning technologies now allow the
development of new devices to acquire the 3D data.
Various types of 3D scanner have been developed for
the inspection applications and the use of laser sen-
sors in 3D part measurement process has introduced a
significant improvement in data acquisition process re-
garding time and cost [18]. Therefore, Air-Cobot uses
a 3D scanner that is capable of collecting point cloud
within a short time at high rate of accuracy and under
different illumination conditions. In order to get infor-

mation about the airplane exterior surface, we need to
develop a robust inspecting technique for processing the
scanned point cloud data.

In this paper, we present a robust approach for de-
tecting and characterizing undesired deformation struc-
tures from 3D data. It mainly consists of two processes:
detection process and characterization process. Firstly,
the point cloud is pre-processed to remove measurement
errors and outliers. The proposed approach then analy-
ses the point cloud for identifying the defects and their
positions. For this purpose, we focus on developing a
segmentation algorithm in which the defect regions are
segmented based on local features including local curva-
ture and normal information. After isolating the defec-
tive regions, they are analyzed to find their dimensions,
depths and orientations.

Our proposed method has the following advantages:
(1) provides a robust framework which is able to de-
tect and extract detailed information about the defects;
(2) detects various types of defects without any prior
knowledge of size or shape; (3) fully automates inspec-
tion process.

The rest of the paper is organized as follows: Sect. 2
contains a review of the related work. The dataset, con-
text, and our approach are explained in Sect. 3. Sect. 4
shows a few empirical experiments of the proposed ap-
proach and discusses about experimental results. Fi-
nally, in Sect. 5, some future directions are presented
and the paper is concluded.

2 Related work

Over the last few decades, visual inspection has re-
ceived a great interest from the aviation industry. The
majority of the existing systems have been developed
for aircraft surface inspection. For instance, C. Seher
et al. [46] have developed a prototype robot for non-
destructive inspection (NDI) based on 3-D stereoscopic
camera. M. Siegel et al. [48,49] have introduced the
surface crack detection algorithm for aircraft skin in-
spection. This algorithm is based on determining re-
gion of interest (ROI) and edge detection technique. B.
S. Wong et al. [57] have also developed an algorithm
based on ROI and edge detection, but using a digital
X-ray sensor. R. Mumtaz et al. [32] proposed a new
image processing technique using neural network for
classifying crack and scratch on the body of the air-
craft. Wang et al. [54] developed a mobile platform for
aircraft skin crack classification by fusing two differ-
ent data modalities: CCD camera image and ultrasonic
data. They designed features which they further used
to train multi-class support vector machine in order to
accomplish classification of cracks. In the literature, to
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our knowledge, there is no much work that concerns the
point cloud analysis for aircraft inspection. However, we
can find some similar studies for different purposes. For
instance, V. Borsu et al. [4] analyzed the surface of the
automotive body panel and determined the positions
and type of deformations of interest. P. Tang et al.[52]
have developed a flatness defect detection algorithm by
fitting a plane against point clouds and calculating the
residuals of each point. Recently, R. Marani et al. [30]
have presented a system based on a laser triangulation
scanner that allows to identify the surface defects on
tiny objects, solving occlusion problems.

The main purpose of our work is the defects de-
tection and characterization by analyzing the surface
structure in point cloud data. Specifically, this study
is closely related to surface segmentation. Deriving de-
fected surfaces from a set of 3D point clouds is not a
trivial task as the cloud data retrieved from 3D sensor
are usually incomplete, noisy, and unorganized. Many
authors have introduced approaches and algorithms for
segmenting 3D point cloud. We refer the reader to [56,
23,34] for a global review of 3D cloud segmentation
strategies. In the literature, region-based method is one
of the most popular approaches for 3D data segmenta-
tion. This segmentation technique is proposed by Besl
and Jain in 1988 [2]. It is a procedure that groups
points or subregions into larger regions based on ho-
mogeneity measures of local surface properties [12,19,
26,20,53,40,7,43,37,35]. Many of edge-based segmen-
tation methods have been used to segment point cloud
data. The principle of these methods is based on the
determination of contours and then identification of re-
gions limited by these contours [13,50,44]. Some local
information of point cloud should be calculated such as
normal directions [3,1], geometric and topological in-
formation [22]. In addition, the authors also use model-
based approaches [45,36] and graph-based approaches
[11,51,58].

3 Methodology for defect detection and
characterization

3.1 Overview of the proposed system

Fig. 1 illustrates all the steps of our approach. We use a
personal computer for processing point clouds acquired
from a structured light 3D scanner. First, a defect de-
tection module identifies and localizes the presence of
defects or deformations on the airplane exterior surface.
Then, we analyse the status of all the defected regions
and extract information about the defects size, depth
and orientation. We termed this second phase as defect
characterization process.

The 3D data processing program must ensure robust-

3D structured light scanner

J{ Point cloud data

Defect Detection Process

l Defected regions

Defect characterization

Process

l Inspection report

| Defect size ‘ | Defect depth ‘ | Orientation ‘

Fig. 1 Overview of proposed system architecture

ness for industrial applications. In other words, it must
be able to detect different types of defects with different
properties.

