
HAL Id: hal-01207433
https://imt-mines-albi.hal.science/hal-01207433

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model-Driven approach for Collaborative
Service-Oriented Architecture design

Jihed Touzi, Frederick Benaben, Hervé Pingaud, Jean-Pierre Lorré

To cite this version:
Jihed Touzi, Frederick Benaben, Hervé Pingaud, Jean-Pierre Lorré. A Model-Driven approach for
Collaborative Service-Oriented Architecture design. International Journal of Production Economics,
2009, 121 (1), pp.5-20. �10.1016/j.ijpe.2008.09.019�. �hal-01207433�

https://imt-mines-albi.hal.science/hal-01207433
https://hal.archives-ouvertes.fr

 1

A Model-Driven approach for Collaborative Service-

Oriented Architecture design

Jihed TOUZI a, Fréderick BENABEN a, Hervé PINGAUD a and Jean Pierre LORRÉb

a Ecole des Mines d’Albi-Carmaux

Campus Jarlard 81013 Albi Cedex 09 – France

b EBM WebSourcing

10 av. de l'Europe, parc technologique du canal

31520 Ramonville St Agne, France

Abstract:

In a collaborative context, the integration of industrial partners deeply depends on the ability to use

a collaborative architecture to interact efficiently. In this paper, we propose to tackle this point

according to the fact that partners of the collaboration respect the SOA (Service-Oriented

Architecture) paradigm. We propose to design such a collaborative architecture according to MDA

(model-Driven Architecture) principles. We aim at using business models (the needs) to design a

logical model of a solution (logical architecture) as a principal step to reach the final collaborative

solution. This paper presents the theoretical aspects of this subject and the dedicated transformation

rules. Finally, we show the prototype of a demonstration tool embedding the transformation rules

and running those principles.

Key words: Process Modeling, BPMN, Information systems, collaborative solutions, MDA

 2

1 Introduction

It is now widely recognized that for sustainability reasons, small-and medium-sized enterprises

(SMEs) should be involved in many kinds of industrial networks in order to maintain their business

efficiency. Such collaborations can be described in many ways, such as:

• in a given value chain, a group of specialized organizations with complementarities decides

to develop jobs together in order to achieve a common goal (supply chain model);

• a group of relatively similar organizations decides to sign an alliance in order to achieve the

critical capacity required by an offer.

• Etc...

In parallel to these networked business strategies, new requirements are specified for the definition

of the collaborative platform that will support collaboration between organizations. The diversity of

business process categories to develop inside the network is as large as the variety of types of

collaboration between those business organizations. A network is a living, open system that evolves

and adapts its processes regularly, as does a single organization. Thus, using the term

“collaboration” we seek to describe the widest of industrial network configurations. For each

partner, the basic problem is to be able to establish fruitful connections with others at low

transaction costs and as quickly as possible.

Abstracting from the IEC TC 65/290/DC standard (IEC, 2005; Kosanke, 2005), we adapt the

different levels of collaborative maturity that can be used to characterize an organization:

communicating (capable of exchanging and sharing information), open (capable of sharing business

services and functionalities with others), federated (capable of working with others according to a

set of collaborative processes that have a common objective and to assure its own objectives) and

interoperable (capable of working with others without a special effort so that, from the external

point of view, the set of enterprises appear as a homogeneous and seamless system).

Interoperability, which is the ultimate rung of the collaborative maturity ladder, appears as a concept

that facilitates the ease of partner connectivity.

 3

An information system is based on a set of software applications that allows one organization to

manage and progress in its business. The efficiency of exchange of information and documents with

new partners deeply depends on the capability of the information system to be interoperable.

Because of the organization’s heterogeneity at cultural, linguistic, business and technological levels,

the design of solutions for interoperability of heterogeneous information systems is a quite complex

problem. The interoperability of an organization through its information system has been the subject

of intensive research recently. The problem tackled in this article is about how to bridge the gap

between the business level (a set description of how partners in the network collaborate) and the

information system level (to find, configure and assemble components of the partner’s information

systems). The question is about transforming a business knowledge about the collaboration itself to

a technical knowledge about how to make information systems of partners interoperable (figure 1).

INSERT FIGURE 1 HERE

The role of specific models describing, from the one hand, the collaboration and from the other

hand, the solution should be to enable the transition between the two levels, i.e., it should be driven

by models (model-driven). The first kind of models show business aspects of the collaboration like

roles implied, synchronization of activities, messages exchanged, etc. The second kind of models

describe the technical solution based on a logical choice of well-defined architecture: components,

services, etc.

Models should be considered according to semantic and syntactic points of view. From the syntactic

point of view, models allow to represent a knowledge needed in the different steps of the design of

the final software. From the semantic point of view, models must be well understood and

semantically agreed. If the semantic point of view is crucial to share different models provided by

heterogeneous partners, it exists today a number of architectures, proposals and design processes

 4

that help to formulate correctly models at the semantic level. Some are released with international

standards (e.g., ISO), others are developed at regional or national level (e.g., CEN), and others are

developed by independent project teams and groups (e.g., OMG,W3C, IAI). Most of the standards

cited, have been developed in strong contact with industry needs.

Nowadays, the model driven approach is followed by numerous projects and communities like

INTEROP (Interop, 2007) in the European Union and Model Driven Architecture (MDA) (OMG,

2003), which is carried out by the Object Management Group (OMG)1. MDA, for instance, intends

to promote the use of models as fundamental way of designing and implementing different kinds of

systems. This article intends to provide an innovative methodology to develop a collaborative

architecture (that provides interoperability capacity to partners) following the MDA approach. The

article is structured as follows: In section 2 we present an overview of approaches and architectures

that facilitate the establishment of the interoperability. The Service-Oriented Approach will be

presented in this section. The theoretical aspects of this subject and the dedicated formalized

transformation rules are detailed in section 3. Section 4 describes the developed prototype to

illustrate our work. Section 5 gives an example of application of the presented transformation rules.

Section 6 presents the conclusion of this work and areas of future research.

