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a b s t r a c t

Knit reinforced composites cover a large range of mechanical properties thanks to the multitude of struc-
tures available. In this paper, a semi-analytical tool is presented allowing to improve the fabric design by
assessing the elastic properties of a stretched knit reinforced composite with several inlays. The stretched
loop geometry is obtained with a loop stretching model based on the beam theory. A geometric model of
the inlays is proposed. These results are used as input data of a mesoscopic scale homogenisation model
to assess the composite elastic properties. A comparison of the results to the load–strain curve of a plain
knit shows that the modelled loop shape is realistic, and the homogenisation model results agree with
experimental data. This tool is used to draw a map of the wale-wise versus course-wise modulus that
can help to design a fabric leading to a composite with tailor-made properties.

1. Introduction

Knitting is an efficient process to automatically produce com-
plex shape preforms of technical textile. 3D [1], tubular [2] or holed
[3] near net-shape fabrics can be obtained in a single step and pro-
vide composites with a large range of properties thanks to the
numerous knitting patterns available [4]. Moreover the extensibil-
ity of the fabrics allows an easy forming of the knitted preforms
[5–7]. The properties of the knit reinforced composites depend
on the fibrous architecture and thus on the fibre type, the basis
knitted structure [4], the knitting parameters and the insertion of
inlaid yarns [8–10], as well as on fabric stretching [11].

For forming simulation purposes, the mechanical properties of
knit composites are more likely identified at the macroscopic level
as an anisotropic homogenised material [7]. To assess the elastic
properties of knit reinforced composites, micro-mechanical models
are required in order to take into account the fibrous architecture
of the reinforcement at the mesoscopic scale of the loop. Some
finite element analysis based approaches have been proposed
[12], but most of the works carried out use an analytical method
to homogenise a unit cell based on the loop geometry [13]. Rudd
et al. [14] combined the model proposed by Krenchel [15] with
the rule of mixture to approximate the tangent modulus of plain

knit composites using a simple geometric description of the loop
using straight lines and arcs of a circle. The yarn is assumed to
be an unidirectional rod that contributes to the stiffness of the
composite according to an efficiency factor depending on the angle
between the local direction of the yarn and the loading direction.
Ramakrishna et al. [16,17] improved this approach by describing
the 3D loop geometry using the model of Leaf and Glaskin [18].
The unit cell is thus composed of a matrix part and a curved
impregnated yarn idealized as a unidirectional lamina. The yarn
is then discretized into short straight segments whose contribution
to the stiffness of the composite is a function of their angle with
the loading direction. This so-called ‘cross-over model’ has been
widely exploited to successfully investigate the behaviour of vari-
ous knit reinforced composites, see [13] and references within. It is
proposed here to enlarge the application range of this model by
coupling it to a model of the knitted fabric biaxial stretching in
order to take into account an accurate geometric description of
the loop in the stretched state.

For knitting [7] or forming [19–21] simulation purposes, some
finite element based approached have been carried out allowing
to describe the loop shape with various degrees of accuracy. Some
analytical approaches have also been developed in the seventies,
based on an analysis of the static equilibrium of the loop. The loads
acting on the yarn in the loop have been formalized allowing to
model the behaviour of weft knit under biaxial [22,23] or uniaxial
[24,25] extension loads. More recently, a 2D analytical model was
proposed by Hong et al. [26] allowing to simulate the geometry of
the loop in a stretched state, either under biaxial or uniaxial
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loading. This model will be used in the present paper to describe
the geometry of the loop.

