
HAL Id: hal-01163826
https://imt-mines-albi.hal.science/hal-01163826v1

Submitted on 15 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PARTICLE SWARM OPTIMIZATION OF SOLAR
CENTRAL RECEIVER SYSTEMS FROM A MONTE

CARLO DIRECT MODEL
Olivier Farges, Jean-Jacques Bézian, Mouna El-Hafi, Olivier Fudym, Hélène

Bru

To cite this version:
Olivier Farges, Jean-Jacques Bézian, Mouna El-Hafi, Olivier Fudym, Hélène Bru. PARTICLE
SWARM OPTIMIZATION OF SOLAR CENTRAL RECEIVER SYSTEMS FROM A MONTE
CARLO DIRECT MODEL. IPDO 2013 : 4th Inverse problems, design and optimization symposium,
Jun 2013, Albi, France. �hal-01163826�

https://imt-mines-albi.hal.science/hal-01163826v1
https://hal.archives-ouvertes.fr


4th Inverse Problems, Design and Optimization Symposium (IPDO-2013)
Albi, France, June 26-28, 2013

PARTICLE SWARM OPTIMIZATION OF SOLAR CENTRAL RECEIVER
SYSTEMS FROM A MONTE CARLO DIRECT MODEL

Olivier Fargesa,b, Jean-Jacques Béziana, Mouna El Hafia, Olivier Fudyma, and Hélène Brub

aCentre RAPSODEE, UMR CNRS 5302, École des Mines d’Albi-Carmaux, Université de Toulouse, 81013
Albi Cedex 09, France, olivier.farges@mines-albi.fr, jean-jacques.bezian@mines-albi.fr,
mouna.elhafi@mines-albi.fr, olivier.fudym@mines-albi.fr
bTotal New Energies, R&D - Concentrated Solar Technologies, Tour Michelet ,Paris La Défense, France,
helene.bru@total.com

Abstract
Considering the investment needed to build a solar concentrating facility, the performance of such an

installation has to be maximized. This is the reason why the preliminary design step is one of the most
important stage of the project process. This paper presents an optimization approach coupling a Particle
Swarm Optimization algorithm with a Monte Carlo algorithm applied to the design of Central Receiver
Solar systems. After the validation of the direct model from experimental data, several PSO algorithms are
tested to pick out efficient parameters.

Nomenclature

Roman symbols
B Blocking performance in %
CRS Central Receiver System
c1 Attraction parameter for individual behav-

ior of the particle
c2 Attraction parameter for social behavior of

the particle
DNI Direct normal irradiance in W ·m−2

d(r(x∗)) Distance to the maximum obtained cost
reduction

E Yearly average energy in kWh
f Target function
fc Threshold for the number of failures during

GCPSO run
gk Global best position of the swarm after k

iterations
GCPSO Guaranteed Convergence Particle Swarm

Optimizer
H Heliostats surface (the exponent + indicate

the active side)
H The Heaviside step function
Ht Height of the CRS Tower in m
kmax Number of iterations performed during

PSO run
n1 Ideal normal at x1

nh Effective normal at x1 around the ideal nor-

mal n1

Nm Number of mirrors constituting heliostat
pki Particle i best position after k iterations
PSO Particle Swarm Optimizer
r1 Random number r1 ∼ U(0, 1)
r2 Random number r2 ∼ U(0, 1)
r(x∗) Normalized cost reduction
Sh Shadowing performance in %
Sp Spillage performance in %
sc Threshold for the number of successes dur-

ing GCPSO run
Sm Size of mirrors constituting heliostats in m
SH+ Area of mirror in m2

T Target (the exponent + indicate the active
side)

t Time in s
TMY Typical Meteorological Year
vki Current velocity of the i particle at the k it-

eration
ŵ Monte Carlo weight
w Inertia weight
wmax Maximum value of the weight inertia
wmin Minimum value of the weight inertia
xki Current position of the i particle at the k it-

eration
xb Best particle of the reference case a
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x∗ Best particle for each test case
x̂ Best particle among all test cases
yj Point in the geometry
Greek symbols
η Hour in h: min: s
γ Day of the year

ΩS Solar cone in sr
ω1 Direction after reflection in rad
ωS Direction inside the solar cone in rad
ρk Scaling factor applied in GCPSO
τ Index of the swarm best particle