1 www.omg.org

 5

2 Overview of approaches and architectures for interoperability

Interoperability can be defined as “achieved only if the interaction between two systems can, at

least, take place at the three levels: data, resource and business process with the semantics de-fined

in a business context” (Chen et al., 2003). Interoperability is one possibility for realizing an

integration, not the only one (Vernadat, 2006), but it promotes the idea that integration has to be

prepared using standards, reference frameworks or specific architectures and approaches so that the

act of connecting to others appears to be as much as possible as a plug-and-play action.

As cited above, the problem of enterprise interoperability concerns three levels: data, resources and

business processes. Different research works define frameworks to characterize interoperability

levels: European Interoperability Framework (EIF) (EIF, 2004), ATHENA Interoperability

Framework (AIF) (ATHENA, 2004), Interoperability Development for Enterprise Applications and

Software (IDEAS) (IDEAS, 2003) and e-Government Interoperability Framework (e-GIF) (e-Gov,

2005).

EIF and e-GIF focus on interoperability in the e-Government / e-Administration domain but the

levels they present (organisational, semantic, technical) are compatible with the industrial domain.

The IDEAS framework defines three levels: business (business context and processes of

organizations), knowledge (definition of products, competencies, etc. in the organization) and ICT

systems (applications and communication infrastructure) and a transversal level of semantics to

assure a mutual understanding of the three levels mentioned above. AIF adopts a holistic approach

of interoperability that allows a good analyze of interoperability needs: it concerns meta-models,

concepts, formalisms and standards that help to formalize the different levels of interoperability

(i.e., a process model presents interoperability characteristics on an organizational level).

According to these frameworks, we can deduce that the problem of interoperability deals globally

with organizational, conceptual, and technical issues:

 6

� at the organizational level, the business context of the collaboration must be explained: how

do partners interact? Which data are exchanged? Which resources do they expose to others?

Process and data models are examples of solutions for modelizing interoperability at this

level;

� at the conceptual level, data, resources and business processes of different information

systems must be linked in spite of their heterogeneous structures and different

interpretations. The problem is both syntactic and semantic;

� at the technical level, the aim is to reconcile the different applications, technologies, systems

and communication infrastructures used by the partners.

Defining the final collaborative solution that meets the interoperability requirements is not an easy

task. In a distributed environment of a collaboration, technical components (database, ERP, web

service, etc.) of partner’s information systems should work together to answer the business needs

expressed by partners. The selection and the configuration of these components is not only a

problem at technological level but it should be aligned with conceptual and organizational levels.

Despite the fact that interoperability problems usually occur at a horizontal level (partners’

heterogeneity of processes, data and applications), the problem tackled in this article could be seen

as a vertical interoperability problem. Indeed, our contribution allows to go down from the

organizational level to the technical level, according to the MDA principles.

A critical choice to do in the development of interoperability solutions according to the MDA

paradigm is the definition of a target logical architecture independently of platform considerations.

“ Interoperability is achieved if two (or more) systems can exchange information and use the

information in manner for which they have the basic capability” (IEEE, 1990). If according to the

last definition, interoperability seems to allow an easy and open access to information system

resources, it is important that interoperability must be controlled. We need to manage interaction

between the organization’s collaborative (public) and internal (private) processes. Only a public part

of an organization’s information system will be visible to other partners, most of the other part

 7

remains invisible for competitive and strategic reasons. Service-Oriented Architecture (SOA) is a

perfect solution to answer these expectations. SOA allows organizations to achieve the necessary

wide integration through software interfaces. These interfaces called “services” can be easily

adaptable, reconfigurable and reusable in new collaborations.

If services represent a good answer to technical and syntactical interoperability issues, they fail in

the semantic one: witch service is needed exactly to answer this specific business need ? Research

works in enterprise ontology and semantic web services (Missikof, 2006) try to propose some tracks

of solution. If this subject is not the heart of our contribution, we believe that a pragmatic way to

tackle the semantic correspondences between business needs and IS specifications is based on the

definition of an architectural framework which defines related formalisms, metamodels and the

linked transformation mechanisms. The work presented in this paper has this objective.

The collaborative architecture that we aim to develop, conforming to the MDA principles, respects

the SOA vision of designing collaborative systems. In the following, we present briefly the basic

characteristics and principles of MDA and SOA and how we define our contribution according to

these two architectures.

2.1 Model Driven Architecture (MDA)

The Object Management Group (OMG) has been proposing the MDA approach as a reference to

achieve wide interoperability of enterprise models and software applications. Two main aspects are

essential in the engineering principles promoted by MDA:

• use of different models at each abstraction levels: from conceptual (CIM, or Computer-

Independent Model) to logical (PIM, or Platform-Independent Model), and from logical to

physical layers (PSM, or Platform-Specific Model). The models are in closed connections

and transformation mechanisms facilitate passage from one layer to another;

 8

• separation of concerns by segregating implementation choices from business needs

specifications (Business track). Technology is defined by the choice of the implementation

platform in a generic way (Technical track). In fact, the ultimate solution is a mix of

information coming from these two tracks, processed to produce the PSM.

The Y symbol is frequently used to summarise these principles, as shown in Figure 2.

INSERT FIGURE 2 HERE

 As cited above the transition from one level to another is based on model transformations. A model

transformation can be seen as morphism between elements of two models. A meta-model allows

fixing the syntax and the semantic of the different elements that compose a model. Morphism

between two models is explained as a mapping between the elements of two related meta-models.

On the basis of the defined mappings, a transformation can be done to link two models. By

executing a model transformation, models conforming to the source meta-model are transformed to

models conforming to the target meta-model. This is crucial in our problematic of transforming a

collaborative process model into an information system model: firstly, we have to define the two

meta-models of the collaborative process and of the collaborative architecture model and secondly

we have to define the transformation rules based on established mappings between the different

elements of the two meta-models. The Model-Driven Interoperability (MDI) proposal (Grangel,

2007) attempts to provide solutions that, following the MDA approach, can help enterprises to

transform models at different levels of abstraction in order to generate Enterprise Software

Applications (ESA) from enterprise models 2 and how a model-driven approach could be a useful

way to solve interoperability problems. An application of the MDI approach is described in

2 Enterprise modelling aims to describe practices in enterprises from several points of view: functional, physical,

business process, decisions, information, etc.