This work aims to propose a rather simple tool able to assess
the elastic properties of plain knit reinforced composites in order
to help the designer to chose the most relevant knitted rein-
forcement to build a composite with tailor-made elastic proper-
ties for a given application. Plain knit is chosen as the basis
structure since it is able to provide a large range of properties,
from almost isotropic to orthotropic with greater stiffness either
in wale or course-wise directions using inlaid yarns [10,27]. The
rather simple but efficient model proposed in this paper takes
into account the yarn diameter and the fibre elastic properties,
the plain knit basis structure, the inlaid yarns with float and
tuck stitches and the biaxial stretching of the knit resulting from
the forming step. For that purpose, the geometry of the unit cell
is provided by a model of the biaxial stretched plain knit,
enriched by a geometric description of the inlaid yarns. It feeds
an homogenisation model to assess the elastic properties of the
composite.

2. Modelling the load-extension behaviour of a plain-knit

The knit is assumed to be composed of loops of yarn, ideal-
ized as an homogeneous elastic rod of circular cross-section.
The bending of the yarn is assumed to be the only deformation
mechanism that occurs in the loop, as it is the main mechanism
that controls the first step of the behaviour, i.e. a large strain
under a low load. The yarn is thus characterized by its diameter,
d, and its bending stiffness, denoted B = EI, where E is the
Young’s modulus of the fibre and I is the second moment of area
of the yarn with respect to an axis perpendicular to the yarn
axis. The value of d does not affect significantly the behaviour
of the knit before jamming, but mainly controls the deformation
at which the jamming occurs in the wale direction [28]. The
present work mainly focuses on the deformation before jam-
ming. For the sake of simplicity, the diameter d is thus approxi-
mated using the yarn technical data assuming a perfect
hexagonal packing of the filaments, according to Eq. (1), where
df and Nf are respectively the average diameter and the number
of filaments into the yarn.

d ¼ df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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With the same goal in mind, it is proposed here to simply assess
the second moment of area of the yarn from the filament diameter
and number. It is assumed that the energy required to bend the
yarn is the sum of the energies required to bend each filament with
the same curvature as the yarn neutral axis, i.e. no tension or com-
pression arises in the filament as a result of the yarn bending. The
second moment of area of the yarn, I, is thus the sum of the second
moments of area of each filament, Eq. (2). This strong assumption
will be discussed regarding the results of the model compared to
experimental data.

I ¼ Nf
pd4

f

64
ð2Þ

The plain-knit is characterized by the average width of a wale,
W, the average height of a course, C, and the average yarn length
per loop, L. W is the width of the fabric divided by the number of
wales, C is the length of the fabric divided by the number of
courses, and L is the length of yarn in the fabric (assessed by the
ratio between the fabric mass and the yarn linear density) divided
by the number of loops.

2.1. Geometric parameterization and static equilibrium of a loop [26]

For the sake of simplicity, the plain-knit will be schematized by
a plane geometry, since the analysis only focuses on the effect of
stretching the knit in-plane. Considering the symmetries of the
plain-knit structure, the representative volume element is com-
prised of two quarters of loop, symmetric with respect to the con-
tact point of the two adjacent loops. The static equilibrium analysis
will be performed on one quarter of the loop. Fig. 1 shows a sche-
matic of the geometric parameterization and the external loads
acting on this system under equilibrium, and defines the X-axis
parallel to the course direction, and the Y-axis parallel to the wale
direction. The system is subjected at point C to a load T parallel to
the X-axis and to a torque M, allowing to keep the symmetry about
the Y-axis, (the tangent to the neutral axis at point C is parallel to
the X-axis). The contact force between the two quarter loop seg-
ments, R, is assumed to apply at point B of the neutral axis of the
yarn, since the yarn diameter is small compared to the loop size.
The friction is neglected and R is thus assumed to be perpendicular
to the tangent of the neutral axis at point B. The contact is assumed
to be punctual and no torque is thus transmitted between the two
loops at B, at least for this in-plane analysis. Finally, a load P applies
at point A, the inflection point of the yarns neutral axis. The
assumption of an arbitrary load direction is taken in the plane.
As the yarn is not curved at this point, no torque is acting.

