
HAL Id: hal-01207440
https://imt-mines-albi.hal.science/hal-01207440

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mediation Information System Engineering based on
Hybrid Service Composition Mechanism

Nicolas Boissel-Dallier, Frederick Benaben, Jean-Pierre Lorré, Hervé Pingaud

To cite this version:
Nicolas Boissel-Dallier, Frederick Benaben, Jean-Pierre Lorré, Hervé Pingaud. Mediation Informa-
tion System Engineering based on Hybrid Service Composition Mechanism. Journal of Systems and
Software, 2015, 108, pp.39-59. �10.1016/j.jss.2015.05.064�. �hal-01207440�

https://imt-mines-albi.hal.science/hal-01207440
https://hal.archives-ouvertes.fr

Mediation Information System Engineering based on

Hybrid Service Composition Mechanism✩

Nicolas Boissel-Dalliera,b,∗, Fréderick Bénabena, Jean-Pierre Lorréb, Hervé
Pingauda

aUniversité de Toulouse - Mines Albi, 4 route de Teillet, 81000 Albi, France
bLinagora Toulouse, 3 Av Didier Daurat, 31000 Toulouse, France

Abstract

With the expansion of service-based information systems and the need for orga-
nizations to collaborate with external partners, the alignment of business with
IT has become crucial. This paper presents a hybrid service composition mech-
anism, which couples logic-based and syntactic matchmaking of services and
messages in order to transform business processes into executable workflows by
ensuring service interoperability. This mechanism is based on both top-down
and bottom-up approaches, with a view to meeting business requirements for
access to available technical services, using a generic semantic profile as a pivotal
model. Whereas service matchmaking focuses on functional coverage of gener-
ated workflow, message matchmaking involves the generation of the required
message transformation.

Keywords: semantic web services, hybrid matchmaking, business process
management, interoperability, mediation, information systems

1. Introduction

In today’s wide-open business ecosystem, the ability to collaborate with
potential partners is a crucial requirement for organizations. Furthermore, col-
laboration between organizations must be reactive (to seize any relevant collab-
oration opportunity) and flexible (to remain pertinent to the ongoing situation).
In addition, due to the crucial position of information systems (ISs) in organi-
zations nowadays, collaboration between organizations is highly dependent on
the ability of their ISs to collaborate [1][2]. For these reasons, the concept of
mediation could be extended to the IS domain through a mediation information
system (MIS) in charge of providing interoperability to the partners ISs. Such a

✩This document is a collaborative effort.
∗Corresponding author
Email addresses: boisseld@mines-albi.fr (Nicolas Boissel-Dallier),

benaben@mines-albi.fr (Fréderick Bénaben), jean-pierre.lorre@linagora.com
(Jean-Pierre Lorré), pingaud@mines-albi.fr (Hervé Pingaud)

Preprint submitted to Elsevier November 9, 2012

*Manuscript
Click here to view linked References

mediator should be able to deal with information management, function sharing
and process orchestration in a reactive and flexible way (to support the poten-
tial collaboration efficiently). The MISE 2.0 project (for MIS Engineering) deals
with the design of such an MIS. MISE 2.0 is based on a model-driven engineer-
ing (MDE) approach, dedicated to providing reactivity (by ensuring automated
model transformation) and is structured according to the following layers:

• Knowledge gathering (situation layer): collect information concerning the
collaborative situation,

• Process cartography design (solution layer): design the processes accord-
ing to the knowledge gathered,

• MIS deployment (implementation layer): implement an IT structure able
to run the process cartography.

The transitions between these layers are the sticking points of this approach:
driving an MDE approach in order to deploy a SOA system requires (i) design-
ing a relevant business process cartography from the dedicated situation (first
gap) and (ii), from the obtained business processes involving business activities,
designing a set of executable workflows invoking technical services (second gap).
The first gap is managed at the abstract level of MISE 2.0 while the second is
managed at the concrete level of MISE 2.0. By filling both these gaps, one can
assume that reactivity can be managed.

Furthermore, MISE 2.0 deployment is based on a service-oriented archi-
tecture (SOA) dedicated to providing flexibility (by bridging the gap between
design-time and run-time). The use of SOA allows deployment, on the same
platform, of both services dedicated to design-time and services dedicated to
run-time. Design-time services include a collaborative situation editor (dedi-
cated to gathering collaborative knowledge and to modelling the collaborative
situation), a business transformation service (dedicated to deducing the process
cartography from the collaborative situation model) and a technical transforma-
tion service (dedicated to building the executable workflow files from the process
cartography). Run-time services include all the technical services that can be
invoked to orchestrate the workflow files. Based on this architecture, flexibility
can be assumed: if an adaptation is required, run-time workflow orchestration
can be interrupted and, depending on the nature of the adaptation required, any
design-time service can be invoked in order to re-design new run-time workflows.

This article will focus on reactivity issues at the concrete level. Our method-
ology, explained in Section 3 after a presentation of the study context (Section
2), aims at generating executable workflows from business processes. In order
to perform this transformation, we first have to bring semantic information to
our source models, thanks to our semantic annotation mechanism presented in
Section 4. After that, we can make use of this knowledge to find technical
services which fit our business needs (see Section 5). In order to ensure good
communication between these services, we then use our message matchmaking
engine, detailed in Section 6. Finally, Section 7 concludes and presents research
perspectives.

2

2. Positioning and related work

2.1. Mediation Information System Engineering and Interoperability

The first iteration of the MISE project (MISE 1.0, 2006-2010), did provide
four design-time services which aimed to (i) characterize a collaborative situa-
tion based on a dedicated ontology[3], (ii) extract and transform the knowledge
embedded in that ontology in order to model a collaborative business process[3],
(iii) transform that collaborative business process model into a logical UML
(Unified Modeling Language) model of the mediation information system [4]
and finally (iv) transform this logical model into the files required for the de-
ployment of an ESB (Enterprise Service Bus) giving efficient support to the
collaborative situation[5]. However, in the first iteration, there were some weak
points:

• The collaborative situation ontology is mainly based on the MIT process
ontology handbook[6] and is thus essentially dedicated to manufacturing
contexts.

• There is only one single collaborative process diagram deduced at the busi-
ness level (merging decisional, operational and support considerations).

• Matching between business activities (included in the business collabora-
tive process model) and technical services (included in the workflow model
and deployed on an ESB) is a manual action.

• Detection of events requiring adaptation and flexibility mechanisms is also
a human task.

The second iteration of MISE (MISE 2.0, started in 2009) aims at using the
results of MISE 1.0 in order to improve these four drawbacks. As explained in
the introduction, it is based on two levels (abstract and concrete), dealing with
the two transitions between three layers (situation, solution and implementa-
tion).

• By defining our own collaborative situation ontology, we aim to overcome
the first drawback[7].

• By using the ISO standard, we aim to deduce a full process cartography
(covering decisional, operational and support levels) and thus mitigate the
second drawback[7].