 9

(Grangel, 2007). Authors explain how GRAI (Doumeingts, 1998) extended actigrams can be

transformed into UML activity diagrams at the CIM level. If the MDI proposal defines metamodels

needed to represent the transition (enterprise model/ESA), there are not transformation rules

explicitly defined and the propositions still be without implementations of prototype to show the

feasibility of the approach. Our contribution presents clearly a formalized set of transformation rules

(under a set of preliminary assumptions).We have developed also, in our research work, a prototype

using a transformation model tool to illustrate our work.

2.2 Service Oriented Architecture (SOA)

SOA is based on the fundamental idea that an information system is no more than a collection of

easily accessible services that can be dynamically connected in order to provide the desired solution

(Vernadat, 2006; Maamar, 2005). Choosing a SOA approach seems to be a suitable candidate for

tackling the complexity of interoperability establishment. SOA allows to obtain a loosely coupled

architecture describing collaboration between autonomous systems in contrast to classical tightly

coupled systems and monolithic architectures. These autonomous systems are represented using

services and have independent lifecycles. Indeed, enterprise applications and internal processes can

be encapsulated as services. A service is the key concept of the SOA paradigm. It is a discrete piece

of functionality (of the enterprise) that appears to be atomic and self-contained from the point of

view of the service consumer. Services communicate using a set of messages as input and output.

Each message has a particular structure. It can be a complex business object (purchase order,

invoice, etc.).

Schematically, SOA solutions are designed to manage and orchestrate bonds between applicative

services within a process trade. SOA is designed to provide the flexibility to treat elements of

business processes and the underlying IT infrastructure as components (or services) that can be

reused and combined to address changing business priorities. The consumer of a service has to ask a

 10

third-party registry for the service that matches its criteria. If there is such a service in the registry, it

gives the consumer a contract and an endpoint address for the service.

While web-services technology provides support for many SOA concepts, it does not implement all

of them. Moreover, service consumers can execute web services directly if they know the service’s

address and contract.

The design of collaborative solutions respecting SOA considerations has become one of the major

topics in the domain of interoperability. As example, the PIM4SOA project (Platform-Independent

Model for Service-Oriented Architecture) (Benguria et al., 2006) aims to develop a metamodel for

SOA. This metamodel consists of a set of essential aspects for SOA. PIM4SOA addresses four

system aspects (views): processes (logical order in terms of actions, control flows and interactions

between services), information (related to the messages or structures exchanged by services),

services (description of services: access, operations and types) and quality of services (extra-

functional qualities that can be applied to services, information and processes). The project also

provides a set of transformations that link the meta-model with specific platforms (Agents, Web

services, etc.) following the MDA approach. However, transformation rules and mappings between

PIM and PSM levels are not explicitly explained in the project.

Our contribution is presented as follow: from a collaborative process model (CIM level), we want to

deduce, using transformation rules, a SOA model (PIM level) related to a services collaborative

solution, a vertical transformation in MDA vocabulary. Our approach is close to the MDI approach

cited. Indeed, on the one hand, a collaborative process describes in a disproportionate way views of

enterprise modeling. We consider that the most powerful means to tackle one collaboration of

partners is to handle the associated collaborative process. The increasing interest in the field of

Business Process Management (BPM) shows the central position of processes in the definition of

collaborations. On the other hand, the SOA model generated represents a logical solution

(independent of technical considerations). The interest of the model obtained is that it can be used to

generate others specific platform assets (agents architecture, components architecture, etc.). In our

 11

work, the SOA model generated is the fundamental part of a wider solution that addresses

implementation of an Enterprise Service Bus (ESB)3. A number of questions have been done:

Which process modelling formalism to represent collaborative process? Which language to

represent generated SOA models? What about meta-models definition and the requisite

transformation rules?

3 ESB is a technology which implements a SOA architecture pattern based on a distributed lightweight web services

approach.

 12

3 Model-Driven approach for Collaborative Service-Oriented architecture

design

The transformation from a business requirement level (collaborative process model) to a SOA

infrastructure requirement level (information system model) is not an easy task. We need to specify

languages and formalisms needed for the definition of each level. A meta-model for each level has

to be defined later. The main entities of the steps of our approach are described below.

3.1 Collaborative Business process Modeling

The aim of a process model is to depict interactions between two or more business entities.

Currently, there are scores of business process modeling languages, tools and methodologies. They

can be classed according to defined maturity levels. In a collaborative context and due to the

complexity of interactions between partners, an adapted process modeling language must be used.

For example, specific attention must be paid to the private / public considerations in the modeling of

the collaboration. The Business Process Modeling Notation (BPMN) (BPMI, 2004) is an adapted

answer to current needs in the field of the collaborative process modelling. The adoption of BPMN

standard notation will help unify the expression of basic business process concepts (e.g., public and

private processes, choreographies) as well as advanced modeling concepts (e.g., exception handling,

transaction compensation).

The objective of the BPMN formalism is to support process management by both technical and

business users. Interactions in BPMN are represented using the “message flow” concept which

shows an exchange of data between two actors of the process. These actors are represented using

“pool” concept. Pools can be divided in many “lanes” (different roles of an actor). There are many

synchronization mechanisms in BPMN: sequencing (“sequence flow” concept), events (“start

event”, “intermediate event” and “end event” concepts), forking (“parallel gateway” concept),

conditioning (“data-based gateway” and “event-based gateway” concepts), etc. The reasons why

 13

we have chosen BPMN are because this formalism is sufficiently rich and expressive and provides a

notation that is intuitive to business users yet able to represent complex process semantics.

In the collaborative processes that we consider in our work, a special pool called “Collaborative

Information System” (CIS) plays the role of a mediator 4 between different partner’s information

systems. This central pool contains the big part of the collaborative process and orchestrates

synchronization between the different collaborative tasks of partners. This method of representation

respects the public/private paradigm. Indeed, organizations are represented by their public part

(collaborative tasks) in the process. They are able to interact in a different context without changing

their internal processes.

