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Abstract

To perform ray tracing simulation during the design process of a central solar receiver, we have developed a
code based on Monte Carlo algorithm suitable for computing the yearly average energy at the entrance of the
receiver of a solar power tower. This code considers sun positions over the year. Based on EDStaR coding
environment, it is fast and accurate and will be integrated inside an optimization scheme to design solar Central
Receiver System (CRS) with enhanced annual performance.
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Nomenclature

ΩS Solar cone in sr
Φ Latitude in rad
δ Declination in rad
η Hour in h:min:s
γ Day of the year
ωωω111 Direction after reflection in rad
ωωωSSS Direction inside the solar cone in rad
φS Sun azimuth angle in rad
θS Sun elevation angle in rad
A Yearly average energy in J
B Blocking performance in %
DNI Direct normal irradiance in W ·m−2

fr Bidirectional reflectance distribution function
(BRDF)

H Heliostats surface (the exponent + indicate
the active side)

h Hour angle in rad
nnn111 Ideal normal at xxx111

nnnhhh Effective normal at xxx111 around the ideal nor-
mal nnn111

Sh Shadowing performance in %
Sp Spillage performance in %
T Target (the exponent + indicate the active

side)
t Time in s
ŵi Monte Carlo weight
xxxiii Point in the geometry

1. Introduction

Considering the investment needed to build a solar concentrating facility, the performance of such an instal-
lation has to be maximized. This is the reason why the preliminary design step is one of the most important
stage of the project process. Nowadays, numerical simulation is widely used to perform this step and simula-
tion tools have an important role in concentrated solar power (CSP) development. During the last decades, a
significant number of well-known and widely-used tools have been developed. But those tools only simulate
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(a) Heliostat (b) Central Receiver System

Fig. 1: Computer generated images with EDStaR

installation performance for one sun position so it’s not possible to evaluate yearly performance. In addition,
there are methods to design heliostat field according to yearly optical performance [1] but no raytracing tool
allows designers to obtain the yearly performance of a solar central receiver in one calculation. We will propose
in this paper a new approach based on Monte Carlo methods that permits to take into account the sun tracking
annually. Thus, we can obtain a precise estimation of the yearly thermal energy received by the receiver with
a reasonable computational time. This code, fast and accurate, permits to achieve optimization step with, for
example, stochastic optimization methods (genetic algorithm, particle swarm optimization, ...).

2. Simulation tool

EDStaR (numerical Environment of Development for Statistical Radiative simulation) is a coding environ-
ment maintained by the StarWest group [2], a group of physicists specialized in radiative transfer and out-of-
equilibrium statistical thermodynamics. EDStaR is mainly devoted to photon transport but it can also deal with
micro-scale gaseous thermal flows, liquid-gas transitions or self-organization in biology. Using Monte-Carlo
methods [3] [4], it takes advantages of advanced rendering techniques from computer graphics community : it
can manage complex geometries with the use of the C++ object library designed in the frame of the Physically
Based Rendering Techniques (PBRT) project [5]. PBRT is combined with the mcm C++ object library that han-
dle with programming Monte Carlo algorithms, including sensitivity estimations. Another part core program
constituting EDStaR is the GNU Scientific Library (GSL) [6] used for uniform random number sampling in the
unit interval. The GSL contains many distinct random number generators to insure the same level of uniformity
and independence. Those three libraries are combined into the Mcm3D development environment. Mcm3D
takes the benefit of all modern possibilities of computing such as massive parallelization [7] and acceleration
of the ray tracing in a complex geometry. We can obtain computer generated images of studied systems, as
shown on fig. 1 illustrating the academic case studied in the validation part of this paper (4).