• By using semantic annotation of business activities, business information,
technical services and technical information, we seek to manage the seman-
tic reconciliation mechanisms [8], in order to avoid the third drawback.

• By using an event-driven architecture, we aim to manage events and au-
tomatically detect any needs for adaptation[5]. The fourth drawback can
then be avoided.

The current article specifically addresses the third point concerning semantic
reconciliation.

3

2.2. Suitable solution for multiple application domains

Thanks to its flexible and adaptable mechanism, this approach is suitable
for any application domain. A first iteration of this mechanism was devel-
oped during the ISTA3 project, which focused on sub-contractor collaboration
and insisted on information system interoperability as collaboration support [9].
This project only addressed the question of semantic reconciliation (service dis-
covery and message transformation generation) and focussed on the industrial
environment (limited agility needs, few potential services, basic performances).
This implementation is currently being improved in order to meet more de-
manding activity domains such as nuclear crisis management[10] or transport
issues[11]. As well as those projects needing service and message matchmaking,
these studies also took an interest in the other features of MISE 2.0 such as
business process generation and event-driven architecture. These features allow
the system to detect technical or business problems quickly, analyse them, and
then adapt itself accordingly.

2.3. Semantic reconciliation: state of the art

With the expansion of SOA architectures and BPM approaches, web service
discovery and composition has become a key factor for IT alignment. A lot of
projects focus on it, most of them taking an interest in SWS possibilities.

Service discovery and selection focuses on 1-to-1 service searches depending
on functional or non-functional parameters. All service searches are seen in-
dependently: neither service exchanges nor message formats are involved here.
The SAWSDL-MX2 [12], METEOR-S [13] and FUSION [14] projects take an
interest in SAWSDL service discovery. Whereas [13] focuses on syntactic match-
ing based on input and output study only, [14] and [12] both provide a hybrid
semantic matchmaking (i.e. coupling logic-based reasoning and syntactic sim-
ilarity measurement results for better precision), using additional information
such as service function. OWLS-MX [15] and WSMO-MX [16] use mechanisms
similar to that used by [12] and (hybrid semantic matchmaking), respectively for
OWL-S and WSMO. These semantic representations allow a higher expression
range than SAWSDL. They allow [15] and [16] to use more information, such as
service precondition and effect, to perform service matchmaking. They generate
heavy algorithms but improve precision and research possibilities. While previ-
ous discovery mechanisms only focussed on functional properties, YASA-M [17]
also considers non-functional requirements thanks to its semantic annotation
model YASA, an extension of SAWSDL.

Service composition aims at combining several technical services in order
to meet a wider need (such as a business requirement) or, at least, brings in
process execution to deal with exchanged messages. WSMX [18], IRS-III [19]
and SUPER [20] are based on WSMO representation and also use, like [16],
most WSMO features such as precondition and effect semantic descriptions.
While [18] and [19] settle for “1-to-1” logic-based service matching by means
of, respectively, WSMO Choreography and a UPML knowledge model (Unified
Problem-solving Method description Language) for process description, [20] uses

4

dedicated ontology, called sBPMN, to express process logic and provides “1-to-
n” composition in order to deal with granularity differences between business
activities and technical services. SOA4All [21] defines a lightweight SWS repre-
sentation based on WSMO (called WSMO-Lite) and its executive environment
based on a light WSMX, improving algorithm to provide high-performance “1-
to-n” composition. [22] provides service composition based on I/O matching us-
ing SAWSDL formalism in order to ensure runtime message exchanges. Finally,
[23] takes an interest in service composition regardless of SWS representation
using Cartesian products on available services, based on both operation and
I/O. These frameworks handle process generation and execution, and thus have
to deal with data management between services. [19] chose to entrust message
transformation to the user through a graphical interface whereas [18] and [20]
aim at generating the required transformation. [18] focuses on a specific seman-
tic data description and [20] on SAWSDL I/O semantic concepts to bind message
parts together and uses ontology axioms to generate value transformations. [24]
focuses on semantic data matching to generate message transformations. It only
considers tagging affiliation and does not handle format or value divergences.

Service discovery projects bring out interesting ideas, especially about hy-
brid approaches, which improve research precision and recall. However, these
projects only look at service-to-service matching whereas our model transfor-
mation needs business activity to service matchmaking, which implies manage-
ment of granularity differences. Additionally, they usually focus on only one
SWS representation, whereas we try to embrace several standards (potentially
different between organizations). Furthermore, they do not include the area of
message management, which is essential for interoperability between partners.
Apart from [20], service composition mechanisms use specific languages to ex-
press process logic. This forces organizations to redesign existing processes to
align them with information systems. Moreover, most of them make do with
tag-matching or entrust the user with the task of manually creating message
transformation. Our work aims to provide complete message transformation
generation, based on a classic BPM standard.

3. From business processes to executable workflows

3.1. Matchmaking methodology

At a concrete level, the main goal is to generate a mediation information sys-
tem based on business process cartography (from solution layer) and focussed
on SOA principles (Service Oriented Architecture). In order to execute ab-
stract processes, we need to generate the appropriate BPEL processes. BPMN
2.0 specification already suggests a BPMN to BPEL syntactic mapping. This
mapping allows us to transform processes from one meta-model to another but
it does not bring execution-needed information such as real service endpoints
or exact exchanged messages. This abstract to concrete transformation involves
taking into account both the granularity and conceptual differences.

This model transformation uses both top-down and bottom-up approaches.
It is made up of three steps (see Figure 1):

5

Figure 1: Macro process of hybrid matchmaking.

Step 1 concerns the matching of business activities to technical services.
Abstract processes are designed using business activities, which differs from
technical services (granularity levels, semantic concepts, etc.). It involves an
“n-to-m” matching and ontology reconciliation of concepts from different levels.
The syntactic BPMN to BPEL transformation (cf. step 3) is already handled
by our BPMN management library, which can then execute it by a Petri-based
orchestration engine. So we mainly need to focus on the business to technical
process transformation. Therefore, we chose to exploit both the BPMN 2.0 ex-
tension mechanism (which brings semantic annotations into business activities,
including their inputs, outputs and internal behaviour) and SWS representa-
tions (which also brings equivalent semantic annotations into web services). In
order to provide reusability and acceptable performances, we have also based
our process transformation on a pattern database populated with previous suc-
cessful tries. The whole process transformation follows these steps:

Step 1.1. We search for existing patterns in our database;
Step 2.2. For uncovered activities, we study the semantic descriptions of these

activities and of the available web services (to drive a semantic rec-
onciliation);

Step 3.3. If some activities are still uncovered, we inform the user. He can then
choose to develop a new web service, find another partner who already
owns it, or entrust our library to generate GUI-based services, which
handle expected messages but confide the added-value treatment to
an external (human) actor.