3.2 Collaborative Service Oriented Architecture Modeling

The collaborative SOA architecture which we aim to define can be modelled using the Unified

Modelling Language (UML) (OMG, 2003) which is a standard for software modelling. It is able to

represent many views of the system design like functional view (or user view), structural view and

behavioural view. Functional view describes competencies of the system in use context, while

structural view models its global organization in terms of logical components and their interfaces.

Finally, behavioural view describes scenarios, operating modes and performance of part or whole of

the system. Different diagrams, gathered, give a complete description of the system. A first

approach for modelizing SOA consists in representing everything as class: a service is a class, an

exchanged message is a class, etc, This could make the models difficult to understand and to use.

For this reason, we have developed a specific profile (based on a meta-model) to represent

collaborative SOA aspects. This profile is inspired by the results of the PIM4SOA project (Benguria

et al., 2006).

4 This article does not focus on the mediator concept. For more detailed information, please see (Touzi, 2007).

 14

The collaborative architecture that we propose is an extension of the classical SOA paradigm

(PIM4SOA). It contains an intermediate entity (called mediator) that manages partner’s services and

the execution of the collaborative process. This mediator provides also a set of “added value”

services that cannot be provided by the partners in the collaboration (e.g., payment check, supplier

selection). The generation of a model that represents an instantiation of the collaborative

architecture defined according to a given BPMN collaborative process is the aim of this

contribution.

3.3 Feasibility of the BPMN-UML transformation

It is an important question to know if the BPMN model will give enough information to specify the

SOA model. A BPMN model is a process-centric view of a system. In comparison with the four

points of view of the ISO 19440 standard (functional, resources, informational and organisational

views), a BPMN model mainly covers the functional view, and the informational and organisational

views only partially. The result is that the transformation will not completely provide all

information needed by the SOA model. A data structure deficit is evident, because in BPMN the

concept of message-flow is not well supported by data models. The data models have to be studied

in parallel to the transformation of process models. Considering the resource view of the ISO 19440,

services are software resources supposed to be qualified and available.

INSERT FIGURE 3 HERE

Figure 3 shows the coverage of the different ISO 19440 views by the BPMN formalism. BPMN

models allow the construction of diagrams of the behavioural and functional views (arrows A and

B). For the others views (arrows C, D, E and F), we need an additional knowledge to obtain

complete UML diagrams. That is the reason why we have to define a well structured collaborative

architecture (the target collaborative SOA metamodel) in the MDA approach which starts from the

BPMN model.

 15

Consequently, a major part of the specification seems to be provided by the transformation of

BPMN collaborative models according to the prevailing set of assumptions.

3.4 Metamodels definition and formalization

In this section, we present a definition and a formalization of the needed metamodels to perform the

CIM-PIM transformation. A graphical model (UML class diagram) joined to a formal definition of

the metamodel will be presented.

3.4.1 Collaborative process meta-model

The first metamodel is of the collaborative process. The BPMN language is used with a systematic

approach into which pools of partners form a matrix of containers showing coordinated entities. The

main BPMN formalism components appear on the class diagram of Figure 4. The definition of the

collaborative process respects two critical constraints:

� a mediator pool (called “CIS pool”) must be entirely represented in the process model. This

choice is interesting because the collaborative process may contain tasks that refer to

collaborative or technical “added-value” services provided by a mediator entity.

� for competitive reasons, partners do not want to show their internal processes and

applications. In the metamodel, partners are represented by their collaborative tasks that

refer to a set of communication interfaces.

INSERT FIGURE 4 HERE

A formal definition of the metamodel is described below:

Definition 1:

One Collaborative Process Model CPM contains

 16

• one “CIS pool” p CIS : the orchestration container of the process, managed by the mediator

entity,

• a set of “CIS lane” LCIS container to represent the functional divisions of the mediator of the

collaboration,

• a set of “partner pool” P PAR: containers to represent partners of the collaboration,

• a set of “partner lane” L PAR: containers (optional) to represent functional divisions of one

partner of the collaboration,

• a set of “partner task” T PAR: interfaces of partner’s information systems in the collaboration.

These tasks can be of three types: Send Task T PARs (when a partner sends a message to the

CIS), Receive Task T PARr (when a partner waits for a message from the CIS) and Service

Task T PARse (when the task represents a service). T PARs ,T PARr ,T PARse⊂ T PAR

• a set of “CIS task” T CIS : orchestration task of the collaborative process,

• a set of “sub-process“ Sp: a part of a process,

• a set of “Event“ E, an event can be partitioned into “start event” Es , “intermediate event”

Ei, “end event” Ee. Es ,Ei, Ee⊂ E,

• Ei is composed of the sub-sets “ intermediate message event”Eim and “intermediate timer

event”. Eit . Eim ,Eit ⊂ Ei

• a set of “gateway” G, composed of the sub-sets: “parallel gateway” Gp , “data based

inclusive gateway” Gdbi, “event based exclusive gateway” Gebe and “data based exclusive

gateway” Gdbe. Gp,Gdbi,Gebe,Gdbe⊂ G

• a set of relations “sequence flow” Sf, where x.Sf.y, x ∈ sfIN and y ∈sfOUT are respectively

the source and the target element of the relation Sf:

o sfIN ⊂ (Es∪ Ei ∪ T CIS ∪ G), a source of a “sequence flow“ must be “start event “

or “intermediate event“ or “CIS task” or “gateway”

o sfOUT ⊂ (Ee∪ Ei ∪ T CIS ∪ G), a target of a “sequence flow” must be “end event”

or “intermediate event“ or “CIS task” or “gateway”,

 17

o Sf may be linked to an element “data“ d which presents a business object exchanged.

• a set of relation “message flow“ Mf, where x.Mf.y, x ∈ mfIN and y ∈mfOUT are respectively

the source and the target object of the relation Mf:

o mfIN ⊂ (T PAR ∪ Ei ∪ T CIS ∪ Ee), a source of a “message flow“ must be “partner

task» or “intermediate event“ or “CIS task” or “end event “.

o mfOUT ⊂ (T PAR ∪ Ei ∪ T CIS ∪ Es), a source of a “ message flow “ must be

“partner task” or “intermediate event“ or “CIS task” or “start event”.

o Mf is linked obligatory to at least an element « data » d which presents a business

object exchanged.