3.2 Data acquisition

Our approach is applied to inspect the fuselage of real
Airbus A320 airplane. The dataset is captured using a
3D scanner mounted on Air-Cobot (see Fig. 2a and 5b).
The process is fully automatic and performs inspection
of the body as the Air-Cobot moves following a pre-
determined trajectory like Fig. 2b. In order to test the

qr W

ol
punl

ETANT=1C
§ 00 ° A320/NI1%

Fig. 2 (a) Air-Cobot and Airbus A320 airplane; (b) Illustra-
tion of moving map of Air-Cobot

robustness of our approach, we collected data of vari-
ous types of defects such as undesired dents or scratches
under different light and weather conditions. Few exam-
ples of our dataset are shown in Fig. 3.

3.3 Defect detection process

In this section, we introduce the defect detection pro-
cess as illustrated in Fig. 4. The process is divided into
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(c) (d)

Fig. 3 (a) Point cloud of surface without defect; (b) point
cloud with large and small dents (c¢) point cloud with small
dents;(d) point cloud with a long scratch

five steps. First, 3D point cloud is acquired using a 3D
scanner. Next, it is smoothed by Moving Least Squares
(MLS) algorithm. Further, we calculate the normal and
curvature information of each point in the point cloud.
We employ Region-Growing for segmenting the point
cloud into two sets of points: (1) defected regions and
(2) non-defected regions. Finally, these two sets are ac-
cordingly labeled for visualization.

Acquisition data )
Point Clouds

!

Pre-processing Data Smoothing based on Moving

Least Squares (MLS) algorithm ‘ Step D1
Normals & Curvature
Estimation Estimate the points normals

and curvature values Step D2

Segmentation Region Growing based on normals and
S— curvatures value threshold Step D3

Labeli

#‘ Label the defected regions Step D4

Fig. 4 Overview of the detection phase

Step 1 ( data): With the advances of 3D scanning
technologies, various types of 3D sensors have been de-
veloped for acquiring 3D data of high quality. This tech-
nology is very useful for material inspection and qual-
ity control. It allows to collect a lot of 3D data about
the object surface and its size. Different 3D scanners
such as FARO Focus 3D®, Trimble®, Artec Eva®, or
Handyscan 3D® can be used for our work. After ana-
lyzing the data quality of different types of scanner, we

decided to use Artec Eva 3D scanner (see Fig. 5a). It
scans quickly, in high resolution (0.5 mm) and accuracy
(0.1 mm). Artec 3D scanner is also very versatile. It is
recommended to keep the distance between the scanner
and the object in the range 0.4 — 1m. The scanner has
field of view up to 536 x 371mm (for furthest range) and
frame rate of 16 frames per second. It should be noted,
however, that the fundamental part of our system does
not need to be changed if we want to use another type
of 3D scanner.

(a) (b)

Fig. 5 (a) Artec Eva 3D scanner; (b) Air-Cobot with the
scanner mounted on a pantograph

Step 2 (Pre-processing): Although the quality of

3D scanners has been improved greatly, we still get in-
evitable measurement errors and outliers in point cloud.
The goal of this step is to smooth and re-sample point
cloud data. This pre-processing step is important be-
cause it gives more accurate local information. We use
Moving Least Squares (MLS) for smoothing the sur-
face. MLS is a method of reconstructing a surface from
a set of unorganized point data by higher order poly-
nomial interpolations in the neighborhood of a fixed
point. This technique was proposed by Lancaster and
Salkauskas in 1981 [27] and developed by Levin [28,29].
We are approximating our cloud with a polynomial of
second degree in R™, since airplane fuselage is closest to
this type of surface. The mathematical model of MLS
algorithm is described as follows:
Consider a function f : R™ — R and a set of points
S ={xi, filf(x;) = fi} where x; € R™ and f; € R. The
Moving Least Square approximation of the point z; is
the error functional:

furs(@s) =Y (I f(z:) = fi )*O( @ — i ) (1)

7
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We achieve the weighted least-square error at fwhere:

F=min(furrs(x:) = min(| f(z:)—fi )’ 2=, |)

In equation (1), the function @ is called weighting func-

tion. Authors have proposed different choices for this

function. For example, in [29] the author used a Gaus-
2

sian function: O(d) = e By applying the MLS al-
gorithm, we can remove the small errors and further
estimate the intrinsic properties of the surface such as
normal and curvature (see Fig. 6).

ERRUVI |ttt
(a) (b)

Fig. 6 Surface normal estimation on the: (a) original point
cloud before resampling and (b) after resampling using Mov-
ing Least Squares algorithm

Step 3 (Normals and Curvature Estimation):
In 3D geometry, a surface normal at a point is a vec-
tor that is perpendicular to the surface at that point.
The surface normals are important information for un-
derstanding the local properties of a geometric surface.
Many different normal estimation techniques exist in

Fig. 7 Illustration of surface normals

the literature [24,8,31]. One of the simplest methods to
estimate the normal of a point on the surface is based
on estimating the normal of a plane tangent to the sur-
face [41].