Step 2 is dedicated to enabling “on the fly” data transformation. The dis-
covery of web services that fit our functional needs is not enough to generate
executable processes and ensure good communication. We also have to provide
data interoperability between them. We selected three steps to apply to each
web service in order to generate transformation for its inputs:

1. We try to match input concepts with previous service outputs using se-
mantic matching.

2. Thanks to our ontology, we decompose every concept into sub-concepts
that are as low as possible.

3. Using our databases, we define syntactic transformation rules (for instance
from American date to British date) or mathematic transformation rules
(for instance, from Celsius temperature to Fahrenheit temperature).

Steps 1 and 2 are complementary: in order to perform message transfor-
mation, we need technical information about inputs and outputs (I/O), i.e. to

6

Figure 2: Industrial collaborative use case.

know which technical service is used. Then, step 2 uses step 1 results. If no
transformation is possible, we need to find another service to use, through the
step 1 mechanism.

Step 3 uses our BPMN-to-BPEL library to create the final BPEL file from
the overall BPMN structure of the business process (initial process cartography),
selected web services (from step 1) and data transformations (from step 2).

Each step is made up of an automated search for best solutions, using our
hybrid approach, then a manual selection, completion or validation by the busi-
ness user. Except for the n-to-m matchmaking, the whole approach described
in this paper has already been implemented as a prototype. A collaboration
definition platform was produced for the ISTA3 project. Two main components
were used for this: Petals BPM, an online BPMN 2.0 collaborative designer and
EasierSBS (for Semantic Business Services), our hybrid matchmaking engine.

3.2. Concrete illustration

In order to illustrate our work, we examine the co-design of composite parts
in the Aerospace industry. This example comes from the ISTA3 project. Figure
2 represents a simplified collaboration between two partners: a composite-part
manufacturer and its mould producer sub-contractor. This example treats the
stages from the definition of the mould design file to the reception of the con-
forming mould. The collaboration is supported by a mediator, which centralizes
the business process and deals with interoperability issues.

4. Semantic management in heterogeneous models

Matching business models with technical ones requires workable links be-
tween them. To this end, our matchmaking mechanism proposes using available
semantic information from both models. However, in order to facilitate seman-
tic matchmaking between business activities and multiple SWS representations,
we have defined a common semantic profile. It embeds the required information

7

Figure 3: Semantic profile representation.

and is fillable by semantic models (associated to WSDL service descriptions or
BPMN 2.0 business process).

4.1. Semantic profile

Before defining a common semantic profile, we need to study our semantic
requirements. This common semantic profile aims to facilitate service matching,
and is the matchmaking pivot between business activities and technical services.
Therefore, it has to bring enough information to allow our matchmaking engine
to differentiate services, and then propose the most appropriate ones.

Firstly, our profile needs to express the functional aspects of models in order
to cover activity requirements and service capabilities. While a simple functional
description slot is enough to enable 1-to-1 matchmaking, it could be interest-
ing to allow a more detailed description in order to improve engine abilities
such as n-to-m matchmaking. Then, our semantic profile embeds an internal
behaviour description, composed of a sequence of unit activities. Each of these
unit activities is represented by a list of semantic concepts, such as functional
description.

Secondly, our profile must include high-level semantic description of inputs
and outputs. Technical details do not matter for service matchmaking: in-
teroperability problems will be solved during message matchmaking, once real
services are chosen, by focusing on XSD annotated schemas or other technical
representations. For instance, if we search for an accounting service, which pro-
duces an invoice from a reference to current business, we just search for a web
service that fills our business needs, without needing to consider the business
reference or invoice format.

Figure 3 represents our generic semantic profile. We have defined three
distinct parts: inputs, outputs and operation, which embeds description of its
internal behaviour. The input and output parts are made up of several seman-
tic elements, whereas semantic unit activities compose the internal behaviour
description. This abstract semantic profile can be easily implemented and ful-
filled by most SWS representations, or by the following semantic annotation
mechanism for BPMN 2.0.

4.2. Semantic annotation for BPMN: SA-BPMN

Whereas a lot of annotation mechanisms exist for web services, the recent
BPMN 2.0 is still devoid of a semantic standard. However, among its useful
features, such as high design range (from very high level processes to executable
workflows), this recent modelling standard brings an XML representation and

8

Figure 4: Semantic annotation for BPMN 2.0 (SA-BPMN).

its extension mechanism. Therefore, we decided to propose our own annotation
mechanism, called SA-BPMN 2.0 and based on a previous semantic profile.
Figure 4 represents our two new XML tags.

The first element, called SemanticDetails, allows any type of BPMN 2.0
task (receive, send, service, user) to be described. It embeds both functional
and internal behaviour description. Each one contains a name and a list of URIs
(corresponding to semantic concepts from any ontology).

<Semant i cDeta i l s>
(<Funct i ona lDescr ipt i on name= x s : s t r i n g

modelReference= x s : a n y U r i+ >)?
(<Interna lBehav ior>

(<Uni tAct iv i ty name= x s : s t r i n g
modelReference= x s : a n y U r i+ />)+

</ i n t e r na lBehav i o r>)?
(<xs :any />)∗

</ Semant i cDeta i l s>

The second element, SemanticElements, allows messages and sequencing
flows to be described, attaching a list of expected elements. Each element then
contains the syntactic name coupled with a list of concepts.

<SemanticElements>
(<SemanticElement name= x s : s t r i n g

modelReference= x s : anyUri+ />)+
</SemanticElements>

5. Parametrized hybrid service matchmaking

The proposed service matchmaking approach aims to compare business ac-
tivities and technical services. It is based on a 1-to-1 hybrid matchmaking
mechanism and focuses on semantic profile comparison. Semantic distance be-
tween profiles is performed thanks to a logic-based reasoning coupled with a
syntactic similarity measurement. These measurements use main profile parts:
operation (service capability or activity requirement) and I/O.

9

5.1. Semantic matchmaking

After extracting the semantic profile of the activity, we first compute the
semantic distance measurement between this profile and available service pro-
files. Figure 5 shows the four steps needed to perform this computation for one
potential technical service.

Figure 5: Semantic service matchmaking in details.

Step 1. For each semantic concept involved in the activity profile (noted “Act”
in Figure 5), we search for related concepts in available ontologies. We
associate a rating to each concept, according to its relation to the
initial concepts. We distinguish four types of relations: “exact” for
the initial concept, “equivalent” for close concepts (owl:equivalentClass,
owl:equivalentProperties or instances of the same class), “child” for spe-
cialized classes or instances and “parent” for generalized concepts. Re-
lated concept rate (noted rc) can be cumulated to express more complex
relations:

rc = rcinit,c = max
possible paths

rP (cinit,c) where rP (ci,cj) =
∏

p∈P (ci,cj)

rp.

with cinit and c initial and current concepts, P (ci, cj) a path from ci
to cj and p a direct relation between two concepts (e.g. a “parent”
relationship).