3.4.2 Collaborative SOA meta-model

The collaborative architecture metamodel is described in Figure 5. Three packages are proposed

corresponding to three views where specific concerns of the collaboration, respecting SOA

considerations, can be addressed:

� Services view: services that are used in the collaboration are described; they are business

reachable computing functionalities with a known location on the communication network.

In this view, information about addresses, operations and descriptions of partner’s services

are provided;

� Information view : data are exchanged by messages between services; they are defined here

in the structure by a data model, and also as a communication utility by identification of the

emission and reception services. These messages refer to business objects (invoice, order,

etc.);

� Process view: interaction between services and coordination aspects are specified by the

control of processes described here. This view deals with a specification of the orchestration

of invoking services in the collaborative process.

 18

Figure 5 shows that in the services view, Services registry describes a set of Partner services. It

is a container used by the CIS to find information needed about a partner service. The CIS

services sub-package deals with a set of added value CIS services. In the Information view, each

exchanged message in the collaboration has its own format and is described by a semantic

definition. In the process view, traditional process modelling concepts are retained. A

collaborative process is composed of a set of constructs that refer to the Business Process

Execution Language (BPEL) standard (OASIS, 2003). Basic activities refer to how to deal with

services of the collaboration: to invoke a service (invoke), to wait for a new message (receive)

and to reply to a previous invocation (reply). Structured activities refer to how to structure the

execution of the process (the logical order): parallel (flow), sequence (sequence), loop (while),

etc. Event handlers manage the different events that characterize the execution of the process.

Each view is closely linked to the others two views using UML associations: in order to operate,

a service (service view) needs and produces messages (information view), and the execution of

one activity of the collaborative process (process view) needs to call one service (service view)

to be performed.

INSERT FIGURE 5 HERE

A formal definition of the metamodel is described below:

Definition 2:

An collaborative SOA Model is composed of :

• one “Services Package” paser which contains:

o two sub-packages «partners services» papar to describe partner’s services and “CIS

services” paCIS to describe business services provided by the mediator.

o one “registry class” creg: to manage and subscribe partner’s services. It is a container

used by the CIS to find information needed about a partner service.

 19

o a set of “services class” Cser to represent abstract services.

o a set of “partner_service class”Cpsr to represent partner’s services.

o a set of “partner_service_description class”Cpsd to describe partner’s services

o a set of “enterprise_division attribute” Aedi

o a set of “generic_service class”Cgsr

o a set of “specific_service class”Cssr

o a set of “service_category attribute” Asca

• one «Information Package» pa Inf.

o a set of “business_object class” Cbob which are linked with two classes: “format

class” Cfor and “semantic_definition class” Csde

• one «Process Package» pa pro which contains:

o two sub-packages «basic activity» pa bac to describe the basic synchronization

activities of the process and «structured activity» pasac to describe activities which

control the flow of the process.

o a set of «invoke class» Cinv

o a set of «receive class» Crec

o a set of «reply class» Crep

o A set of «pick class» Cpik

o A set of «flow class» Cflo

o A set of «while class» Cwhi

o a set of «sequence class» Cseq

o A set of «scope class» Csco

o A set of «switch class» Cswi

o A set of «message variable class» Cmva

o A set of «partner class» Cpar

o A set of «event handler class» Ceha

 20

o A set of «association» Asso: x.Asso.y , x, y are classes of the collaborative SOA

model.

3.5 Transformation rules

Transformation rules are classified into two categories:

� basic generation rules are used at first to create elements of the target model. Most of these

rules are defined by a direct mapping between metamodel elements;

� binding rules are then applied to generate the links between the elements resulting from the

previous phase. Existing relations in the source model are transformed into relations in the

target model.

3.5.1 Preliminary assumptions

The rules we present in the following section are made under a set of assumptions that we show

here. The CIMOSA enterprise modelling methodology presents for the majority of rules the basis of

deduction:

- A functional part of an organization (or network of organizations) which composed of a set

of activities is strongly connected to a resources part of an organization (or network of

organizations). An activity needs (or is based on) an applicative resource to operate.

- Every exchange between two partners of the collaboration can be characterized by the

description of a business object (structure, semantic definition, etc.)

- For each functional part (a set of activities), there is an organizational part which is

responsible for.

Other rules are simply inspired on the one hand from our expertise, in BPM and information system

domains and on the other hand from the expertise of our industrial partners (EBMWebsourcing) in

the domain of the design of collaborative solutions:

 21

3.5.2 Basic generation rules

Figures 6, 7 and 8 show a graphical representation of the set of rules that are applied during

transformation to generate the three views of the SOA model. Circles located in the middle of two

class diagrams represent the rules. The class diagrams are sub graphs, which are parts of the

presented metamodels. On the left part of each Figure is the sub graph of the source metamodel, and

on the right part is the sub graph of the target metamodel. The rules have to be interpreted in the

following manner: “When an object is identified in the collaborative process model (belongs to the

left side sub graph linked to the rule), it will be transformed into an object instantiated from the

class on right side of the figure. We mean that it will become an object in the collaborative

information system of the network.”

INSERT FIGURE 6 HERE

Based on Definition 1 and Definition 2, the following presents a formal representation of these rules.

We consider the function gen where yx gen→ , x is a subset of the collaborative process

metamodel (definition 1) and y is a subset of the SOA metamodel (definition 2). This function must

be interpreted as follow: “for every x, detected in the source model, y elements are generated in the

target model”. Figure 6 shows the rules needed to generate UML classes of the services view from

the collaborative process.

� Rs1 rule:

∈∀x T CIS, yx gen→ / ∈y {Cgsr ∪ Cssr}.

For each CIS task in the collaborative process model a CIS service is generated, either

specific or generic. An annotation (generic) is added to the process model task to make it

easier to identify generic CIS services;

� Rs2 rule:

 22

∈∀x LCIS, yx gen→ / ∈y Asca.

The CIS lane of the collaborative process corresponds to an attribute of the collaborative

service classwhich defines the organization of services of the CIS according to different

categories

� Rs3 rule:

∈∀x Tpar, yx gen→ / ∈y Cpsr.