Three angles are introduced to parameterize the geometry of
the quarter of loop. b is the angle between the tangent to the yarn
at point B and the X-axis, c is the angle between the direction of the
force P and the negative direction of the X-axis, and a is the angle
between the tangent to the yarn at point A and the X-axis.

Geometry based considerations allow to write a first set of four
equations relating the known parameters W, C, L and d to the angle
b, the coordinates of points A and B, and the length of the segments
AB and BC. The static equilibrium of the quarter of loop allows to
express T, R and M as functions of the load P, the angles b and c,
and the distances y0AB and yBC. The differential equation Boh/os = Mz

relating the bending moment Mz to the curvature oh/os (s is the
curvilinear abscissa and h is the section rotation) and the bending
rigidity B of the yarn can be integrated separately on each segment
AB and BC allowing to obtain on the one hand, the coordinates of
the points A and B, and the length of the segment AB, and on the
other hand, the length of the segment BC. All the required calculus
is detailed in Ref. [26] from which the notations, assumptions and
developments used in the present paper have been borrowed. The
final set of equations obtained is given in Eqs. (3)–(5), where
functions C1, C2, C3 and C4 are defined in Eqs. (6)–(9). F(ei, ui) and

Fig. 1. Geometric parameterization of the external loads acting on a quarter loop.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)



E(ei, ui) are respectively the incomplete elliptic integral of the first
and second kind defined by Eqs. (10), (11), eðe1;/1BÞ ¼
Eðe1;p=2Þ $ Eðe1;/1BÞ, f ðe1;/1BÞ ¼ Fðe1;p=2Þ $ Fðe1;/1BÞ, k1 ¼ cos c
þ sin c tan b, k2 ¼ k1 þ k1 cos bþ 2e2

1 cos2 /1B, e1 ¼ cos½ða$ cÞ=2',
e2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1=k2

p
, /1B ¼ arcsinfcos½ðb$ cÞ=2'=e1g and /2B = (p $ b)/2.

All these equations provide a complete description of the loop
geometry and allow the calculation of the loads acting on the loop,
P ¼ 16BC2

4=L2 and T = $k1P.
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C2 ¼ ½f ðe1;/1BÞ $ 2eðe1;/1BÞ' sin cþ 2e1 cos /1B cos c ð7Þ
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2.2. Plain-knit stretching modelling

The quasi-static stretching of a plain-knitted fabric is assumed
to be a sequence of equilibrium states. The equations above can
thus apply to any stretched state of the fabric throughout a biaxial
or uniaxial test. The Young’s modulus of the filaments, E, is known
and the geometric characteristics of the yarn, d and I, are assessed
through Eqs. (1), (2). If the angles a, b and c are known, it is possi-
ble to calculate L (Eqs. 5, 8, 9) and then W (Eqs. 3, 6, 8, 9) and C (Eqs.
(4), (7)–(9)). The direct problem is solved by discretizing the yarn
into 500 segments of equal length in order to compute the elliptic
integrals using the trapezoidal rule. The simulation of a stretching
experiment thanks to this set of equations requires the inverse
problem to be solved, i.e. to find the values of a, b and c that lead
to the values of three known parameters, allowing the forces acting
on the loop to be computed. The three known parameters must be
carefully chosen depending on the experiment under consider-
ation. Nevertheless, the first step is an updating of the initial values
of a, b and c corresponding to the unloaded state, irrespective of
the experiment.

2.2.1. Initialization and solving procedure
In the unloaded state, the initial values of C and W, denoted C0

and W0, can be measured directly on the fabric and L can be
deduced from the fabric mass. A Newton–Raphson method is used
to solve the inverse problem and find the initial values of a, b and c,
denoted a0, b0 and c0, that correspond to the experimental values
C0, W0 and L, Fig. 2a. The forces acting on the loop when the fabric
is not loaded are then available.