Given a point cloud Py , we consider the neighboring
points P of a query point Dq- By using a least-square
plane fitting estimation algorithm as introduced in [47],
we can determine the tangent plane S represented by
a point z and a normal vector n,. For all the points
p; € PX | the distance from p; to the plane S is defined

as

S is a least-square plane if d; = 0.
If we set x as a centroid of PX:

1K
rT=p= ?Z(m)
=0

in order to estimate n,, we need to analyze the eigen-
values \; and eigenvectors v; (j = 0,1,2) of the 3 x 3
covariance matrix A formed by the points p; € P :

PR o - @)
_Kizo Pi —P)\Pi — P

The eigenvector vy corresponding to the smallest eigen-
value \g is the approximation of n [41].

Another surface property that we are using in de-
fect detection is curvature. In computer graphics, there
are many ways to define the curvature of a surface at
a point such as Gaussian curvature (K = kiks), or

k1 + ko
Mean Curvature (H = ) [10] where k1 and ks

are the principal curvatures of the surface. In the lit-
erature, these methods are widely used for calculating
curvature information [39]. Some other techniques have
been proposed by the authors in [59,25]. The above
approaches are accurate but very sensitive to noise and
unable to estimate the curvature from a set of points di-
rectly (mesh representation required). We estimate the
curvature information at a specific point by analysing

the eigenvalues of covariance matrix defined in equation
2.
The curvature value of a point P; is estimated as:

Ao
Ao+ A1+ Ao

where )\0 = min ()\j:07172) [38]

To resume, we estimate surface normals and curva-
ture of each point in the cloud. This information is used
in the next step.

Step 4 (Segmentation): In order to detect the
damaged regions on airplane exterior surface, we need
to segment the 3D points cloud data into regions that
are homogeneous in terms of calculated surface char-

oAb} = 3)

acteristics, more specifically normal vector angles and
curvature differences. By this way, we can divide orig-
inal point cloud into two principal parts: damaged re-
gions and non-damaged regions. The objective of this
step is to partition a point cloud into sub-point clouds
based on normal and curvature information which are
calculated in step 3.
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Let P represent the entire input point cloud, the
region-based segmentation divides P into n sub-point
clouds Ri, R2, R3,...R;..., R, such that:

1)

(2) R; is connected region (i = 1,n )
(3) RiNR; =0 foralliand j,i#j
(4) L
(

(R;) = True for i = 1,n
5) LP(R; U R;) = False for any adjacent regions R;
and R;

LP(R;) is a logical predicate defined on the points p €
R;. Condition (4) indicates that the differences in sur-
face properties (normal and curvature in our case) in
a segmented region must be below certain threshold.
Condition (5) regulates the difference between adjacent
regions which should be above the threshold. The algo-
rithm starts with random points (Pyseeds) representing
distinct regions and grow them until they cover the en-
tire cloud. For region growing, we need a rule for check-
ing the homogeneity of a region after each growth step.
In this paper, we have used surface normals and curva-
tures to merge the points that are close enough in terms
of the smoothness constraint. The picked point is added
to the set called seeds. In each iteration a seed point is
chosen from the set of unlabeled points. Seed point is
always selected as a point with the lowest curvature
in the current set of unlabeled points. For every seed
point, the algorithm finds neighboring points (30 in our
case). Every neighbor is tested for the angle between its
normal and normal of the current seed point. If the an-
gle is less than a threshold value, then current point is
added to the current region. Further, every neighbour
is tested for the curvature value. If the curvature is less
than threshold value ¢, then the point is added to the
seeds [42]. The criteria is shown in Eq. 4:

arccos(n,ng) < aup, (4)

where n and nj are normals of the seed point p and
current tested point py, respectively.

By this way, the output of this algorithm is the set
of clusters, where each cluster is a set of points that
are considered to be a part of the same smooth surface.
We finish by obtaining one vast cluster which is consid-
ered background and a lot of small clusters only in the
defected regions. Admittedly, we obtained several clus-
ters within the same defect, but we solve this by simply
merging adjacent clusters. Our defects are never close
to each other so this merging step is safe to be done.

The segmentation algorithm presented in step 4 can
be described as following:

Algorithm 1: Point cloud segmentation based on
surface normal and curvature

Input: Point cloud P = p1,p2...., pn; Point normals N; Point
curvatures C' ; Angle threshold ayj,; Curvature threshold c¢p;
Neighbour finding function F(-)

Process:

1: Region list {R} +— ©

2: Available points list {L} +— {1..|P|}
3: While {L} is not empty do

4: Current region {R.} +— @

5: Current seeds {Sc} +— @
6: Point with minimum curvature in {L} = Py,
T {Sec} «— {Sc}UPpip
8: {Rc} +— {Rc}U Py
9: {L} «—{L}\ Ppin
10: For ¢ = 0 to size ({S.}) do
11: Find nearest neighbors of current seed point
{Bc} «— F(Sc{i})
12: For j = 0 to size ({B.}) do
13: Current neighbor point P; «— B.{j}
14: If P; € L and
arccos (| (N{Sc{i}}, N{Sc{j}})|) < a¢n then
15: {Rc} «— {R.}UP;
16: {L} +— {L}\ P;
17: If c{P;} < ctn then
18: {Sc} +— {Sc}UP;
19: End if
20: End if
21: End for

22: End for

23: Global segment list { R} «+— {R} U{R.}
24: End while

25: Return the global segment list {R}

Outputs: a set of homogeneous regions R = {R; }.

