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Theoretical Study of Optimal Positioning of Segregating
Component Input into Continuous Mixer of Solids
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2Ecole des Mines d’Albi-Carmaux, RAPSODEE Centre, Albi, France

The objective of the study is to demonstrate theoretically one of the ways of improving the quality of continuous mixing of
segregating particulate solids. The objective function of optimization is the standard deviation of segregating component
distribution over the mixer’s cross-section at the mixer outlet, the optimization parameter being the position of segregating
component input. It is shown that the input of the component into the position that is optimized over the length of the
mixer allows improving the mixing quality. The gain of optimization depends on the rate of segregation and grows with

its increase.
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Introduction

Mixing of solids is a complex process of particle migration
inside the operating volume of a mixer that is strongly influ-
enced by particle segregation. It is practically impossible to
reach a homogeneous mixture of segregating components,
at least in the industrial scale apparatuses. However, it is
possible to try to decrease the negative influence of segre-
gation by means of special control of inflows of the compo-
nents to be mixed. Mathematical modeling of the process
helps to understand it better and to search for the ways of
improving it.

An appropriate mathematical tool for modeling the
process is the theory of Markov chains, which is rather
native to the process of mixing because both are related to
the evolution of the state of a stochastic system. The basic
ideas of application of the Markov chain approach to
describing continuous mixing of solids were developed by
Berthiaux and Mizonov (2004, 2005). Later on, in the paper
by Mizonov et al. (2009), a two-dimensional Markov chain
model was proposed that allowed describing the crosswise
distribution of segregating component. However, these and
all other works only used this theory to describe the process
and practically never to optimize it. An attempt to use the
approach to optimize the continuous mixing process by
means of optimal control of segregating component inflow
is presented below.
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A Two-Dimensional Model of Continuous Mixing

The particulate solids to be mixed are presented as the
binary mixture of particles of different size or density that
causes the downward segregation of one fraction within
another. One of the simplest cell models of continuous mix-
ing is shown in Figure la. It can be presented as the
two-dimensional array of cells of the size n x m with tran-
sition probabilities shown in Figure 1b. The probabilities
d, and d, are related to pure diffusion, the probability v is
related to transportation of components along the length
of the mixer, and the probability v, is related to the down-
ward segregation of the key component. The transportation
transition probability v, is directly proportional to the
dimensional particle flow velocity through a continuous
mixer, which, in turn, is the complex parameter combining
the particle flow rate, the particle holdup in the mixer, and
the residence time of particles. The formulae connecting v,
and the process parameters can be found in the papers by
Berthiaux et al. (2005) and by Mizonov et al. (2009). Each
probability can be interpreted as the part of particles that
is transferred from the given cell into the neighboring one
during one given time transition due to the corresponding
transfer flow.

It is convenient to present the current state of the
process as the n x m state matrix Sm, entries of which
are the contents of the segregating component in the
cells. However, for further mathematical operations, this
matrix is to be transformed to the state vector S, in
which columns of the matrix Sm must be placed one
under another.



Fig. 1. Schematic presentation of continuous mixing process:
(a) Two-dimensional cell model of the process, (b) scheme of
transitions from a cell, and (c) dependence of mixing quality
on the position of the input of the segregating component at
various segregation rates.

Evolution of the state of the process can be described by
the recurrent matrix equation

Sk — pSk 4+ sy, (1)

where k is the time transition number, S; is the feed vector
that has the size nm x 1 and it has the only nonzero element
that corresponds to the number of the cell that the segregat-
ing component is fed to, and P is the matrix of transition
probabilities.

The matrix of transition probabilities P is the (nm x nm)
matrix, entries of which are to be defined from the following
relationships:

Upward transitions

PlaGot)yrict, n—t)i) = dy,  i=2,n, j=1,m, (2)

Downward transitions

Plu—1)ritt, n(i—1)+i) = dy +vs, i=1n—1,j=1,m, (3)

Forward transitions

Pu=2)+1, n(i—1)+i) = dx,

Backward transitions

Plyjti, n(j—1)+i) = dx + Vi,

All the other entries of the matrix are equal to zero.

It is supposed that the matrix is state independent, i.e.,
the transition probabilities from a cell do not depend on
particle content in this or that particular cell and in the
surrounding ones. It is a linear model of the process,
and it is supposed to be valid when the amount of segre-
gating key component is relatively small in comparison to
the basic component.

It is easy to show that the asymptotic state of the process
at k — oo can be calculated as

S* = (I-P)"'sy, (6)

where I is the identity matrix of the same size as P and the
index ' means the inverse of the matrix. It allows obtaining
the steady-state distribution of the key component without
recurrent calculation by Equation (1). It is necessary to note
that Equation (6) is only valid if the matrix P and the feed
vector Sy are constant.

Results of Optimization

In usual mixers, the two components are fed together into
the cell (1,1). The objective of the process is to make the
mixture at the outlet (i.e., in the last column of the array)
as homogeneous as possible. At no segregation, the length
of the mixer serves to provide the proper mixing time that
is necessary for achieving a homogeneous mixture. How-
ever, the downward segregating component is capable of
reaching the bottom of the mixer if its length is too long
and is capable of staying near its top if the length of the
mixer is too short. It is possible to agree the mean trajec-
tory of the component and its mean residence time
by moving the segregating component input j; over the
mixer’s length.

The results of such optimization for the array 12 x 20
are shown in Figure 1. The standard deviation ¢ of the
distribution of the segregating component over the last
column of the array of cells was used to characterize
the mixture quality. It can be clearly seen that the optimal
position j; that provides the maximum mixing quality
does exist. This position depends on the segregation rate,
and it moves to the mixer inlet when the rate decreases.
The point of each curve for j,=1 corresponds to the feed
to the mixer’s inlet. Comparison of the points for differ-
ent segregation rates shows how strongly the mixture
quality depends on the segregation rate. However, if the
feed is arranged into the optimal position, the mixture
quality not only significantly improves but also gets far
less dependent on the segregation rate. This situation
happens very often in optimization problems when the
influence of the process parameters is “‘washed out’ near
the optimal points. The solid curves were calculated at



dy=0.1 (longwise mixing) and d, =0.25 (crosswise mix-
ing). The dashed lines near the solid curve for v¢=0.15
were calculated for d,=0.15 and d,,=0.35. It can be seen
that the influence of intensity of crosswise mixing also
exists, but it is much weaker than the influence of the
segregation rate.

It is obvious that the optimal solution can be easily imple-
mented technically by installing an additional movable inlet
for segregating component.

Conclusions

It is shown that the feed of segregating component to the
intermediate optimal position over the mixer’s length allows
improving the mixture quality at the end of the mixer. The
gain of optimization grows with the increase of the segre-
gation rate. It is hardly possible to hope that the gain
predicted by the model can be directly achieved in practice.
However, for the strongly segregating component, the
predicted gain is so high that it is realistic to expect that,

independently on the error of prediction, a real gain will
be obtained.
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