2.2.2. Biaxial stretching
In the case of a uniform biaxial stretching, the calculation strat-

egy is the same as the initialization procedure. C and W are
imposed during the experiment and L is assumed to be the same
as in the unloaded state. The inverse method allows thus to com-
pute the values of a, b and c for any biaxial stretched state,
Fig. 2b. The loads acting on the loop when the fabric is biaxially
stretched are then available.

2.2.3. Uniaxial elongation in the course-wise direction
In the case of a uniaxial stretching in the course-wise direction,

L is still assumed to be constant, and W is imposed by the course-
wise strain. Nevertheless C varies in an undefined manner and the
problem is thus undetermined. Solving the problem requires to
impose a third parameter. Hong et al. [26] proposed to impose a
constant length of the segment BC, assuming that no sliding occurs
at the contact point between the two quarter loops. The inverse
method allows thus to compute the values of a, b and c for any
course-wise stretched state, Fig. 2c. The forces acting on the loop
when the fabric is stretched in the course-wise direction are then
available.

2.2.4. Uniaxial elongation in the wale-wise direction
The last case under study is the wale-wise elongation. As for the

previous case, L is still assumed to be constant, and C is now
imposed by the wale-wise strain, whereas W varies in an unde-
fined manner. The deformation mechanism involves a sliding of
the contact point up to the jamming of the loop. Before the jam-
ming, the third parameter imposed is the force T, assumed by Hong
et al. [26] to be constant during this step. The jamming occurs
when two interlacing quarter loops are in contact, i.e. when the
width of a wale reaches the value 4d if the yarn is supposed to have
a circular cross-section. For an incompressible yarn, once jamming
has occurred, the width of a wale, W, is constant and set to the
value 4d. The inverse method allows the computation of the values
of a, b and c for any wale-wise stretched state, Fig. 2d. The forces
acting on the loop when the fabric is stretched in the wale-wise
direction are then available.

2.3. Comparison between experimental and theoretical results

2.3.1. Experimental data
The fabrics tested in course and wale-wise extension to validate

the results of the model are 5 gauge plain-knits made of 600 tex
yarns of Basaltex

!
BCF basalt fibres. The yarns are comprised of

1672 fibres of diameter 13 lm. According to the manufacturers
datasheet, the density of the basalt is 2700 kg m$3 and its Young’s
modulus is 84 GPa. According to Eq. (1), the theoretical yarn diam-
eter, d, is 0.56 mm. According to Eq. (2), the theoretical bending
stiffness, B, is 0.197 N mm2. The surface density of the plain-knit
is 690 g m$2, its thickness is 1.45 mm, the average width of a wale,
W, is 4.40 mm, the average height of a course, C, is 2.65 mm, and
the average yarn length per loop, L, is 13.1 mm. The knit was tested
in course and wale-wise directions according to the experimental
procedure described in [10]. The experimental data are compared
to the results of the model using the aforementioned data in the
next subsection.

2.3.2. Theoretical results and comparison to tensile tests
Figs. 3 and 4 compare the load/strain curves computed with the

model and the experimental ones. In the wale-wise direction,
Fig. 3, both behaviour ranges (before and after jamming) are
described, and the strain at which jamming point occurs are simi-
lar, around 60%. Nevertheless the modelled behaviour is too linear
in both domains, and the sudden slope change at jamming is not
physical since this phenomena is actually combined with a



transverse compaction of the yarn and a change in the yarn cross-
section. The model can be improved to properly describe the load/
strain curve, for example by taking into account a change of the
yarn diameter along with the increase of the contact force [27],
and by introducing friction to model the nonlinear behaviour at
the beginning of the test. The effect of considering a 2D knit instead
of a 3D loop would also be investigated. In the course-wise direc-
tion, Fig. 4, the model is closer to the experimental data, but for
a limited strain range. In the present case, the inverse method is
unable to find a solution for strains higher than 0.65 in both course
and wale-wise directions. The assumption of the direct model (2D
loop, constant yarn diameter) are too strong for high loads that
may imply a yarn transverse compaction, and significant yarn
out-of-plane bending. Nevertheless it is noteworthy that this strain
level seems in general high enough for the intended application
(shaping of knitted preform).