Step 5 (Labeling): The previous algorithm allows
determining the regions which contain points that be-
long to defects. The defects are labeled by the algorithm
in order to show them on the original point cloud. The
resulting labeling is shown in red color as in Fig. 8:

3.4 Defect characterization process

Next step is to characterize the defects by estimating
their size and depth. For that, we use the result of the
defect detection process.
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Defect 2 Defect 1

/ /
Defect 3 /
]

| ./DefecM

Fig. 8 (a) Part of the fuselage; (b) Acquired point cloud
(visualized with MeshLab).; (¢) The detected defects on the
original mesh are shown in red color

The purpose of this process is to extract and show
the most important information about each detected
defect. In our study, we propose an approach that allows
estimating three main information about a defect, in-
cluding size (bounding box), the maximum depth, and
the principal orientation of a defect. Orientation is use-
ful in the case of scratch-like defects (ex. Fig. 12a).

Our global approach can be viewed as a 4-step pro-
cess (Fig. 9): (1) projection of the 3D point cloud onto
the fronto-parallel 2D image plane (2) data prepara-
tion, (3) reconstruction, and (4) extracting information
about the defects. Further on we will explain each of
the steps.

Project 3D cloud onto the fronto-parallel 2D image plane | Step C1
3D/2D Projection

Input Data:

Data Preparation | Orisinal poiat cloud, Defect-regions, Polygon of the defects Step C2
Reconstruct the ideal surface of defect-regions using

Reconstruction Weighted Least Squares (WLS) Estimator Step C3

Characterize the defects Step C4

Characterization

Fig. 9 Global approach of characterization process

3.4.1 Step C1 : 8D/2D projection

We are reducing our problem from 3D to 2D by pro-
jecting our 3D cloud onto the fronto-parallel 2D image

plane placed on a certain distance from the cloud. We
do this in order to reduce computational cost and also
to facilitate operations such as neighbors search in char-
acterization phase. We do not lose information because
our clouds are close to planes. After this process, each
3D point can be referenced by its 2D projection (pixel).

Planar geometric projection is mapping 3D points
of a 3D object to a two-dimensional plane called pro-
jection plane. It is done by passing lines (projectors)
through 3D points and calculating their intersections
with projection plane. Depending on the center of pro-
jection (COP), there are two principal kinds of projec-
tion: parallel and perspective projection [6]. When the
COP is placed on a finite distance from the projection
plane, perspective projection is obtained. In the case of
parallel projection, the COP is considered to be at infin-
ity and projectors are parallel. Orthographic projection
is a subclass of parallel projection which is obtained
when the projectors are orthogonal to the projection
plane. If the scale is introduced in a uniform manner, it
is said that scaled orthographic projection is performed.
Scale is added in a way that the whole object is uni-
formly decreased/increased after being projected. This
type of projection is also called weak perspective pro-
jection. It assumes that relative depths of object points
are negligible compared to the average distance between
the object and COP.

In our work, we are performing a scaled orthographic
projection of our point cloud. The projection plane is
placed on a certain distance d from the cloud and ori-
ented approximately parallel to the cloud. The point
cloud points are represented by their (z,y,z) coordi-
nates in scanner reference system. We are expressing
these points in the new coordinate system which en-
ables the projection to be straightforward. This new
coordinate system is placed in the mean point of the
cloud with mean normal of the cloud as its z axis (O;f
in Fig. 11). Finally, this system is translated for length
d along its z axis. The process consists of 3 steps.

Step C1.1 (Find the mean normal of the point
cloud)

The notion of centroid can apply to vectors. Let V'
be a set of N normal vectors in all the points of the
cloud:

V = {n1,no..nn} with n; = [Tn,, Yn,, 2n,] "

The mean normal is calculated as:

1 N
n = Nz; n; = (Tw, Ym, 2m)

The mean normal is then normalized:
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‘:\

o (e v o
[zl Nt
where ||71]| = /22 + y2 + 22 .

Step C1.2 (Calculate the rotation and trans-
formation matrix)

When the point cloud is created, it is defined in the
reference system of the scanner O, . We define a new
reference system O;f in which Zol, = n where %0,
is a unit vector along z axis of the new reference sys-
tem O;_f. The origin of O;.f is unchanged. Further, we
find the rotation matrix which aligns two unit vectors
20,; = [0,0,1] and o, = n. This task can be solved
as follows.