This rule is similar to Rs1 but concerns the deduction of a partner service from a partner

task;

� Rs4 rule:

∈∀x Lpar, yx gen→ / ∈y Aedi.

This rule expresses the organization of the partners’ services. An attribute (enterprise

division) shows the partner division to which the service belongs;

� Rs5 rule is not a rule to implement but it shows the need for additional knowledge to obtain

a complete and useful view of services. This additional knowledge concerns a description of

service implementations (address, access protocols, etc.).

INSERT FIGURE 7 HERE

Following the same logic, Figure 7 introduces two transformation rules applied to the information

view. Transformation rules provide syntactic indications that help to create business objects:

� Ri1 rule:

∈∀x d,),,(wzyd gen→ / ∈y Cbob , ∈z Cfor , ∈w Csde .

This rule concerns the data element that is associated with the message flow element. The

deduced business object elements refer to the messages (data) exchanged between partners

in the collaboration;

 23

� Ri2 rule is not a rule to implement but it shows the limits of the BPMN model in describing

exchanged business objects (invoice, order, etc.). As previously stated, the transformation is

not sufficiently developed in this view. Additional knowledge is needed to describe structure

of information.

INSERT FIGURE 8 HERE

In contrast, Figure 8 is the most developed part of the transformation procedure, with nine rules.

Some of the rules in Figure 8 are adaptations of recommendations provided by BPMI (BPMI, 04)

where they address the problem of BPMN graph conversion to BPEL, well-defined XML phrases,

and the work on BPMN-BPEL mapping by (Ouyang et al., 06):

� Rp1 rule:

∈∀x Lpar, yx gen→ / ∈y Cpar .

This rule concerns the deduction of partner element that is important to specify the holder of

one activity from BPMN partner lane element;

� Rp2 rule:

∈∀x d, yx gen→ / ∈y Cmva.

This rule represents one business object of the collaborative process using specific message

variables in the process view;

� Rp3 rule:

∈∀x Sf, yx gen→ / ∈y Cseq.

This rule concerns the deduction of sequence elements (logical sequence of basic activities)

from BPMN sequence flow;

� Rp4 rule:

∈∀x Gp, yx gen→ / ∈y Cflo

 24

∈∀x Gdbi ,
 yx gen→ / ∈y Cflo ∈z Cswi

∈∀x Gebe, yx gen→ / ∈y Cpik

∈∀x Gdbe, yx gen→ / ∈y Cswi

 This rule allows the transformation of BPMN gateways into different BPEL elements (pick,

flow and switch) depending on the type of gateway:

o if it is a parallel gateway, a flow class will be generated to express a parallel

execution of activities;

o if it is a data-based inclusive gateway, a flow class will be generated, associated with

a switch class for each set of activities linked to the gateway;

o if it is an event-based exclusive gateway, a pick class will be generated to express that

an event must be produced to continue the execution of the process;

o if it is a data-based exclusive gateway, a switch class will be generated to express

that the continuation of the execution of the process depends on the value of a

variable;

� Rp5 rule:

∈∀x Ei , x ,MfIn∈ yx gen→ /
recCy∈

∈∀x Ei , x ,MfOut∈ yx gen→ /
invCy∈ .

 This rule concerns the transformation of intermediate events into basic activities. This

transformation depends on the type of the message flow connected to the event;

o if it is an inbound message flow, a receive class will be generated because a new

message is received;

o if it is a outbound message flow, an invoke class will be generated because a new

message is sent.

 25

� Rp6 rule:

∈∀x Es, yx gen→ /
recCy∈ .

This rule concerns the transformation of start events into receive classes. The process

receives a message that produces a start event to start the process;

� Rp7 rule :

∈∀x Tpar CIST∪ :

x MfOUTxMfIN ∉∧∈ , yx gen→ / ∈y Cinv

x MfINxMfOUT ∉∧∈ , yx gen→ / ∈y Crec

x MfOUTxMfIN ∈∧∈ , yx gen→ / ∈y Crep

This rule shows that BPMN tasks will be transformed into basic activities. Depending on the

type of the BPMN class, a receive, reply or invoke activity is generated. The type of the BPMN

task can be defined according to inbound and outbound message flows connected to the task;

� Rp8 rule:

∈∀x Ee , yx gen→ /
invCy∈ .

This rule concerns the transformation of end events into invoke classes. The process sends a

message that signals its end;

� Rp9 rule:

∈∀x Sp , yx gen→ /
scoCy∈ .

This rule shows that a BPMN sub process must be transformed into a scope element. This

element defines a limited part of the execution of the process (activities, gateways, message

variables, etc.).

3.5.3 Binding rules

Binding rules can be used to build interactions between the generated elements of the CIS model

(results from the application of the first category of rules). These links could be inside one CIS

 26

package or between two different packages (dependence). The goal is to define, in the target model,

the relations needed in accordance with the existing relations in the source model. The relations are

of type, association. We define the function Y = Equivalent (X, pa), where X belongs to the BPMN

model and Y is the result of the transformation rules defined, belongs to the information system

model. pa is the target package of the generated element (services, information, process)5.

Three binding rules, Rb1 to Rb3, are given:

� Rb1 rule (sequence ordering):

 x ∈SfIN , y ∈SfOUT

 r∈Sf, x.r.y

x’ = Equivalent (x, process)

y’ = Equivalent (y, process)

r’ = Equivalent (r, process) (r’ ∈ Cseq)

→genr (from, to)/ from, to∈Ass², r’.from.x’, r’.to.y’

a sequence element issued from rule Rp3 is associated with two basic activities into the same

process package;

� Rb2 rule (information processing):

We define the function y= isManipulatedBy(x) where y is a task and x is a business object,

manipulated (sended or received) by x (i.e. there is a message flow outgoing or ingoing x)

 y∈ {Tpar CIST∪ }, x∈ d, y =isManipulatedBy (x)

 y’ = Equivalent (y, services) (y’ ∈ Cpar ∪ Cgsr ∪ Cssr)

 x’ = Equivalent (x, information), (x’ ∈ Cbob)

 d →gen use /use∈Asso, x’.use.y’

a service from a service package is related to a business object from the information package;

� Rb3 rule (service identification):

5 one BPMN element can be mapped onto one different element of different package.