Fig. 3 compares the loop shape obtained with the 2D model to a
top view of the un-extended knit. A very fair agreement is observed
qualitatively and provides a first validation of the model for the
expected use, i.e. to feed the homogenisation model with the shape
of an extended loop, as shown in Fig. 3 in the wale-wise direction,
and in Fig. 4 in the course-wise direction.

3. Assessment of the elastic properties of the composite

This section is based on a mesoscopic homogenisation method
developed by Ramakrishna et al. [16,17] to assess the elastic prop-
erties of the composite in the course and wale-wise directions. But
in this study, the model takes into account the loop geometry
description provided by the 2D knit extension model detailed in
Section 2, instead of using the 3D geometrical model of Leaf and
Glaskin [18]. On the one hand, only the in-plane elastic properties
of the composite will be assessed, but on the other hand, a direct
coupling with the knit extension can be performed in a simple pro-
cedure. Moreover a geometric description of the inlaid yarns is
added.

The homogenisation method requires the definition of the rep-
resentative volume element, RVE. The RVE depends on the fibrous
architecture and on the loading direction. The RVE chosen in all
cases investigated, are described further. Regardless of the RVE,
the homogenisation procedure is the same. Each yarn is discretized
into a large number of straight segments assumed to behave as an
unidirectional lamina. The first step of the procedure is the assess-
ment of the fibre volume fraction in the yarns, Vfy, allowing to cal-
culate the elastic properties of the unidirectional material.

(a)

(b)

(c)

(d)

Fig. 2. Algorithms for the simulation of the initial state (a), a biaxial elongation (b), an uniaxial elongation in the course-wise direction (c) and in the wale-wise direction (d).
N is the number of increment and the sub-process ‘‘Inverse method’’ is detailed only for the initial state. (: Computed values of the imposed parameters.



3.1. Micromechanical model for the impregnated yarn

The fibre volume fraction in the yarns, Vfy, is assessed from
image analysis of a cross-section of an impregnated yarn in the
composite sample, Fig. 5. An average value of 65 ± 3% is measured
over 9 images. Each straight segment of the discretized yarn is
defined by the in-plane elastic constants of the unidirectional
laminate (tensile modulus in the fibre direction E11 and in the
transverse direction E22, Poisson’s ratio m12 and in-plane shear

modulus G12) and the angle between the segment k and the load
direction, wk. E11, E22, m12 and G12 are calculated from the elastic
properties of the fibre and the matrix (tensile modulus, respec-
tively Ef and Em, Poisson’s ratio, respectively mf and mm, and shear
modulus, respectively Gf and Gm), using a homogenisation model
of an unidirectional laminate (with Vfy measured previously). Sev-
eral models were tested: rule of mixtures, Chamis model [29] and
Uemura model [30]. The rule of mixtures, Eqs. (12)–(15), proved to
be the best suited to fit the experimental data [27] and was
selected to calculate the composite properties.

E11 ¼ VfyEf þ ð1$ VfyÞEm ð12Þ

m12 ¼ Vfymf þ ð1$ VfyÞmm ð13Þ

E22 ¼
Em

1$ Vfy 1$ Em
Ef

& ' ð14Þ

G12 ¼
Gm

1$ Vfy 1$ Gm
Gf

& ' ð15Þ

In the coordinate system (XL, YL) related to the load (XL is the
load direction), the elastic properties EXk, EYk, mXYk and GXYk of each
segment k of the impregnated yarn can be obtained by Eqs. (16)–
(19) as a function of the angle wk.