It should be noted that the 3D rotation which aligns
these two vectors is actually a 2D rotation in a plane
with normal zo,, X 2 by an angle © between these two
vectors:

cosf —sinf 0

R = |sinf cosf O
0 0 1
Since cos@ = zp,, - n and sinf = |[|zo,; x 0|, we

further obtain:

20,; -1 —l|lz0,;, x 701 O x1y1 0
R=|llzo,; x72ll zo,, -7 0] =|z2920
0 0 1 001

With R we defined a pure z-rotation which should

be performed in the reference frame whose axes are
ﬁ*(zorf 'ﬁ)ZOrf ﬁ*(zorf 'ﬁ)ZOrf
(2011 (o, Mz0, 1" 20rt X Ta—(rony im0, 1) It 021
be easily verified that this is an orthonormal basis. If
we denote 2o, , with A and 7 with B, the axes are illus-
trated in Fig. 10 where B Py is the projection of vector

B onto the vector A.

X

B-°Pa

Fig. 10 Constructing the new orthonormal base. Thick blue
vectors denote z and y vectors of new reference frame (not
yet normalized).

Matrix for changing basis is then:

ﬁ — (ZO,.f . /ﬁ)ZO,,_f
||/ﬁ - (ZOV,»f : ﬁ)ZOrf H

C= (ZOva 1y 20y p Xﬁ)il'

Further, we multiply all the cloud points with C~'RC.
With C' we change the basis, with R we perform the ro-
tation in the new basis and C~! brings the coordinates
back to the original basis. After this operation we have
our cloud approximately aligned with zy plane of the
original frame and approximately perpendicular to the
z axis of the same frame.

Step C1.3 (Orthographic projection and trans-
lation in image plane)

Once the cloud is rotated, orthographic projection
on the xy plane means just keeping x and y coordinates
of each point.

U=1z;0=1y

Some of these values can be negative. In that case,
we are translating all the 2D values in order to obtain
positive pixel values and finally create an image. Let
Preg = (Up,eys Up,.,) be the most negative 2D point in
the set of projected points. We are translating all the
points as follows:

u; = u; + [lup,,,

Vi =i + [|vp,.,
The projection process is illustrated in Fig. 11. Ex-
amples of two point clouds and their projections are

shown in Fig. 12. The projection is better visible in the
Fig. 13a.

y A 3D mesh Point
Cloud Projection plane

P Projectors

~
~N

cop o

[ DOP: Direction of projection
COP: Center of projection at infinite
d = constant

Fig. 11 Orthographic projection from 3D point cloud to 2D
plane

As the last step in C1 phase, in the image space, we
perform resampling of projected pixels (Fig. 13). Af-
ter projection, pixels are scattered (Fig. 13a). Resam-
pling is done in order to have regular grid of projected
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(c) (d)

Fig. 12 (a),(c) 3D mesh of original point cloud; (b),(d) 2D
image after projecting

points. Regular grid, shown in Fig. 13b, makes neigh-
bors search faster by directly addressing neighboring
pixels with their image coordinates instead of search-
ing among scattered points.

() (b)

Fig. 13
after resampling

(a) scattered pixels after projection (b) regular grid

The same as the whole input point cloud, the de-
fected regions are separately projected onto another 2D
image. An example is shown in Fig. 14. Note that these
images have the same size as the projection of the orig-
inal point cloud.

3.4.2 Step C2 : Data preparation

The second step of the characterization process is the
preparation of data. There are three different types of
data which are essential for this process: (1) the orig-
inal point cloud, (2) identified points belonging to the
defect-regions, and (3) the polygon surrounding each
defect. The point cloud and all the defect-regions are
available from Sec. 3.3.
In order to obtain the surrounding polygon of a defect,
we start from the binary image with all projected defect
points after the projection process (Fig. 14b). Note that
the input data can contain one or several defects. For
the defects located in close proximity, we group these
defects into one by using the mathematical morphology
operation called dilation [14]. This operator also allows
to enlarge the boundaries of defect-regions (Fig. 14c).
After dilating the defect-regions, we identify con-
nected components [15] on binary image (see Fig. 14d).
Each of the connected components corresponds to a
damage. Further, contours are extracted for each de-
fect (see Fig. 14e). The convex hull [16] of the defect is
then determined as in Fig. 14f and taken as the polygon
surrounding the points which belong to the defect.

3.4.3 Step C3 : Reconstruction

Our main idea in this section is to reconstruct the ideal
surface of the 3D data. This ideal surface is further
used as a reference to extract the information about
the status of defect by comparing the variance between
the z-coordinate value of each point in the ideal surface
and the corresponding point in the original data. The
concept is illustrated in Fig. 15.

In order to reconstruct the ideal surface of the 3D
data, we use a method called Weighted Least Squares
(WLS) [33]. We are fitting a quadratic bivariate poly-
nomial f(u,v) : R?> — R to a set of cloud points which
are out of the polygonal defect area. We justify this by
the shape of the airplane fuselage which is close to the
quadratic surface.