10

For example, if we find a specialized (or child) concept in our ontology,
we bring this concept into our related list with a 0.6 grade. In the same
way, if we find a concept two degrees above (e.g. a parent of parent),
we will associate the rate 0.09 (0.3 x 0.3). While exact and equivalent
concepts are well rated, child and parent ones are penalized in order to
estimate the semantic proximity with the initial concept. If our initial
concept was MouldProduction, a subclass IronMouldProduction may be
more specific whereas the parent concept Production can be too general
for our research.

Step 2. Then, for each initial concept of search profile, we search for the closest
concept in the target technical service profile (noted “WS” in figure 5).
All related concepts were found by the reasoner in the previous step,
so this search involves a very simple (and fast) matching. The rate
associated to an initial concept ci for this WS is defined as: rci =
maxc∈CActpp∩CWSpp

rc, with pp ∈ {Op, In, Out} the profile part of ci,
CActpp and CWSpp

the set of semantic concepts (including inferred ones)
involved in the part pp of activity profile (respectively WS profile).
For instance, if the target profile contains one concept corresponding to
an equivalent concept of the search profile, we associate the rate 0.9. If
two target concepts refer to the same search concept, the best rate is
kept.

Step 3. Next, we calculate the rates of semantic distance for each profile part
(inputs, outputs and operation), considering semantic concept rates and
part coverage. Four cases are taken into account: part coverage is con-
sidered as exact if target concepts exactly cover the initial ones, “plugin”
if target concepts cover more than expected concepts, “subsume” if any
search concept is uncovered and “fail” if there is no concept in common.
These four cases considered are similar to those of [12], although the
coverage computation and the treatment are different. The penalty ap-
plied differs as a function of the studied part. A small penalty is applied
for operation and output in the case of “plugin” coverage, a bigger one
is used in “subsume” whereas the opposite rule applies to input parts.
For output or operation, a “plugin” coverage means the target service
provides more functionalities or results than expected whereas “sub-
sume” indicate a lack of functionality. For input, “plugin” means some
unsolicited information is expected whereas “subsume” indicate that
less information is needed. Algorithm 1 aims at evaluating the cover-
age of an element tree, returning true if an element or all its children
(recursively) are semantically linked (relem ̸= 0), and false otherwise. If
this function returns false when applied to the expected root element
(from expected activity), it means we are in a “subsume” case, whereas
if it returns false when applied to the target root element (from web
service), we are in a “plugin” case.
Whereas the final rating of the operation is computed thanks to a simple
arithmetic average (rOp = 1

|COp|

∑

c∈COp
rc, with COp the set of seman-

tic concepts attached to the operation), the rating of the input or output

11

Algorithm 1 isCoverageAcceptable
function isCoverageAcceptable(element, coverageMap)

return isCoverageAcceptable(element, coverageMap, new List)
end function

◃ This second function is never called directly but avoids infinite loops due to recursive elements
function isCoverageAcceptable(element, coverageMap, studiedList)

if element.rate in coverageMap ̸= 0 then

return true
else

if element.children ̸= ∅ AND element /∈ studiedList then

Add element to studiedList
for all element.children as child do

if ¬ isCoverageAcceptable(element, coverageMap, studiedList) then

return false
end if

end for

return true
end if

return false
end if

end function

part must take into consideration element hierarchy and semantic cov-
erage. In this view, the final rating of input (or output) is computed
as a recursive arithmetic average, to which we apply a coverage loaded
premium:

rIn = PIn ∗ re(rootIn)

where PIn =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Psubsume if “subsume”
Pplugin if “plugin”
Psubsume ∗ Pplugin if both
1 otherwise

and re(elem) = max(
1

|Celem|

∑

c∈Celem

rc,
1

|Chelem|

∑

child∈Chelem

re(child))

with PIn the penalty applied to this input, rootIn the root element of
input, Celem the set of semantic concepts associated to element elem
and Chelem the set of elem’s children.

Step 4. Lastly, the final semantic rating is computed by applying an importance
weighting between the three rates (inputs, outputs, operation):

rWS = wOp ∗ rOp + (1− wOp) ∗ rI/O

where rI/O =

{

rIn+rOut

2 if activity has output(s)
rrIn otherwise

with wOp ∈ [0; 1] the importance weighting of the operation.

Of course, steps 2 to 4 are computed for each technical service profile in
order to obtain a semantic distance measurement for each available service.
A semantic threshold can be defined by the user to automatically eliminate

12

irrelevant services before the next step then lighten the syntactic matchmaking
computation.

As stated above, all weights and penalties can be changed between compu-
tations by the user according to IS and ontology specificities.

5.2. Syntactic matchmaking

Our syntactic similarity measurement uses classic similarity metrics such as
Extended Jaccard or Dice [25]. All these metrics focus on word occurrence
comparison. For this computation, we no longer use logic-based mechanisms
focussing on relations between semantic concepts, but instead we only study
used words, both technical names used in service description and concept names
themselves. The same three groups of concepts are considered: inputs, outputs
and operation. Figure 6 represents the four steps of our similarity measurement
approach:

Figure 6: Syntactic service matching in detail.

Step 1. For each group of both business activity and technical service profiles,
we extract potential words from its name and concept syntactic names.
In this view, we make use of main writing conventions, such as camel
case or punctuation uses. For instance, we can extract 4 words from
concept name “#very importantConcept4instance”: very, important,
concept and instance.

Step 2. Then, we enumerate word occurrences taking into account small differ-
ences. In this view, we use as an error margin the Levenshtein distance
[26], which computes the number of necessary changes to transform one
word into another. For example, the Levenshtein distance between “de-
sign” and “designs” is only 1 so we consider those as quite identical. The
Porter algorithm [27], which compares word roots, is often preferred in
information retrieval mechanisms to compare word proximity thanks to
its wider recognition of close words. However, it only works on English
words whereas Levenshtein can be applied to every language.

13

Step 3. Thanks to similarity metrics, we can then measure the distance between
groups of words. Several similarity measurement techniques exist and
we implemented four of them: Cosine, Dice, Extended Jaccard and
Jensen-Shannon. However, large-scale syntactic matchmaking shows
similar results for these four metrics. By default, we chose Dice similar-
ity measurement, which is slightly faster than the others. This compu-
tation returns a proximity rate, between 0 and 1, for each profile part:
simDice

pp = 2|A·B|
|A|2+|B|2 , with A and B the normalized vectors for the activ-

ity profile part and target web service, containing occurrence numbers
of each word that appears in one or the other (enumerated during the
previous step).

Step 4. Finally, once the three groups have been rated for a specific technical
service (input, output and operation), we can compute its final mark as
we did for semantic distance, using the same importance weighting.

Whereas the first two steps can be performed once for the search profile,
others must be done for each potential target service (according to semantic
matchmaking). Another threshold mechanism allows our matchmaking engine
to automatically exclude irrelevant services before sending results to the user.