3. Sun tracking Monte Carlo algorithm

As mentioned in part 1 we have built a code that tracks sun positions during one year. EDStaR allows to build
a specific Monte Carlo algorithm dealing with sun positions in the sky applied to central receiver system (CRS)
simulation.
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Fig. 2: Linear interpolation for DNI values

3.1. Sun position and DNI values

Taking into account the sun tracking inside the Monte-Carlo algorithm implies that the geometry of the solar
installation is updated at each solar position. So, we have to find a convenient way to describe sun positions at
each instant. For a given geographical position, ie a couple longitude-latitude, sun position can be described
by angles (azimuth and elevation, azimuth and zenith angle, declination and hour angle, ...) or by dates (year,
month, day , hour, minutes, seconds). Both representations are equivalent and could define sun positions with
either of these descriptions. We make the choice to work with dates with a day γ between [1;365] and a time of
the day η between [7 : 00 : 00;19 : 00 : 00]1. We can define azimuth φS and elevation angle θS with Eqs.1 and 2
using the latitude Φ corresponding to the location of the central receiver system (CRS) to calculate declination
δ and hour angle h with Eqs.3 and 4.

cosφS =
sinδ cosΦ− coshcosδ sinΦ

cosθS
(1)

sinθS = coshcosδ cosΦ+ sinδ sinΦ (2)

δ = 23.45sin
(

360× 284+ γ

365

)
(3)

h = (η−12)×15 (4)

Each sun position corresponds to a DNI value according to weather pattern. As we need a DNI value for
each instant but have only hourly radiation datasets stored in database, thereby we have to interpolate data. As
represented on fig. 2 for the 21th of June 2005 in Albi, France, linear interpolation between hour values gives
a good approximation for a specific date when compared to values collected each minutes [8].

3.2. Monte-Carlo Sun Tracking algorithm

3.2.1. Mathematical formulation

The Monte Carlo Sun Tracking algorithm (MCST) implemented in this code takes into account sun positions.
Doing this, we introduce an integration over time and we obtain an energy value (in J) instead of a power
(in W).The aim of the computation is to evaluate the yearly energy received at the entrance of a CRS cavity
receiver. The yearly energy A is expressed by the Eq.5.

1Sampling hours during all the day doesn’t prove of interest so we focus on opening hours of a CRS, here for a location at latitude 0◦.
For location out of the equator, range of sampling would be extended to cover the longest day of the year, with the effect of increasing the
proportion of sampled sun positions corresponding null DNI.
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A =

∫
Year

dt
∫

H+
dx
∫

Ωsun

dωSDNI× [H(x0 /∈ (H∪T ))

×
∫

2π

dωωω111 fr(ωωω111|ωωωS,xxx111,ν) |nnn(xxx111) ·ωωω111|×
[
H(xxx222 ∈ T +)

]]
(5)

The integral over time is splitted into two integrals over day and hour as presented in Eq.6.

∫
Year

dt =
∫ 365

1
dγ

∫ 19

7
dη (6)

Eq. 5 contains tests symbolized by Heaviside functions H(x). Such a test consists in H(x) = 1 if x statement is
true and H(x) = 0 if it is false. These tests in Eq.5 permit to identify shadowing effect between the reflective
surface on which the first reflection appears and the sun (H(x0 /∈ (H∪T )) and to know if the first intersection
after the reflection on the heliostats happens on the target (H(xxx222 ∈ T +)). In fact, the algorithm begins with
a sampling of the H+ surface.Then, the incident direction ωS is sampled in the solar cone. The bidirectional
reflectance distribution function (BRDF) fr(ωωω111|ωωωS,xxx111) is a four-dimensional function that defines how light
is reflected at an opaque surface. It defines the behavior of photons during the reflection on heliostats, taking
an incoming light direction, ωωωSSS, and outgoing direction,ωωω111, both defined with respect to the surface effective
normal nnnhhh.
According to Monte Carlo methods, the quantity A is considered as the mean of a random variable WA : A =

E[Wp]. A is approximated by computing a finite number N of realizations wA,k of WA as represented in Eq.7.