We start with a set of N points (u;,v;) € R? with
their z-values z; € R. All these values are obtained in
the projection phase. We search for a globally-defined
function f(u,v) = z, that best approximates the sam-
ples. The goal is to generate this function such that
the distance between the scalar data values z; and the
function evaluated at the points f(u;,v;) is as small as
possible. This is written as:

min = 29(H (@, 0) = (us,vi) ) | fus,vi) =z || (5)
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Defect 1
The contour of

defect 1

(d)

The convex hull of
defect 1

(f)

Fig. 14 (a) Labeled defects after detection; (b) Binary image after projecting defects onto the plane; (c) Defect regions after
dilation; (d)Identifying each connected component as one defect; (e) Contours of the enlarged defects; and (f) Convex hull of

each defect

Non-defect region

The ideal surface

13
Il
%]

o
|
]

o

Original

Defect region

Ideal Original

Fig. 15 An illustration of the approach for calculating defect depth

where (u,v) is a fixed point, for ex. center of mass of
the defect region. We can find many choices for the
weighting function 6(d) in the literature such as a Gaus-
sian [29] or the Wendland function [55]. It is a function
which is favorizing the points which are in the proxim-
ity of the defect, while assigning lower weights to the
points far away from the fixed point (u,v).

8.4.4 Step CJ : Extracting information about the
defects

The lowest point

For each point in a defect region, we estimate the
values Az(p;) = Zp(ideaty — 2(ps). Here, p; is a point
belonging to a defect region. We do not consider p; as
a defect point if ‘Az(pz)| is lower than a predefined
threshold. The lowest point of the defect is determined
by max{|Az(p;)|} among all the points from that de-
fect region. The sign of Az(p;) determines if defect is a
dent or a protrusion. A dent is detected when Az(p;)

is positive and a protrusion is detected when Az(p;) is
negative.

The dimension and orientation of defect

In order to show the size and the orientation of the
defect, we construct an oriented bounding-box (OBB)
[17]. We rely on Principal Component Analysis (PCA)
[21]. Let X be a finite set of N points in R%. Our prob-
lem consists of finding a rectangle of minimal area en-
closing X.

| L\

1 . 1 L —

0 1 2 3 4 5 6 7 0 i 2 3 4 5 [ 7

(a) (b)

Fig. 16 Illustration of the PCA bounding-box of a set of
points X € R?
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The main idea of PCA is to reduce the dimensional-
ity of a data set based on the most significant directions
or principal components. For performing a PCA on X,
we compute the the eigenvectors of its covariance ma-
trix and choose them as axes of the orthonormal frame
e¢ (see Fig. 16b). The first axis of e¢ is the direction of
largest variance and the second axis is the direction of
smallest variance [9]. In our case, given a finite set of
points in the defect-regions, we first calculate the center
of mass of the defect and then apply the PCA algorithm
for determining ec. We continue by searching the end
points along two axes of e¢. These points allow us to
draw an oriented bounding-box of the defect as we can
see for ex. in Fig. 17c .

4 Experiments and discussion

The proposed method has been tested on 15 point clouds,
both with and without defective regions. The items
which have been used to test and illustrate our ap-
proach are: radome, static port with its surrounding
area and some parts of the fuselage. This set is con-
sidered representative since the radome (airplane nose)
has a significant curvature (Fig. 22a) while static port
(Fig. 22¢) and fuselage (Fig. 20a) are the surfaces rel-
atively flat. We obtained promising results which will
further be illustrated. We acquired point clouds using
the Artec Eva 3D scanner at Air France Industries tar-
mac and Airbus hangar in different lighting conditions.
We acquired scans of aircraft surface with multiple de-
fects. The same parameters of the detection algorithm
are used for most of the input clouds. The scanner was
placed 60 — 100 cm from the surface. Specifically, we
choose angle threshold ay;, = 0.25 and the curvature
threshold ¢y, = 0.3. The original point clouds, detected
defects and the corresponding characterization results
for each defect are shown in Fig. 17, Fig. 18, Fig. 19,
Fig. 20, Fig. 21, and Fig. 22.

The parameters we use in our algorithm play an im-
portant role in detecting the defects. The most impor-
tant one is the angle threshold ayy,. In our experiments,
we have used «ay;, in the range {0.2 ~ 1} degrees. In
most cases, we have set ay, = 0.25. When we reduced
the value of angle threshold ayj, the sensitivity of the
algorithm increased. Fig. 23 shows the influence of the
value oy, on the area of detected defect.

For curvature threshold ¢, we test the algorithm
on our dataset and we set it to ¢y, = 0.3. This study
also indicates that the performance of the program is
influenced by various factors, as scanning mode, scan-
ning distance, density of point cloud and dimensions of
the defects (depth, area).

(a) (b)

Max depth: 0.978 mm
Size: 19.525 x 31.951 mm
Orientation: 110.556 deg

Max depth: 2.647 mm
Size: 21.556 x 404.474 mm
Orientation: 102.339 deg

(c) (d)

Fig. 17 Scratch on fuselage. (a) Original point cloud; (b)
Defects detected; (c¢) Information about defect 1; (d) Infor-
mation about defect 2
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-
i
(a) (b) (a) (b)
Max depth: 1.803 mm Max depth: 2.397 mm Max depth: 2.864 mm
Size: 21.244 x 44.245 mm Size: 27.255 x 42.269 mm Size: 55.161 x 69.284 mm