1
EXk
¼ cos4 wk

E11
þ 1

G12
$ 2m12

E11

" #
sin2 wk cos2 wk þ

sin4 wk

E22
ð16Þ
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E11

" #
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E22
ð17Þ

mXYk ¼ EXk
m12

E11
sin4 wk þ cos4 wk

& '

$ EXk
1
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þ

1
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$

1
G12
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1
GXYk

¼ 2
2
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þ 2

E22
þ 4m12

E11
$ 1

G12

" #
sin2 wk cos2 wk

þ 1
G12

sin4 wk þ cos4 wk

& '
ð19Þ

Assuming a uniform strain of the RVE in the load direction, the
apparent elastic properties of a yarn m, EXm, EYm, mXYm and GXYm, are
assessed by Eqs. (20)–(23) by averaging the properties of the n seg-
ments of length lk, over the yarn length Lm.

EXm ¼
1

Lm

Z Lm

0
EXds ) 1

Lm

Xn

1

lkEXk ð20Þ

Fig. 3. Tensile behaviour in the wale-wise direction of a basalt plain-knit.
Comparison of the load/strain curve and initial loop shape to experimental data
and shape of the loop for several levels of deformation. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. Tensile behaviour in the course-wise direction of a basalt plain-knit.
Comparison of the load/strain curve to experimental data and shape of the loop for
several levels of deformation. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. Cross-section of an impregnated yarn in a composite sample (basalt–epoxy).
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3.2. Homogenisation at the mesoscopic scale

The representative volume element is idealized as a laminate
comprised of two kinds of laminae. The first lamina corresponds
to the net-matrix volume in the RVE. The elastic properties of this
lamina are those of the matrix and the ratio between its thickness
and the laminate thickness is 1 $ Vf/Vfy, with Vf the fibre volume
fraction in the RVE, and Vfy the fibre volume fraction in the yarn.
The other lamina corresponds to the impregnated yarns (plain knit
and inlaid yarns) and their total thickness is Vf/Vfy. Each of these
lamina have the average properties of the yarn, obtained by Eqs.
(20)–(23) and a thickness proportional to the length of the yarn
divided by the total yarn length in the RVE. The rigidity matrix
can thus be calculated for each lamina and the laminate theory
allows the calculation of the composite effective properties. The
next subsections details the RVE chosen in each case under study.

3.2.1. Representative volume element for plain-knit reinforced
composites

The smallest periodic pattern of a plain knit includes a whole
loop and the four quarters of loop in contact with it. For load direc-
tions parallel to the course or the wale-wise direction, considering
the symmetries of a plain knit, this periodic pattern can be reduced
to a RVE constituted on two quarters of loops in contact, and sym-
metric with respect to the contact point, as in Section 2 (Fig. 1).

3.2.2. Representative volume element for composites with inlaid yarns
In the present study, the inlays are tucked each four wales and

float in-between. The smallest periodic pattern of a knit reinforced
composite with inlaid yarns is thus a C height and 4W wide rectan-
gle, Fig. 6. Each RVE of the plain knit are thus completed by one,
two or three inlaid yarns. The different RVE considered for the
plain-knit composites with one, two or three inlays are depicted
in Fig. 6. The geometry of each inlay is described by two arcs of
sinusoid tangent at point 3. From experimental observations, the
length of an inlay in the RVE is 30% higher than the width of the
RVE in the un-extended state. For an extended knit, the length is
assumed to remain constant and the course-wise strain is assumed
to be uniform over the RVE.

3.3. Results and comparison to experiment

The results of the aforementioned homogenisation model are
compared to experimental data, Fig. 7, for composites reinforced
with un-extended knits. The details of the composite material
manufacturing, on specimen preparation and on the experimental
results are available in [10]. The order of magnitude of the moduli,
as well as the main trends are similar, particularly for plain knit
and knit with one inlaid yarn. Nevertheless the model underesti-
mates significantly the moduli of composites with two and three
inlays, irrespective of the load direction. This can be explained by
an inappropriate input data set since the model has been adjusted
on the different experiments to take into account the actual thick-
ness and fibre volume fraction. Indeed, the insertion of inlaid yarns
implies a higher fibre volume fraction in the composite, and may

lead to a compaction of the yarns, increasing the fibre volume frac-
tion inside the yarns, whereas this parameter was assumed to be
the same irrespective of the knit. The length of the inlay may
depend on the number of inlaid yarns, but it was also set to an
average value.