Next, we combine the two previous ratings using an importance weighting of
the logic-based computed mark compared to the syntactic one, to obtain a final
distance rate: rfinal = wlogic ∗ rlogic + (1 − wlogic) ∗ rsyntact, with wlogic ∈ [0; 1]
the importance weighting of the semantic, rlogic and rsyntact the semantic and
syntactic ratings. Finally, results are sent to the user who can choose the most
appropriate technical services from among only a few relevant services rather
than the thousands of available ones.

5.3. Evaluation of performance

In order to evaluate our service matchmaking engine performances, we used
the SAWSDL test collection SAWSDL-TC21. This test suite contains 42 queries
and their expected responses over 1080 services and 38 ontologies. It allows us
to conduct a retrieval performance evaluation on a large base of semantically
annotated service descriptions covering several application domains, such as
travel, education, food or medical care. Even if these SAWSDL only contain
semantic annotations on a I/O schema description, it remains the best way to
test a service matchmaking engine while there is currently no other test collec-
tion as complete as this one available. The performance tests were performed
on a machine with 2Ghz i7 CPU and 2Go RAM on Mac OS X and Java 6.

All performance measurements are based on two classic retrieval information
indicators: precision and recall (noted P and R in the following equations). The
precision indicator represents the quality of results (percentage of relevant doc-
uments among retrieved ones) whereas the recall indicator shows the sufficiency
of the result (percentage of retrieved documents among relevant ones). From

1http://semwebcentral.org/projects/sawsdl-tc/

14

these two indicators, we calculated the average Fmeasure for all queries and the
Mean-Average Precision (MAP):

Fmeasure = 2 ·
P · R

P +R

where P =
|retrieved ∩ relevant|

|retrieved|
and R =

|retrieved ∩ relevant|

|relevant|

MAP =

∑Q
q=1 AP (q)

Q
where AP =

∑n
k=1 P (k) ·Rel(k)

|relevant|

where AP (q) is the average precision for the query q, Q is the number of
queries, P (k) represents the precision for the first k results (from the ordered
retrieved documents) and Rel(k) is equal to 1 if the kth document is relevant,
0 otherwise. While Fmeasure combines recall and precision for a whole query
result, MAP represents precision evolution along ordered results. Finally, we
depicted the precision/recall graph, representing the evolution of precision func-
tions of recall, computed from precision and recall values for each kth first re-
trieved documents of each query result.

Table 1: Evaluation performance of our service matchmaking engine

Semantic Syntactic Syntactic Hybrid Filtred
(Leven.) Hybrid

MAP 0.59 0.52 0.52 0.54 0.58
Fmeasure(∈ [0; 1]) 0.45 0.48 0.48 0.57 0.48
Avg. time (ms) 512 283 971 751 664

We studied five service matchmaking configurations: semantic only, syntac-
tic only (with and without Levenshtein limit), hybrid and hybrid with filter
between semantic and syntactic selection. Table 1 summarizes average times,
MAP and Fmeasure for all cases, whereas Figure 7 shows recall/precision graphs
for these configurations. Results for both syntactic matchmaking cases coincide.
For this reason, we depicted only one curve in the figure.

First, these results show the inefficiency of the Levenshtein distance mar-
gin in our matchmaking algorithm. Results are quite similar with or without
this feature while Levenshtein recognition increases the average execution time
four-fold. Secondly, we notice that both hybrid- and semantic-only approaches
provide interesting results. The logic approach offers better document ordering
(represented by recall/precision graph and MAP value) whereas hybrid ap-
proach retrieves more precise document set (higher Fmeasure). Finally, these
benchmarks indicate that the setting-up of a filter between semantic and syn-
tactic matchmakings reduces the interest of the hybrid approach, the results
being close to the semantic-only approach in spite of additional computation.

15

Figure 7: Service matchmaking performance results.

According to these benchmark results, the advantages of a hybrid approach
appear limited. However, it should be remembered that SAWSDL-TC only
contains fully annotated service descriptions, which cannot be the case in real
industrial situations.

5.4. The quest for process reconciliation

Thanks to internal behaviour descriptions coupled with the previous hybrid
mechanism, it became possible to create semantic profiles of atomic functions
in order to match them. These profiles are only partially filled because of lack
of internal information descriptions but they still provide some mapping trails
that we can confirm using available inputs/outputs description. Unfortunately,
this approach involves a combinatorial computation. For each possible group of
activities, we theoretically have to test each possible group of technical services.
In order to limit possible associations, we considered some simple filters:

• Some information about collaboration, such as target partner, activity
domain and non-functional requirements are provided by both business
process and service descriptions and can be used as filters. These filters
do not require time-consuming computation and can be performed before
our hybrid matchmaking while this information is contained in our tech-
nical registry. For instance, if the collaboration involves one preselected
mould producer and the business process specifies the need to use secured
exchanges, we can perform matchmaking that only considers secured ser-
vices from this particular service provider.

• We cannot consider bringing together activities that are randomly se-
lected. The process logic can also reduce possible groups. Any business
process implies connections between activities that we cannot avoid (i.e.

16

sequences, gateways). Figure 8 illustrates possible logic groups of busi-
ness activities that can be considered for semantic reconciliation. From
millions of possible groups, there are only 22 useable groups.

Figure 8: Process logic study for combinatorial computation reduction.

For now, this n-to-mmatchmaking remains very simple. Implementation and
tests are in progress and the list of possible improvements is still lengthening.
Some recent external research, such as [28] is contributing promising new ideas
for improving the precision of this approach, and we are still working on these
improvements too.

6. Ensuring message interoperability

Once the user has selected technical services, we can focus on real data map-
ping. The discovery of web services that fit our functional needs is not enough to
generate executable processes and ensure good communication between partner’
ISs. We also have to provide interoperability between these services.

6.1. Technical databases

Each service invocation needs a specific input message to be correctly exe-
cuted. Expected tags are described in the service description (name, data type)
but they must be filled with relevant data in exact format. They usually dont
bring information, but organise it. Furthermore, service descriptions can only
depict standard data types. For expected input described as a simple string,
the real service can expect a date in an exotic format but service descriptions
are not precise enough to express it.

Semantic business information is not sufficient for message matchmaking.
One business concept such as delivery date can be expressed in many formats
(XML Datetime, US date format). This choice belongs to the service devel-
oper who can also use classic XML Datetime, declared as such in the service
description, or choose to use an exotic one, declared as a simple string. In order
to solve this problem, we propose a technical ontology focused on format con-
cepts and linked to three technical databases filled with syntax representation
and conversion formulae. The factorization database expresses possible decom-
positions using concept URIs as value representations. For instance, using the

17

three decomposition examples below, we can factorize a complex concept such as
XsDatetime into unit concepts and its embedded syntax (#XsYear-#XsMonth-
#XsDayT#XsHour:#XsMinute:#XsSecond).