A≈ Ã =
1
N

N∑
k=1

wA,k (7)

A standard deviation σÃ associated to each estimation of Ã can be obtained with a good approximation by a
statistical uncertainty σ̃Ã (Eq.8)

σÃ ≈ σ̃Ã =
1√
N

√√√√( 1
N

N∑
k=1

w2
P,k

)
− Ã2 (8)

The MCST model also includes the reflection events involved in a CSP system. It’s easy to compute additional
values characterizing CSP facility optical performances such as :

• Shadowing (Eq.9);

• Blocking (Eq.10) ;

• Spillage (Eq.11) ;

Sh =

∫
Year

dt
∫

H+
dx
∫

Ωsun

dωSDNI×H(xxx000 ∈ (H∪T )) (9)

B =

∫
Year

dt
∫

H+
dx
∫

Ωsun

dωSDNI× [H(xxx000 /∈ (H∪T ))

×
∫

2π

dωωω111 fr(ωωω111|ωωωS,xxx111,ν) |nnn111 ·ωωω111|×H(xxx222 ∈H)
]

(10)

Sp =

∫
Year

dt
∫

H+
dx
∫

Ωsun

dωSDNI× [H(xxx000 /∈ (H∪T ))

×
∫

2π

dωωω111 fr(ωωω111|ωωωS,xxx111,ν) |nnn(xxx111) ·ωωω111|×H(xxx222 /∈ (H∪T ))
]

(11)
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3.2.2. Algorithmic formulation

To evaluate those variables with Monte Carlo methods, we introduce probability density functions (PDF).
PDF allow us to improve convergence and to reduce the variance. To illustrate our purpose, we assume that
reflections are specular. With Monte Carlo weight and PDF, we obtain Eqs.12, 13, 14 and 15 from respectively
Eqs.5, 9, 10 and 11

A =

∫
∆

p∆(δ )dδ

∫
H

pH(η)dη

∫
H+

pX1(xxx111)dxxx
∫

ΩS

pΩS(ωωωSSS)dωωωSSS×

{
H(x0 ∈ (H∪T ))ŵout

+H(x0 /∈ (H∪T )×
∫

DNh

pNh(nnnhhh|ωωωSSS; p)dnnnhhh {H(xxx222 /∈ T )ŵout +H(xxx222 ∈ T )ŵA}
}

(12)

Sh =

∫
∆

p∆(δ )dδ

∫
H

pH(η)dη

∫
H+

pX1(xxx111)dxxx
∫

ΩS

pΩS(ωωωSSS)dωωωSSS×{H(xxx000 ∈ (H∪T ))ŵSh

+H(xxx000 /∈ (H∪T )ŵout} (13)

B =

∫
∆

p∆(δ )dδ

∫
H

pH(η)dη

∫
H+

pX1(xxx111)dxxx
∫

ΩS

pΩS(ωωωSSS)dωωωSSS×{H(x0 ∈ (H∪T ))ŵout

+H(xxx000 /∈ (H∪T )×
{

H(xxx222 ∈ T +)ŵout +H(xxx222 /∈ T +)× [H(xxx222 /∈ (H∪T ))ŵout

+H(xxx222 ∈ (H∪T ))ŵB]}} (14)

Sp =

∫
∆

p∆(δ )dδ

∫
H

pH(η)dη

∫
H+

pX1(xxx111)dxxx
∫

ΩS

pΩS(ωωωSSS)dωωωSSS×{H(x0 ∈ (H∪T ))ŵout

+H(xxx000 /∈ (H∪T )×
{

H(xxx222 ∈ T +)ŵout +H(xxx222 /∈ T +)× [H(xxx222 ∈ (H∪T ))ŵout

+H(xxx222 /∈ (H∪T ))ŵSp]
}}

(15)

The PDF are defined in Eqs.16, 17, 18, 19, 20. For probability density function pnnnh in Eq.20, the Blinn’s model
is used, of parameter p, with a truncation of the distribution of the dot product nnnhhh ·nnn111 avoiding the occurrence
of reflected directions toward the surface for quasi-tangent incidences.

p∆(δ ) =
1

365
(16)

pH(η) =
1

12
(17)

pX1(xxx111) =
1

SH+
(18)

pΩS(ωωωSSS) =
1

2π(1− cosθS)
(19)

pnnnh(nnnh|ωωωS; p) =
2+

1
p

2π

(
1−µ(ωωωS)

2+ 1
p
) (20)

The Monte Carlo weights are defined in Eqs.21, 22 and 23

ŵA =
Isun(ωωωSSS ·nnnhhh)

pΩS(ωωωSSS)pX1(xxx111)
= DNI(ωωωSSS ·nnnhhh)SH+ (21)

ŵSh = ŵB = ŵSp = 1 (22)