Orientation: 180 deg Orientation: 169.695 deg Orientation: 176.186 deg

—

(©) (d) ©)

sma);seszt:gfsszs;nm s'M?);.feszh: (;:3758:“ Fig. 19 One large impact on fuselage. (a) Original point
1261 55,087 X 2384 MM ze: LLARZX B8, mm cloud; (b) Defects detected (c) Information about the largest
Orientation: 239.036 deg Orientation: 194.036 deg

defect

(e) (f)

Fig. 18 Four impacts on fuselage. (a) Original point cloud;
(b) Defects detected; (c) Information about defect 1; (d) In-
formation about defect 2; (e) Information about defect 3; (f)
Information about defect 4
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(i

(a) (b)

Max depth: 0.827 mm
Size: 11.304 x 14.730 mm
Orientation: 180 deg

Max depth: 2.190 mm
Size: 25.994 x 48.267 mm
Orientation: 153.435 deg

(©) (d)

Max depth: 1.547 mm
Size: 16.383 x 19.465 mm
Orientation: 135 deg

Max depth: 2.994 mm
Size: 30.242 x 40.375mm
Orientation: 106.699 deg

2

(e) ()

Fig. 20 Four defects on fuselage. (a) Original point cloud;
(b) Defects detected; (c) Information about defect 1; (d) In-
formation about defect 2; (e) Information about defect 3; (f)
Information about defect 4

g j
Defect 3
Defect 1
Defect2
(a)

Max depth: 1.437 mm
Size: 20.140 x 29.217 mm

(b)

Max depth: 1.523 mm
Size: 17.78 x 25.394 mm
Orientation: 172.875 deg

Orientation: 180 deg

Defect 1

Defect 2

(c) (d)

Max depth: 2.079 mm
Size: 30.276 x 31.039 mm
Orientation: 156.038 deg

Defect 3
\
B

(e)
Fig. 21 (a) Original point cloud; (b) Defects detected; (c)

Information about defect 1; (d) Information about defect 2;
(e) Information about defect 3

(c) (d)

Fig. 22 Examples of point clouds without defects: (a)
Radome; (c) Static port ; (b) and (d) Detection result
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(arn = 0.3) (arn = 0.35)

(arn, =0.4) (arn = 0.45)
———
’ -
1 i ®
(an = 0.5) (agn = 1.0)

Fig. 23 The influence of the value a;p on the detection re-
sults



3D point cloud analysis for detection and characterization of defects on airplane exterior surface

4.1 Evaluation using dial gauge ground truth

In practice, the fuselage inspection is done manually by
a quality manager who first examines the surface using
a low angle light in order to detect defects. Next, the
zone around the detected defect is demarcated with a
marker pen. The zone is further examined using a dial
gauge, also named dial indicator. This instrument is
shown in Fig. 24a and its functioning principle is illus-
trated in Fig. 24b. The probe is traversing the defective
area until surface contact occurs.

Obvious drawback of this method is that it depends
on the expertise and mood of the person operating the
equipment. Another flaw appears in the case of larger
defects, such as those in Fig. 18c and Fig. 18d. Having
a measuring stand with a fixed standardized diameter,
the gauge can dive into the defect and report a lower
depth than the real one (Fig. 25). An advantage of our
method is that it can characterize defects of any size.

%’N

\\%p&‘m

~9

(a) (b)

Fig. 24 (a) AIRBUS standardized dial gauge; (b) Illustra-
tion of dial gauge functioning

K/N

\‘ hi‘m

Fig. 25 Imprecision in measuring depth in the case of large
defects. Red: depth measured by dial gauge; Blue: real depth.

Defect 2 Defect |
/
Defct3 | &
”
-
|
j o Defeet§

“/DefecM

(a)

Max depth: 0.271 mm
Size: 3.997 x 1.628 mm
Orientation: 180 deg

(b)

Max depth: 0.474 mm
Size: 3.453 x 5.974 mm
Orientation: 180 deg

(c) (d)

Fig. 26 (a) Part of the fuselage; (b) The detected defects
are shown in red color; (c) Information about defect 5 (Dial
gauge max depth: 0. 31mm) (d) Information about defect 6
(Dial gauge max depth: 0.48mm)

In the case of small defects, we compared our method
with the result obtained by AIRBUS experts using their
standardized dial gauge (diameter of the measuring stand
34mm) shown in Fig. 24a. Fig. 26a shows the same
part of the fuselage as the one in Fig. 8, with indicated
two additional defects (5 and 6), hardly visible to an
eye. For detecting these shallow defects, oy, had to be
decreased. For this reason, sensitivity of our detection
phase increased. Consequently, we produced some false
detections as well (Fig. 26Db).

Fig. 26c and 26d show that the estimated maxi-
mal depths obtained by our approach are 0.27mm and
0.47mm while standardized AIRBUS dial gauge results
are 0.31mm and 0.48mm respectively. The average dis-
crepancy is around 8%.