#XsDatetime = %%#XsDate%%T%%#XsTime%%
#XsDate = %%#XsYear%%−%%#XsMonth%%−%%#XsDay%%
#DateUs = %%#XsMonth%%−%%#XsDay%%−%%#XsYear%%

The formula database is close to the previous one, except that it expresses
conversion formulae between two technical concepts. Here is an example of
conversion between millimetre and inch measurements:

#Mil imeter = %%#Inch%% ∗ 25 .4

Finally, the regex database links those technical concepts to their regular
expressions (e.g. #XsYear = [0-9]4). This technical information will allow our
transformation engine to treat real values in run time. Those technical concepts
can then be used to annotate input/output descriptions in order to support our
transformation generation mechanism.

6.2. Message matchmaking approach

Each web service can be invoked using a specific XML format as input.
This format is described in its WSDL description, which stipulates names, data
types and tag hierarchy. Ensuring service interoperability involves creating the
expected input, using the available data in correct format. In this view, our mes-
sage matchmaking mechanism aims at generating the correct message transfor-
mation, considering all parameters such as process logic, complex data formats,
unknown/undefined data format, etc. The proposed matchmaking process, pre-
sented in Figure 9, tries to cover all these possible cases in order to provide a
complete and adaptable solution:

Figure 9: Overview of message transformation approach.

Step 1. First we search for available outputs using process logic. We have to
find out which previous output messages can be used to create our input
target message, according to previous activity states at target activity
call.

Step 2. Then, using this available data, we try to compute the whole message
transformation according to the semantic link between tags, format de-
scriptions and technical information about known transformations.

Step 3. If the whole message is not covered by the computed transformation,
we first try to find an available transformation service using our ser-
vice matchmaking mechanism described above. This mechanism works

18

well for simple messages, but is limited for really complex information
such as CAD formalisms where thousands of tags are involved. How-
ever, this kind of business transformation is usually performed by high
value-added services provided by software editors themselves (e.g. file
transformation between two major versions of a specified software).

Step 4. Result transformation is submitted to the user for validation or com-
pletion. Three cases are then possible:

• Computed transformation is correct and covers the whole input
message. In this case, the user can directly validate it. The trans-
formation is generated in computer-readable language then added
into the workflow description.

• The transformation is feasible using data from the previous service
but is incorrect or incomplete for now. In this case, the user can
manually complete or correct the transformation. The technical
database is then updated and this new information will then be
useable for future transformations.

• Transformation is impossible according to available information.
The user can then choose to (i) try with another possible service
(result from service matchmaking), (ii) search for a new partner
who proposes expected service or (iii) generate a business service, a
simple user interface, which allows the user to bring in the missing
information. In every instance, the chosen service needs a ded-
icated message transformation. The whole generation process is
then resumed from transformation computation.

The following part details steps (1) and (2) of this generation process, which
concentrate the majority of our added value. First, we look at the selection of
available messages based on process logic study, then the computation of the
transformation file.

6.3. Selection of available messages

The first step in this generation is the selection of available data from for-
merly sent messages. According to the process logic, some technical services
will not be invoked depending on gateways and runtime conditions. Here again,
we distinguish several cases, which cover most possible scenarios. Figure 10
illustrates those cases, the considered service being the one annotated with a
“?”:

• Some services (shaded dark in the figure) will inevitably be executed be-
fore the target service, whatever the runtime conditions or values in each
process execution may be. All these service outputs can be used to create
the target input. If two available outputs are identical, the most recent
will be favoured by the generation engine.

• Others may or may not be called during the process execution. Their
output messages (and associated values) may not be available (light ones
in the figure):

19

Figure 10: Selection of available messages.

– Services from prior conditional branches: their outputs can be con-
sidered only if all process branches share the same semantic concepts,
i.e. produce the same data (possibly with different values). Hybrid
matchmaking is then performed in order to compare available out-
puts. If a transformation can be computed by our engine, a new
variable is created in the process description in order to store the
runtime value in a common format. This variable will be filled at
all process executions and can then can be used to create the target
input.

– Services placed downstream from our target service but within a com-
mon loop: their outputs are not available at the first call but can be
used if the way back is used to update previous values. The mech-
anism is quite similar to the previous one: hybrid matchmaking is
performed to determine which data can be updated by the concerned
services and the workflow description is consequently modified.

• Finally, remaining services (the white ones in the figure) cannot be called
at all before the target service. These outputs are simply excluded from
considered data.

Once all available output has been selected, with associated ratings depend-
ing on their distance from the target service, we can begin the transformation
computation (Step 2).

20

6.4. Generation mechanism

In our specified environment, and according to the low coupling principle,
all exchanged messages are written in XML. Few methods focus on XML trans-
formations, but one of them has broken away from the others thanks to its
maturity and flexibility: XSLT (for Extensible Stylesheet Language Transfor-
mations). This mechanism aims at generating accurate XSLT transformation
for each service using previously selected available messages and their semantic
annotations.

Service I/O are described into XML Schema formalism embedded in WSDL
files. This format description is limited to standardized data types and all ex-
otic formats are only specified as simple string. Unfortunately, added semantic
information is not sufficient to overcome the lack of format description. One
business concept such as delivery date can be expressed in many formats (XML
Datetime, US date format), according to the service developers choice. In order
to solve this problem, we propose a technical ontology focused on format con-
cepts and linked to a technical database filled with syntax representation and
conversion formulae. This database contains the following tables.

• The factorization table details possible concept decompositions using URIs
as value representation. For example, a complex concept such as #Xs-
Datetime (in XML format) can be factorized into unit concepts as #XsYear-
#XsMonth-#XsDayT#XsHour:#XsMinute:#XsSecond.

• The formula table, which expresses conversion formulae between two tech-
nical concepts. For instance, conversion between millimetre and inch mea-
surements (#Millimetre = #Inch x 25.4).

• Finally, the regular expression table links those technical concepts to their
syntactic description (e.g. #XsYear = [0-9]{4} means the year is written
with 4 digits). This technical information will allow our transformation
engine to treat real values at runtime.

The following generation mechanism is based on both XML schema syntactic
description and its annotated technical concepts. The generation mechanism
can be split into three steps (see Figure 11):

Step 2.1. First, thanks to our hybrid matchmaking engine and list of available
data (see section 6.3), we match target tag concepts with available
source concepts. This enables us to find equivalent tags, without
considering data format for the moment. For instance, the selected
service expects, among others, a date in a XML Datetime format and
a length in millimetres. Thanks to the hybrid matchmaking engine,
we find some close potential tags from selected outputs: Date (US
format) and Time that cover the Datetime embedded concepts and
LengthInch, which corresponds to the expected length expressed in
inches.

21

Figure 11: Generation of XPath functions.