 27

x∈ {Tpar CIST∪ }

x’ = Equivalent (x, process) (x’∈ Cinv ∪ Crec ∪ Crep)

x’’ = Equivalent (x, services) (y’∈ Cser)

x →gen call/ call∈Asso, x’.call.x’’

a basic activity from the process package is linked to a service from the service

package.

 28

4 Prototype development

A prototype transformation tool has been developed to implement our proposition. It is based on

three open source tools that run on the IDE Eclipse platform. Intalio designer is a BPM tool

that helps users to specify a BPMN model. The Atlas Transformation Language (ATL) (Jouault

et al. 2006) can use a process model in XML format coming from Intalio designer in input, and

produces the UML model in output (applying the transformation rules mentioned into this paper).

ATL is QVT-compatible. QVT (Query, View and Transformation) is a specialized language that is

being developed under the guidance of the OMG. One of the purposes of this language is to allow

transformations between models. The ATL tool is the cornerstone of our transformation system. The

TOPCASED tool is a computer-aided software environment that can create a graphical

representation of the UML model. Figure 9 shows the technical architecture of the prototype.

INSERT FIGURE 9 HERE

Metamodels are created using the Eclipse Modelling Framework (EMF)6 which allows to create an

ecore file (.ecore) for each metamodel. ATL can deal directly with ecore files as input and output of

the transformations.

The formalized rules presented in the previous section are the cornerstone of the deduction of the

ATL code needed to perform the models transformations. As a simple example of the ATL code,

The Rs3 rule: ∈∀x Tpar, yx gen→ / ∈y Cpsr corresponds to this ATL code:

6 www.eclipse.org/emf

 29

rule generatePartnerservices
{
 from
 a : BPMN!PartnerTask

 to

 service :UML2!Class

 (
 name <- a.name
)
}

The from and to parts of the ATL rule correspond respectively to the left and the right sides of the

formalized rule Rs3. The whole ATL code is more complicated than the example presented,

especially concerning the imperative rules (not declarative) which are not based on a direct mapping

between elements.

 30

5 Example of transformation

A series of simple case studies have been defined and examined in order to begin the validation of

the approach. A simple example of a collaborative process is proposed in Figure 10.

INSERT FIGURE 10 HERE

The collaboration takes place between a customer and a set of suppliers for a trading transaction.

The customer sends an order to the mediator (CIS pool). The CIS must find a supplier

corresponding to the customer order characteristics. The contacted supplier has to analyze the order

and to answer the customer. If the answer is positive, the supplier has to inform the customer when

the product is ready for dispatch. Then, the two partners have to perform payment and billing

operations.

Figure 11 shows the result of the transformation of the collaborative process of Figure 10 using the

developed prototype7.

INSERT FIGURE 11 HERE

The model obtained is useful for managing message, service and process definitions in the CIS. In

the Services view package, a registry of services is linked with all partners’ services involved in the

collaboration. “Treat order” task is mapped into “Treat order” service which is linked to the registry.

The CIS services sub-package contains all collaborative services managed by the CIS. “Control

billing” and “Control payment” services are deduced from the BPMN model. In the Information

view package, business objects that refer to supplier and customer are defined for each message

exchanged in the collaboration. “order to request” and “Estimate” are examples of business objects

7 For reasons of clarity in the model, we show only a few relevant UML classes.

 31

but without details about their structure. In the Process view package, synchronizations between

different partners’ activities are established. The “event-based gateway” of the BPMN process is

mapped into a “pick” element. BPMN tasks are mapped into activities according to their type. The

strong point of this ATL-generated model is that using UML associations it clearly shows, on the

one hand, links between messages and services and, on the other hand, links between activities and

services. “Control payment” activity needs the service with the same name to run. The “Treat order”

service deals with “order to request” business object. This kind of knowledge is crucial in SOA

context.

However, the model obtained is incomplete. For example, we do not have information about the

specific format of the business objects. Therefore, partners must provide this information. This

information is crucial to allow partners to exchange messages with a structure that these partners

can understand.

 32

6 Conclusion and prospects

The presented work intends to enrich frameworks which define interoperability at the three levels

(CIM, PIM, PSM) with the definition and the formalization of transformation rules between models

that belong to CIM and PIM levels, under a set of assumptions, inspired by the actual practices in

the development of systems integration solutions.

Our MDA methodology bridges the gap between the business analyst level (BPMN collaborative

process model) and the IT developer level (collaborative SOA model). The principal limitation of

our approach is the difficulty to semantically prove the correctness of the rules and its specification.

The SOA model, obtained should be used as an intermediate step when the final objective is to

obtain ESB artifacts (XSD7, BPEL, WSDL8, etc.), needed to configure an ESB solution according to

a given BPMN collaborative process. EBM WebSourcing (our industrial partner) currently develops

an ESB tool inside the OW2 open source community; the project is called PETALS (see

http://petals.objectweb.org).

We are aware that it is relatively uncommon to have networks of organizations that are able to

design a collaborative process for their projected shared activities. In (Rajsiri et al., 07), we study

the contribution of a knowledge-based methodology to help in the process model design using

ontology based approach;

Collaborative processes may dynamically evolve and the collaboration may also change with time.

CIS supporting the partnership should mirror such change. Lastly, in order to improve the solution,

we are also involved in the ISyCri Project (French project: ANR/CSOSG2006). The problem to

solve concerns the development of interoperability between actors in a crisis context.

 33

References

1. Athena, 2004.Consortium. ATHENA General description v10, public document:

http://www.athena-ip.org/.

2. Benguria G., Larrucea X., Elveseater B., Neple T., 2006. A. Beardsmore, M. Friess. A

Platform Independent Model for Service Oriented Architectures. Enterprise

Interoperability: New Challenges and Approaches- Springer Verlag - ISBN-10:

1846287138, pp 23-32.