For the reason of small diameter measuring stand,
we could not obtain accurate results with the same
dial gauge for neither of the defects larger than 34mm.
Therefore, we carried on the measuring in laboratory
conditions. Our setup is shown in Fig. 27. Part of the
fuselage was fixed on XY mobile table used for precise
cutting of composite materials. The part was placed
as parallel as possible with the table in order to min-
imize inclination. Dial gauge (with 0.0lmm gradua-
tions) without limiting measuring stand was fixed by
using magnetic base. Rectangular grid was drawn around
each defect and the part was slowly moved along X and
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Y axis of the table. In all the intersections points of the
grid, the depth is measured by the dial gauge.

tion explained in Sec. 3.4.3, our approach considers this
aspect of the problem.

Table 1 Maximal depth of large defects shown in Fig. 18

[ { Our method { Dial gauge { AIRBUS dial gauge ‘

(b)

Fig. 27 Measuring the depth of defects with Dial gauge; (a)
Measuring setup; (b) Dial gauge

This way we obtained 10cm long profile lines. Val-
ues read along middle lines are shown in Fig. 28 to-
gether with our results. In order to take into account
possible inclination of the fuselage part, the depth is
obtained by measuring the difference between the low-
est point (black squares in Fig. 28) and the line ob-
tained as average of end values on the profile (red lines
in Fig. 28). The discrepancies between the Dial gauge
measurements and our measured values (Fig. 18 ¢ and

d)aree = 1.8 — 1.7| = 0.1mm (6%) and e = |2.44 — 2.4| =

0.04mm (2%). The values obtained by the three mea-
surement methods are given in Table 1. This table con-
firms our doubt that, in case of large defects (defects
1 and 2), AIRBUS gauge depth values are underesti-
mated due to the measuring stand issue. The other tests
that have been carried out so far on large defects have
shown that the discrepancy is on average 5% and al-
ways below 10%. As per defects 3 and 4 from the same
cloud (Fig. 18 e and f), it was impossible to measure
them with dial gauge because those are two holes. How-
ever, having similar values for these two defects ( 0.85
and 0.84) is coherent since they are two identical screw
holes produced in the manufacturing phase.

o Defect 1. Dial gauge maximal dopth: 1.7 Our approach: 1.8  Defect 2. Dial gauge maximal dopth: 2.44 Our approach: 2.4

(a) (b)

Fig. 28 (a) Profile for defect 1 (Fig. 18c); (b) Profile for
defect 2 (Fig. 18d)

It should be noted that dial gauge method does not
take into account the curvature of the fuselage which
can affect the characterization process of defects above
certain size. Contrary, with the ideal surface reconstruc-

Defect 1

1.80

1.70

1.42

Defect 2

2.40

2.44

1.73

4.2 Execution time

Execution time of the whole process is not easily quan-
tifiable because it depends on density and size of the
cloud (number of points) as well as on the number of
defects. It should be noted that characterization process
is performed for each detected defect sequentially. Also,
in our process we are converting the input cloud from
the scanner format to the format suitable for process-
ing, which also takes time. However the total processing
time which varies between 20s and 120s on our dataset,
is acceptable for our application since the 3D inspec-
tion is planned to be done during more detailed and
longer check, usually in the hangar. These values were
obtained by testing non-optimized code on the PC with:
2.4 GHz Core(TM) i7 CPU, 8GB RAM with Microsoft
Visual Studio 2013. The method was developed in C++
with the support of Point Cloud Library v.1.7.0 cite
[42] and OpenCV v.3.0. library [5]. Approximately for
a cloud with 30000 points, detection phase takes around
8 — 9s while characterization step takes 2 — 3s for each
defect. Our time rises up to 120s because some of our
clouds contain redundant information, caused by the
longer exposure time. It is experimentally established
that this scanning mode is not useful and ”one shot”
scanning mode is recommended. Typical cloud obtained
with ”one shot” scanning mode contains 30000 points.
Therefore typical processing time is 20s, if we assume
that typical number of detected defects is 3 — 5.

5 Conclusions

In this paper, an original framework for the detection
and characterization of defects in point cloud data has
been presented. Proposed methodology is divided into
two main processes. The first process is the defects de-
tection. In this process, the Point Cloud is segmented
to identify the defect regions and non-defect regions.
A computer vision algorithm which is able to detect
various undesired deformations on airplane surface was
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developed using Region-Growing method with the local
information about surface including points normal and
curvature. In the next process, we developed a tech-
nique for characterizing the defects. This technique al-
lows us to provide information about each defect such as
the size, the depth and the orientation. Experiments are
conducted on real data captured by 3D scanner on the
fuselage of Airbus A320 airplane. This is a set of clouds
encompassing various characteristics. The experimen-
tal results demonstrate that our approach is scalable,
effective and robust to clouds with noise and can de-
tect different types of deformation such as protrusions,
dents or scratches. In addition, the proposed processes
work completely automatically. Finally, a limitation of
our approach is processing-time. In the future, we plan
to reduce program execution time by optimizing our
code. Thus, we believe that our results are promising
for application in an inspection system. Not only lim-
ited to the context of airplane surface inspection, our
approach can be applied in wide range of industrial ap-
plications. Our approach is also limited to plane-like
surfaces. Strongly curved surfaces, such as wings and
engine cowling, cause our characterization approach to
fail. We propose cloud fitting to the available Computer
Aided Design model of the airplane, in order to calcu-
late ideal surface more precisely.
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