4. Effect of stretching the preform on the elastic properties of
the composite

4.1. Stretching in the wale-wise direction

Stretching the knit in the wale-wise direction, Fig. 8a and b,
leads to a similar effect irrespective of the insertion of inlaid yarns.
The course-wise modulus decreases slightly, whereas the wale-
wise modulus increases almost linearly with the strain. An increase
of 50% and even more arises for a 40% stretched knit with two or
three inlays, mainly related to the inlays alignment in the loading
direction.

4.2. Stretching in the course-wise direction

Stretching the knit in the course-wise direction, Fig. 8c and d, is
more sensitive to the reinforcement under consideration. The
wale-wise modulus decreases slightly but almost linearly with
the strain, whereas the wale-wise modulus increases exponen-
tially. An increase of 30% is obtained for a 25% stretched knit with
three inlays. The effect of a course-wise stretching is mainly
related to the inlays straightening, and the insertion of each inlaid
yarn results in a similar effect.

Fig. 6. RVE for the different reinforcement under study and geometric modelling of
the inlaid yarns. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)



4.3. Map of the wale-wise modulus versus the course-wise modulus

Fig. 9a shows a plot of the wale-wise modulus of elasticity as a
function of the course-wise modulus for each configuration simu-
lated. The main trend is similar for each reinforcement, i.e. an
hyperbolic decrease of the wale-wise modulus with the course-
wise modulus increase, and reciprocally. The curves are almost

symmetric with respect to the bisector of the first quadrant angle
(isotropic material), allowing to design a material with a given
anisotropy ratio either in the wale-wise direction, or in the
course-wise direction, Fig. 9b. This can be useful since it is not
always possible to knit a fabric in any direction. For example, a
cylindrical fabric is necessarily knitted with the axis of the cylinder
parallel to the wale-wise direction.
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Fig. 7. Experimental and computed elasticity modulus of basalt knit reinforced composites in the wale (a) and course-wise (b) directions.
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Fig. 8. Effect of a wale (a and b) and course-wise (c and d) extension of the knitted reinforcement on the wale (a and c) and course-wise (b and d) computed modulus of
elasticity of the basalt knit reinforced composites. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



5. Conclusion

The model proposed in this paper couples a knit stretching
model, based on the beam theory, a geometric description of the
inlaid yarns, and a mesoscopic homogenisation model. The former
model provides an approached load–strain curve of knitted fabrics
subjected to uniaxial or biaxial elongation. An accurate description
of the plane geometry of the loop is also obtained and can be used
in the homogenisation model. This latter model discretizes the
impregnated yarn as several straight segments of unidirectional
laminates. The properties of the laminate are determined from
the fibre volume fraction inside the yarn. The elastic properties
of the knitted composite are assessed using the laminate theory.
Good results are obtained for plain knit and knit with one inlay.
For knits with two or three inlays, the main trend is observed,
but the moduli of elasticity are significantly underestimated, due
to inappropriate input data, identified on plain knit composites.
The main contribution of this work is the coupling of both models,
allowing to assess the elastic properties of composites reinforced
with stretched knits: this is the major interest of this family of fab-
rics when manufacturing complex parts. A map of the wale-wise
modulus versus the course-wise modulus has been drawn, allow-
ing the designer to chose the knitted structure and size the preform
in such a way that the strain field in the shaped preform matches
the mechanical requirements in selected areas, and thus design a
composite with non-uniform tailor-made elastic properties.
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