ŵout = 0 (23)

The Monte Carlo Sun Tracking integral formulation can be directly interpreted as the algorithm 1. It is equiva-
lent to Eqs. 12 - 23.
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Fig. 3: Schematic representation of a CRS

Ã = 0;
foreach event do

Uniform sampling of δ in [0,365];
Uniform sampling of η in [7A.M.,7P.M.];
Uniform sampling of xxx000 onH;
Sampling of /vω0 on solar disk;
if No shadowing between sun and xxx000 then

ŵA = DNI|nnn(xxx111) ·ωωωSSS|H+;
else

ŵA = 0;
ŵSh = 1;
break;

end
ŵA = ŵA×ρ;
Generation of nnnhhh according to Blinn’s model ;
Specular reflection ωωω111 = ωωωSSS +2|nnnhhh ·ωωωSSS|nnnhhh ;
xxx222 = intersection of Ray(xxx111,ωωω111) with geometry element ;
if xxx111 exists then

if xxx111 ∈ T + then
Ã = Ã+ ŵA break;

else
ŵA = 0;
ŵB = 1;
break;

end
else

ŵA = 0;
ŵSp = 1;
break;

end
end

Algorithm 1: Monte Carlo Sun Tracking algorithm (MCST)

6



(a) EDStaR fluxmap (b) Tonatiuh fluxmap

Fig. 4: Flux-map comparison for the spring equinox at noon in W

4. Validation

To validate our method, we have to do some comparisons. We choose to use Tonatiuh [9] which is a reference
tool in the concentrated solar community to compute a testing case. This case is the central solar receiver
represented on fig. 1b with a tower and 146 heliostats in a heliostats field. The field is designed with the
MUEEN [10] method, following a radial staggered layout. Each heliostat is made of 9 squared mirrors of 1.6
meter sided. Fig. 1a represent the geometry of an heliostat. To be sure to have the same case with both codes,
we describe the CRS in Tonatiuh with its script tool to suit to the heliostat shape used in EDStaR. Moreover,
we make some general assumptions :

• Reflections are specular ;

• CRS is located at the junction of the Greenwich meridian and the equator ;

• the target is a square with sides of 10m long ;

4.1. Comparison with Tonatiuh at fixed date

To be sure that future simulations with sun tracking will be consistent, we firstly evaluate some simplified
cases at fixed dates with both Tonatiuh and EDStaR. We choose to compute four dates with a DNI equal to
1000Wm−2 with a number of rays equal to five million :

• Spring equinox : the 21st of March at noon (solar time) ;

• Summer solstice : the 21st of June at noon (solar time) ;

• Autumn equinox : the 22th of September at noon (solar time) ;

• Winter solstice : the 21st of December at noon (solar time) ;

Fig. 4 represents flux-maps obtained with the two codes for the spring equinox. They seem very similar so we
compute the relative error for each pixel according to Eq. 24. It appears that the relative error for each pixel is
almost insignificant (less than 2.25%, as illustrated on fig. 5. Numerical results for the four dates, presented in
tab. 1, are equal to the second decimal place. We can conclude that the test case gives comparable results with
both Tonatiuh and EDStaR.

εi j =
Fti j−Fei j

Fti j
(24)
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Fig. 5: Difference Between Tonatiuh fluxmap and EDStaR fluxmaps in %

Date Tonatiuh EDStar
Spring equinox 2.97MW 2.97MW±72W

Summer solstice 3.19MW 3.19MW±98W
Autumn equinox 2.98MW 2.98MW±73W
Winter solstice 3.19MW 3.19MW±98W

Table 1: Power at receiver

4.2. Comparison for 50 dates

Now, we randomly choose 50 dates (example : γ = 15 and η = 14.745 gives 15/01/2012 14 : 44 : 42) and
we compute each date with Tonatiuh (Number of rays = 1 000 000). We obtain a power at the receiver but we
also can consider the result as the instantaneous energy arriving on the target. When we have the fifty results,
assuming that the averaged power over the 50 dates is representative of the energy received at each second we
obtain a thermal energy of 6.329GWhth. We can now do the same simulation with EDStaR with the Monte
Carlo Sun Tracking algorithm. So, we only do one simulation with the same 50 dates (with 1 photons for each
date) and we obtain as a result 6,323± 0.623GWhth. The tab. 2 represents those results. It appears that the
value given by EDStaR is very close to the value obtained with Tonatiuh. We also could notice that the error
bars of EDStaR are a bit large but with only 50 dates, it is logical to observe this trend. To conclude this part,
EDStaR gives an estimation in accordance with Tonatiuh results for a yearly simulation done date by date even
if error bars are significantly large due to the small number of dates computed. By increasing the number of
dates we obtain a more precise value of the yearly energy.