Introduction
A Central Receiver System (CRS) is a complex set composed of several different subsystems including

heliostat field, tower, receiver, heat transport system, power conversion system, plant control, optionally a
thermal energy storage, etc. To generate heat further used to produce electricity, synthetize solar fuels or
supply an industrial process, the solar radiation is first reflected and concentrated by an heliostat field onto
a receiver located at the top of a tower. A large proportion of the cost of a CRS plant is devoted to the
heliostat field (∼ 50%) according to [1]. In consequence, it’s necessary to pay special attention to this item
during the preliminary design step of any CRS. Since the 70’s, several studies have been dedicated to the
optimization of central receiver systems and most of them specifically on heliostat fields. Among the most
recent developments, we can quote [2], [3], [4] and [5]. Each of these studies deal with a specific set of
parameters (either those describing the layout of the heliostat field, or the heliostat geometrie and size, or
the height of the tower...). Evaluation of performance is often based on optical efficiency estimation. This
parameter agregates reflection efficiency, cosine efficiency, interception efficiency, blocking and shadow-
ing efficiency and transmission efficiency. These efficiency values are usually obtained from simplified
mathematical models or ray tracing simulations with the constraint accomplishing optimization step in a
reasonable computational time.

1. Model descrition
In this paper, we present a new approach using a direct model based on Monte Carlo methods that is

further combined with a stochastic optimization algorithm. Achievement of an optimization task requires
an efficient direct model related to the target function used during optimization process.

1.1 Modeling the annual energy collected
In the present case, the direct model simulates a central receiver system. It estimates the annual perfor-

mance of a CRS by evaluating the annual energy collected at the receiver and the optical efficiency. From
a radiative point of view, the evaluated quantity is the solar energy E at the entrance of a receiver after
concentration by the heliostat field. In order to evaluate E, the direct model has to track positions of the
sun of a typical year cycle. Doing so, all the geometry is dynamic, i.e. heliostats are redirected according
to sun position. The quantity of interest is linked to the solar radiation data for a chosen area, coming
from Typical Meteorological Year (TMY) file. Being a function of the Direct Normal Irradiance (DNI),
the annual energy’s estimation requires a DNI value for each instant. This value is obtained from linear
interpolation between consecutive TMY data which are sampled every hour.

1.2 Monte Carlo algorithm
Monte Carlo method, due to its integral formulation, allows a better convergence of the algorithm. Sev-

eral CSP algorithms are developped in accordance with this principle [6] (central receiver systems, Fresnel
linear collectors, fluidized bed receiver, enclosed solar photobioreactor). An overview of the specific Monte
Carlo algorithm, dealing with the sun’s positions in the sky, is presented on Fig. 1. This algorithm sam-
ples some dates from a uniform distribution, then locations on the heliostat field where sun rays are first
reflected, after which it follows rays behavior in the CRS, ie computes reflections until each ray hits the
final receiver :
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(1) A position of the sun is uniformly sampled over the year with a day γ and an hour η

(2) A location y1 is uniformly sampled on the reflective surface of the whole heliostat fieldH+ of surface
SH+

(3) A direction ωs is uniformly sampled within the solar cone C of angular radius Ωs. In order to identify
shadowing effects, the location y0 is defined as the first intersection with a solid surface of the ray
starting at y1 in the direction ωs :

(a) If y0 belongs to heliostat surface H or to the receiver T , a shadowing effect appears and the
algorithm restarts at (1) with Monte Carlo weight ŵout = 0 ;

(b) If y0 doesn’t exist, the reflected direction ω1 is sampled so as to represent reflection and pointing
imperfections. The location y2 defined as the first intersection of the ray starting at y1 in the
direction ω1 is checked :

(i) If y2 belongs to something else than the receiver T , there is a blocking effect and the algo-
rithm restarts at (1) with Monte Carlo weight ŵout = 0 ;

(ii) If y2 doesn’t exist, there is a spillage effect and the algorithm restarts at (1) with Monte Carlo
weight ŵout = 0 ;

(iii) If y2 belongs to the receiver T , the algorithm restart at (1) with Monte Carlo weight ŵin =
DNI × (ωs ·nh) × SH+ where nh is the effective normal at y1 around the ideal normal
vector n1 ;

This algorithm is equivalent to the integral formulation presented in Eq. (1).

E =

∫ 365

1

pΓ(γ)dγ

∫ 12P.M.