Step 2.2. Next, once previous values fitting our functional needs have been se-
lected, we can focus on the data and format matching, using the tech-
nical description of formats from our databases (described above), we
can now deduce the XPath function, which allows us to transform
available values into expected ones. To this end, we first factorize
both available and expected concepts into finest-grained concepts in
order to compare concepts of similar granularity. We then try to
match target unit concepts with previous output concepts, generating
the corresponding XPath function.
As you can see in Algorithm 2 (in Annexe Appendix A, an example is
given in the comments on XsDatetime generation from Date US and
XsTime), we first use the factorization database to decompose the
expected value description into unit concepts (L4). For each potential
value we also decompose it into unit technical concepts in order to
match concepts of the same granularity (L12). If one concept from
this potential value corresponds to an expected unit concept, we re-
place this concept in its decomposition with its regular expression and
associate the expected concept to a unique key (needed for final XPath
replacement, L16-22). Once all potential concepts have been treated,
we search for uncovered expected concepts in order to find a formula
conversion (L30-33). If we find one for each uncovered concept, we
can generate the XPath transformation using collected information
(used potential values, their regular expression and associated key or

22

formula).). Thus, this algorithm produces a general XPath formula
to create an expected value from previously available values (L39-57).
In real implementation, ids of potential values correspond to the real
value path in the message and concepts are referred to by their com-
plete URIs. Incidentally, the “searchFormula” method is not detailed
here, but it simply checks coverage of concepts in formulas with po-
tential concepts.

Step 2.3. Finally, once all target elements have been covered by generated XPath
functions, we turn to the element structure itself (tag hierarchy) in
order to generate the corresponding XSLT. The XPath function al-
lows only conversion from one tag to another (e.g. a delivery date
unique in the message) but is not sufficient for complex element man-
agement. In order to manage such hierarchy complexity it is necessary
to use both BPMN and XSLT features. Table 2 summarizes the re-
quired XSLT or BPMN functions depending on source and target tag
occurrences (resp. vertically and horizontally):

• If both source and target are not mandatory, transformation is
possible but the source value must be tested (using XSLT if func-
tion) to avoid generation of a useless tag in the target.

• Else if source value is not mandatory whereas the target is, we
cannot ensure the transformation. In this case, the source must
be changed or completed.

• Else if source value is both mandatory and unique, no test is
needed and transformation only uses XPath features.

• Else if source value is not unique (e.g. some lines in an estimate
description) but the target tag allows one value maximum, the
target service must be invoked once per possible value. In this
case, we must change the BPMN activity type to a loop.

• In the last case (multiple source and target values), we must use
the XSLT function “for-each”, which allows our transformation
engine to copy several values from an XML message to another,
applying the same XPath function for each.

Table 2: XSLT tags according to element occurrence

in/out ! 0..1 1..1 0..∞ 1..∞
0..1 if ∃ X if ∃ X
1..1 " " " "

..∞ # BPMN # BPMN for-each for-each

These generated transformations cover most format divergences. They are
included directly in the BPMN definition as XSLT transformation in order to

23

be exported as external services during the BPMN to BPEL automated trans-
formation. If this transformation is not complete after this computation, the
message-matchmaking process continues as described in section 6.2.

7. Perspectives and conclusion

Driving a BPM approach is a very common solution to improve the maturity
of organizations and enterprises. Such an approach is usually dedicated to (i)
obtaining a certification, (ii) diagnosis of some dysfunctions and improvement of
the overall behaviour or (iii) providing requirements to improve the IS. However,
concerning point (iii), there is still a large gap between the business considera-
tions regarding the obtained process cartography and the technical world of IS
deployment. This work aims to fill that gap with tangible theoretical mecha-
nisms and efficient software tools. To this end, we propose a complete and fully
implemented methodology, based on SWS features, which covers transforma-
tion from business process cartography to executable workflows. The semantic
issues, described in [29] are addressed on the three required consideration levels
(information, functions, processes). The most important perspectives mainly
concern the use of non-functional requirements (and governance issues) in the
reconciliation mechanism in order to enlarge the considered criteria during the
selection phase. Elements such as latency, security or efficiency requirements
may be embedded in business process models in order to be taken into account
during the semantic reconciliation step (this step might thus be refined and
improved). Documentation and source code of these research components is
available at: http://research.petalslink.com. For any information about other
products such as Petals ESB and EasyBPEL, our orchestration engine, please
visit: http://docs.petalslink.com.

References

[1] F. Bénaben, W. Mu, S. Truptil, H. Pingaud, J. Lorré, Information systems
design for emerging ecosystems, in: Digital Ecosystems and Technologies
(DEST), 2010 4th IEEE International Conference on, 2010, pp. 310–315.

[2] F. Bénaben, N. Boissel-Dallier, J. P. Lorré, H. Pingaud, Semantic recon-
ciliation in interoperability management through Model-Driven approach,
in: Collaborative Networks for a Sustainable World, 2010, pp. 705–712.

[3] V. Rajsiri, Knowledge-based system for collaborative process specification,
Thse en systmes industriels, INPT - EMAC (2009).

[4] J. Touzi, F. Benaben, H. Pingaud, J. P. Lorré, A model-driven approach
for collaborative service-oriented architecture design, International Journal
of Production Economics 121 (1) (2009) 5–20.

[5] S. Truptil, Etude de l’approche de l’interoprabilit par mdiation dans le
cadre d’une dynamique de collaboration applique la gestion de crise, Ph.D.
thesis, INPT - EMAC, Albi (2011).

24

[6] T. Malone, K. Crowston, G. Herman, Organizing business knowledge: the
MIT process handbook, the MIT Press, 2003.

[7] W. Mu, F. Bénaben, H. Pingaud, N. Boissel-Dallier, J. Lorré, A model-
driven BPM approach for SOA mediation information system design in a
collaborative context, in: Services Computing (SCC), 2011 IEEE Interna-
tional Conference on, 2011, pp. 747–748.

[8] H. Hoang, P.-C. Tran, T. Le, State of the art of semantic business process
management: An investigation on approaches for business-to-business in-
tegration, in: N. Nguyen, M. Le, J. Swiatek (Eds.), Intelligent Information
and Database Systems, Vol. 5991 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2010, pp. 154–165.

[9] N. Boissel-Dallier, F. Bnaben, H. Pingaud, Model-driven engineering of
mediation information system: application to the ISTA3 use-case, in: Pro-
ceedings of the sixth international conference of I-ESA, Springer, Valencia,
Spain, 2012.

[10] A.-M. Barthe, M. Lauras, F. Bnaben, 8th international conference on infor-
mation systems for crisis response and management : From early-warning
systems to preparedness and training, in: Proceedings of the 8th Interna-
tional Conference on Information Systems for Crisis Response and Man-
agement (ISCRAM), Lisbon, 2011.

[11] G. Mac Ramte, F. Bnaben, J. Lamothe, Towards an agile information
decision support system in transport crisis context, in: Proceedings of the
I-ESA conference, Valencia Spain, Springer, Valencia, Spain, 2012.

[12] M. Klusch, P. Kapahnke, I. Zinnikus, Sawsdl-mx2: A machine-learning
approach for integrating semantic web service matchmaking variants, in:
Web Services, 2009. ICWS 2009. IEEE International Conference on, 2009,
pp. 335–342.