Dates Tonatiuh MCST
50 dates 6.329GWhth 6,323±0.623GWhth

Table 2: Comparison Tonatiuh - EDStaR for 50 dates

4.3. Yearly simulation

To have a more precise result, ie to obtain narrower error bars than in part 4.2, we compute a simulation with
a number of rays significantly larger. As the computational time is mainly devoted to the updating of the
heliostats orientation, we develop an upgraded version of the code called Multi-Ray Monte Carlo Sun Tracking
(MRMCST). It sends several rays for each date, before computing another date and updating orientation. To
identify the best ration “Accuracy / Computational time”, we made some tests considering different numbers
of rays for the MRMCST algorithm. We compare results with the MCST algorithm, as represented in fig.
6. It appears that the number of dates needs to be sufficient to insure a representative sample over the year
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Fig. 6: Comparison of MCST and MRMCST codes

otherwise MRMCST create a bias in comparison with MCST results but, in the same time, error bars obtained
with different MRMCST are widely narrower than MCST ones (with a confidence interval of 99.7% ie ±3σÃ).
We assume that 105 dates is a sufficient number to avoid the bias phenomena. Furthermore, computational
times presented in tab. 3 dealing with number of dates computed, highlight the need to identify a compromise
between accuracy and computational speed as the “multi rays” algorithm means more realizations for a date.
Following results in part 4.4 handle with number of realizations instead of number of dates. Following results
presented in part 4.4 are based on a MRMCST algorithm with 100 rays per date.

Number of dates MCST MRMCST 50r MRMCST 100r MRMCST 1000r
1000 0.62s 1.71s 3.84s 27.08s
5000 1.46s 9.96s 16.39s 127.57s
10000 1.97s 16.45s 26.77s 264.83s
50000 9.93s 69.54s 126.96s 1150s

Table 3: MCST versus MRMCST computational time

4.4. Simulation time comparison

As mentioned in part 1, we plan to use this code into an optimization scheme, so the computational time is of
great interest. We compare computational time2 with Tonatiuh on the basis of similar numbers of realisations,
knowing that it runs date by date. We evaluate as reference a “Tonatiuh equivalent” to MRMCST (100 rays)
considering the following step execution time : 4.003s for each date, taking into account script opening (2s),
pre and post-processing (2s) and tracing 100 rays (3ms).

Realizations Tonatiuh Tonatiuh Eq. MCST MRMCST
5 ·104 ≈ 3s 2 ·105s 9s 2s
5 ·105 ≈ 24s 2 ·106s 59s 16.39s
5 ·106 ≈ 156s 2 ·107s 814s 126.96s

Table 4: Computational time comparison

It appears that MRMCST is faster than MCST as noticed in part 4.3 and very similar to Tonatiuh computing
times with regards to computing time for a given number of realizations. The number of realizations for

2On a desktop PC with AMD Phenom II X6 1055T 2.8GHz and 4Mo RAM
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Tonatiuh is for a single date as ray-tracing can be run only date by date whereas realizations for MRMCST
cover the full year. So this computation speed comparison doesn’t account for the time saving brought by
MRMCST for yearly energy simulation.

5. Conclusion and outlook

A new code for simulation of central receiver systems has been developed with the coding environment ED-
StaR. It deals with sun positions during a year and thus computes the yearly energy at the entrance of the
receiver. This code is fast and accurate as illustrated by the validation step with Tonatiuh. Then, it can be used
in an optimization scheme during the preliminary design step of a solar power tower. Some improvements can
be made with further investigation of probability density functions effects, particularly concerning date and
hour variables.
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