3. BPMI, 2004. Business Process Modeling Notation (BPMN),Version 1.0.

4. Chen D. and Vernadat F., 2004. Standards on Enterprise Integration and Engineering – A

state of the art, International Journal of Computer Integrated Manufacturing, 17 (3), 235-

253.

5. Chen. D and Doumeingts. G, 2003. European initiatives to develop interoperability of

enterprise applications—basic concepts, framework and roadmap, Annual Reviews in

Control 27, pp 153–162.

6. Doumeingts, G., Vallespir, B., Chen, D, 1998. Decisional modelling GRAI grid., in

Internartional handbook on information systems, P. Bernus, K. Mertins & G. Schmidt ed.,

Berlin : Springer,.

7. e-Gov, 2005. e-Government Unit, “e-Government Interoperability framework” version

6.1, 2005.

 34

8. EIF, 2004. European Interoperability Framework, White Paper, Brussels,

http://www.comptia.org.

9. Grangel Seguer R., Ben Salem R., Bourey J.-P., Daclin N., Ducq Y., 2007. Transforming

GRAI Extended Actigrams into UML Activity Diagrams: a First Step to Model Driven

Interoperability, Enterprise interoperability: New challenges and approaches II, Springer

Verlag edition, ISBN : 978-1-84628-857-9,.pp 447-458.

10. IDEAS, 2003. A gap Analysis –Required activities in Research, Technology and

standardisation to close the RTS Gap- Roadmaps and Recommendations on RTS activites,

IDEAS Deliverables.

11. IEC, 2005. IEC TC 65/290/DC, Common automation device., Device Profile Guideline,

TC65: Industrial Process Measurement and Control., IEC, Geneva, Switzerland.

12. IEEE, 1990. IEEE: Standard Computer Dictionary - A Compilation of IEEE Standard

Computer Glossaries.

13. INTEROP, 2007. Interoperability Research for Networked Enterprises Applications and

Software NoE (IST-2003-508011). http://www.interop-noe.org.

14. ISO 14258, 1999. ISO, « industrial Aomation Systems- concepts and Rules for Enterprises

Models », ISO TC184/SC5/WG1.

 35

15. Jouault, F, and Kurtev, I, 2006: On the Architectural Alignment of ATL and QVT. In:

Proceedings of the 2006 ACM Symposium on Applied Computing (SAC 06). ACM Press,

Dijon, France, chapter Model transformation (MT 2006), pp 1188-1195.

16. Konstantas D., Bourrières J.-P., Léonard M., Boudjlida N., 2005. Preface of the

Proceedings of the First International Conference on Interoperability of Enterprise

Software and Applications (IFIP/ACM SIGAPP INTEROP-ESA'2005). Springer verlag,

ISBN 1-84628-151-2, pp 5-6.

17. Kosanke K., 2005. ISO Standards for Interoperability: a comparison, INTEROP-ESA’05,

Proceedings of the First International Conference on Interoperability of Enterprise

Software and Applications (IFIP/ACM SIGAPP INTEROP-ESA'2005). Springer verlag,

ISBN 1-84628-151-2, pp 55-64.

18. Missikoff, M., Taglino, F.: Ontologies for interoperability: a systematic overview. Lecture

in ECI Workshop, Paris (2006)

19. OASIS, 2003. Technical Committee: OASIS Web Services Business Process Execution

Language.. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

20. OMG, 2003. MDA Guide Version 1.0.1. Object Management Group. Document number:

omg/2003-06-01 edn.

21. OMG, 2003: OMG Unified Modeling Language Specification, version 1.5. Object

Management Group. formal/03-03-01 edn.

 36

22. Ouyang C., Van Der Aalst W., Dumas M., Hofstede A., 2006. Translating BPMN to

BPEL, Technical report - BPM group of Queensland University of Technology Brisbane

(QUTB).

23. Rajsiri V., Lorré J.-P., Bénaben F. and Pingaud H., 2007. Cartography for Designing

Collaborative Process, Enterprise interoperability : New challenges and approaches II,

Springer edition. ISBN: 978-1-84628-857-9.

24. Touzi, 2007. Aide à la conception de système d’information collaboratif, support de

l’interopérabilité des entreprises. PhD thesis, Ecole des Mines d’Albi Carmaux- France.

25. Vernadat F., 2006. Interoperable enterprise systems : architecture and methods, plenary

lecture, IFAC/INCOM conference, Saint-Etienne (France).

26. Z. Maamar, S. Kouadri Most´efaoui, and Q. H. Mahmoud, 2005. On Personalizing Web

Services Using Context. International Journal of E-Business Research, Special Issue on E-

Services, The Idea Group Inc., 1(3)..

 37

1. Figure 1. From a description of the collaboration to a specification of the solution

Specification of the solution

solution

Modelization of the collaboration

Partner 1

Partner 3

Partner 2

Partner n

Business level Information system level

Transformation ?

 38

Figure 2. Model-Driven Architecture

CIM

Business Track Technical Track

Computation Independant Model

(BPMN)
Platform Independant Model

Platform Model

Platform Specific Model

PIM
PM

1

2

3

PSM

perimeter of the contribution

 39

Figure 3. BPMN-UML covers

Enterprise Model

Organizational
view

Informational
view

Vue fonctionnelle

Resources

view

BPMN
 formalism

Functionnal
view

Information System model

Vue

architecturale

Vue

structurelle

Vue fonctionnelle

UML
Formalism

Architectural
view

Structural

view

Behavioural
 view

Functional
 view

A B

C D

E

 F

 40

Figure 4. Collaborative process meta-model

 41

Figure 5. Collaborative SOA meta-model

 42

Figure 6. Transformation rules for generating the Services view

 Rs1

 Rs2

 Rs3

 Rs4

 Rs5 Services
description

 43

Figure 7. Transformation rules for generating the Information view

Information
description

 Ri1

 Ri2

 44

Figure 8. Transformation rules for generating the Process view

 Rp1

 Rp3

 Rp7

 Rp6

 Rp5

 Rp8

 Rp4

 Rp2

 Rp9

 45

Figure 9. Technical architecture of the developed prototype

 46

Figure 10. Example of a collaborative process

 47

Figure 11. Result of the transformation using the developed prototype