[13] K. Sivashanmugam, J. A. Miller, A. P. Sheth, K. Verma, Framework for se-
mantic web process composition, International Journal of Electronic Com-
merce 9 (2) (2005) 71–106.

[14] S. Alexakis, M. Bauer, A. Pace, A. Schumacher, A. Friesen, A. Bouras,
D. Kourtesis, Application of the fusion approach for assisted composition
of web services, Establishing The Foundation Of Collaborative Networks
(2007) 531–538.

[15] M. Klusch, B. Fries, K. Sycara, Automated semantic web service discovery
with OWLS-MX, in: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, 2006, pp. 915–922.

[16] F. Kaufer, M. Klusch, Wsmo-mx: A logic programming based hybrid ser-
vice matchmaker, in: Web Services, 2006. ECOWS’06. 4th European Con-
ference on, 2006, pp. 161–170.

25

[17] Y. Chabeb, S. Tata, A. Ozanne, Yasa-m: A semantic web service match-
maker, in: Advanced Information Networking and Applications (AINA),
2010 24th IEEE International Conference on, 2010, pp. 966–973.

[18] F. Facca, S. Komazec, I. Toma, WSMX 1.0: A further step toward a com-
plete semantic execution environment, The Semantic Web: Research and
Applications (2009) 826–830.

[19] J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta, B. Norton,
C. Pedrinaci, IRS-III: a broker-based approach to semantic web services,
Web Semantics: Science, Services and Agents on the World Wide Web 6 (2)
(2008) 109–132.

[20] M. Hepp, F. Leymann, J. Domingue, A. Wahler, D. Fensel, Semantic busi-
ness process management: A vision towards using semantic web services
for business process management, in: IEEE International Conference on
e-Business Engineering, 2005. ICEBE 2005, 2005, pp. 535–540.

[21] F. Lécué, Y. Gorronogoitia, R. Gonzalez, M. Radzimski, M. Villa, SOA4All:
an innovative integrated approach to services composition, in: Web Services
(ICWS), 2010 IEEE International Conference on, 2010, pp. 58–67.

[22] F. Ishikawa, S. Katafuchi, F. Wagner, Y. Fukazawa, S. Honiden, Bridging
the gap between semantic web service composition and common implemen-
tation architectures, in: Services Computing (SCC), 2011 IEEE Interna-
tional Conference on, 2011, pp. 152–159.

[23] N. Guermouche, O. Perrin, C. Ringeissen, A mediator based approach for
services composition, in: Sixth International Conference on Software Engi-
neering Research, Management and Applications, 2008. SERA ’08, IEEE,
2008, pp. 273–280. doi:10.1109/SERA.2008.43.

[24] D. Gagne, M. Sabbouh, S. Bennett, S. Powers, Using data semantics to
enable automatic composition of web services, in: Services Computing,
2006. SCC’06. IEEE International Conference on, 2006, pp. 438–444.

[25] W. Cohen, P. Ravikumar, S. Fienberg, A comparison of string metrics for
matching names and records, in: KDD Workshop on Data Cleaning and
Object Consolidation, Vol. 3, 2003.

[26] V. Levenshtein, Binary codes capable of correcting deletions, insertions,
and reversals, in: Soviet Physics Doklady, Vol. 10, 1966, pp. 707–710.

[27] M. Porter, An algorithm for suffix stripping, Program: electronic library
and information systems 14 (3) (1980) 130–137.

[28] C. Gerth, M. Luckey, J. Küster, G. Engels, Precise mappings between
business process models in versioning scenarios, in: Services Computing
(SCC), 2011 IEEE International Conference on, pp. 218–225.

26

[29] F. Benaben, N. Boissel-Dallier, H. Pingaud, J.-P. Lorre, Semantic
issues in model-driven management of information system interoper-
ability, International Journal of Computer Integrated Manufacturing
(IJCIM)doi:10.1080/0951192X.2012.684712.

27

Appendix A. XPath generation algorithm

28

Algorithm 2 generateXPath
function generateXPath(targetSyntax, potentialSyntaxList)

◃ targetSyntax: %%#XsDatetime%%
◃ potentialSyntaxList: $id1=%%#DateUs%%; $id2=%%#XsTime%%

targetSyntax.factorize()
5: ◃ targetValue: %%#XsYear%%-%%#XsMonth%%-

%%#XsDay%%T%%#XsHour%%:%%#XsMinute%%:%%#XsSecond%%
for all targetSyntax.concepts as targetConcept do

Add targetConcept in coverageMap
coverageMap.targetConcept.value ← 0

end for

10: key ← 1
for all potentialSyntaxList.elements as potentialSyntax do

potentialSyntax.factorize()
◃ $id1 = %%#XsMonth%%-%%#XsDay%%-%%#XsYear%%

for all potentialSyntax.concepts as potentialConcept do

15: ◃ #XsMonth
if potentialConcept ∈ coverageMap then

Replace potentialConcept with ”(” + potentialConcept.regExp + ”)” in
potentialSyntax

◃ $id1 = ([0-9]2)-%%#XsDay%%-%%#XsYear%%
coverageMap.potentialConcept.value ← ”$” + key

20: ◃ #XsMonth = $id1
key ← key + 1
Add potentialSyntax to usedPotentialSyntax

else

Replace potentialConcept with potentialConcept.regExp in potentialSyntax
25: end if

end for

◃ $id1([0-9]2)-([0-9]2)-([0-9]4)
end for

for all coverageMap.targetConcepts as targetConcept do

30: if coverageMap.targetConcept.value = 0 then ◃ 0 = uncovered concept
formula← searchFormula(potentialSyntaxList,usedPotentialSyntax)
if formula ̸= null then

coverageMap.targetConcept.value ← formula
else ◃ Concept still uncovered

35: return null
end if

end if

end for

if usedPotentialSyntax.size > 1 then

40: source← ”fn:string-join(”
end if

for all usedPotentialSyntax.elements as potentialSyntax do

source← source+ potentialSyntaxList.potentialSyntax.id + ”,”
pattern← pattern + potentialSyntaxList.potentialSyntax.value + ” ”

45: end for

Replace last ”,” with ”” in source
source← source+ ”’ ’)”
Replace last ” ” with ”” in pattern

◃ source: fn:string-join ($id1, $id2,’ ’)
50: ◃ pattern: ([0-9]2):([0-9]2):([0-9]2) ([0-9]4)-([0-9]2)-([0-9]2)

for all coverageMap.targetConcepts as targetConcept do

Replace targetConcept with key in targetSyntax
end for

◃ targetSyntax = ($4)-($5)-($6)T($1):($3):($2)
55: xpath← ”fn:replace(” + source + ”,” + pattern + ”,” + targetSyntax + ”);”

◃ fn:replace(fn:string-join ($id1,$id2,’ ’),
([0-9]2):([0-9]2):([0-9]2) ([0-9]4)-([0-9]2)-([0-9]2),($4)-($5)-($6)T($1):($3):($2));

return xpath
end function

29