0A.M.

pH(η)dη

∫
H+

pY1
(y1)dy

∫
ΩS

pΩS
(ωS)dωS ×

{
H(y0 ∈ (H ∪ T ))ŵout

+H(y0 /∈ (H ∪ T )×
∫
DNh

pNh
(nh|ωS ; p)dnh {H(y2 /∈ T )ŵout +H(y2 ∈ T )ŵin}

}
(1)

1.3 A specific computing framework
The direct model is implemented in the numerical framework EDStaR. This tool yields the practical

implementation of a Monte Carlo algorithm for the radiative heat transfer model, making use of an integral
formulation, and takes in consideration zero-variance approaches and sensitivity estimation as presented
by [7] and [8]. Taking advantage of advanced rendering techniques developped by the computer graphics
community, it can manage complex geometries with the use of the numerical library PBRT (Physically
Based Rendering Techniques) [9]. It benefits of all the modern possibilities of computing such as massive
parallelization and acceleration of the ray tracing in a complex geometry. Many solar applications have
already been simulated with this tool. EDStaR permits a very efficient implementation of the direct model.
With this tool, updating the geometry is performed quickly and achieving a fast simulation process takes
less than a minute for 50 000 realizations to simulate a CRS with 74 880m2 of mirror on a linux computer
with AMD Phenom II X6 1055T 2.8GHz and 12Go RAM.

1.4 Model validation
In order to validate the direct model, we simulate an existing CRS. Due to its quality of world’s first

commercial concentrating solar power tower, the comparison is done with PS10 Solar Power Plant. This
CRS, operating near Seville, in Spain, is composed of a 115m high tower and a solar field with 164
heliostats (120m2 each) arranged in a radial staggered layout [10]. According to measurements, the an-
nual thermal energy collected at the entrance of the receiver is roughly 117GWh. We simulate this CRS
with the direct model and appropriate irradiance data and obtain an annual thermal energy evaluation of
113.8GWh ± 0.3. We conclude that the model is accurate, taking into account the significant variation
which can appear between typical meteorological year data and the real weather.
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Fig. 1. Schematic representation of the ray tracing process on a Central Receiver System

2. Optimization
The aim of this work is to build an optimization approach for the design Central Receiver Systems. We

have to couple a direct model, presented in previous section with an optimization method.

2.1 Target function and parameters
In our study, we define a target function accounting for the annual thermal energy at the entrance of the

receiver using the direct model. We focus on parameters determining the layout of the heliostat field and
the tower. The setting-up of heliostats is done accordingly to the MUEEN method [11]. This graphical
method is a no-blocking radial staggered layout. The MUEEN method is based on an iterative algorithm
which add an heliostat to the field until a regulatory limit is reached. In our case, the restriction concern
the reflective surface. Once the limit is reached, the addition of heliostat is stopped. There are several ways
to design an heliostat field with this method. We make the choice to release heliostats geometry : each
heliostat is a set of square flat mirrors fixed on a curved structure. The design parameters are :

• The number of mirrors for each heliostat Nm

• The size Sm of flat mirrors

• The height of the tower Ht

Due to the several constraints to respect in a CRS design, some limitations exist. Free parameters are
then restricted by lower and upper bounds. The aim of optimization is to maximize the target function
dealing with these parameters. To identify the most adapted method, we have to investigate particularities
of the target function. Derivatives to parameters that modify the domain of integration can hardly be
obtained by Monte Carlo method as presented by [12]. As a consequence, gradient method can’t be applied
in this case. Another remarkable characteristic is the non-smooth target function due to MUEEN method.
A small variation in the parameters can cause a radical change of the field geometry.
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3. Stochastic optimization with PSO
Among all existing optimization methods we make the choice to focus on stochastic algorithms and,

more specifically on particle swarm optimization (PSO).It is proved in [13] that PSO is an efficient opti-
mization method when dealing with non-smooth simulation-based optimization. A particle swarm opti-
mization algorithm, as a zero order optimization method, doesn’t need to have derivatives with respect to
one of the free parameters. Furthermore, PSO is a stochastic method and then allow us to find the global
optimum among all local optima. This well-known population-based optimization method was first intro-
duce by [14]. According to this algorithm, each particle i of the swarm has, at iteration k, a position xki in
the search space, a velocity vki and a personal best position pi. This personal best position corresponds to
the xi maximizing the target function f . Furthermore, the algorithm considers g which is the global best
position, i.e. among the particles of the swarm, the position of the one giving the highest target function. At
iteration k+1, each particle position xk+1

i is updated with its previous position xki and its updated velocity
vk+1
i , as presented in Eqs. (2) and (3). The 2 numbers r1 and r2 are random numbers uniformly sampled

in [0, 1] and used to effect the stochastic nature of the algorithm. The weight inertia w is used to control
the convergence behavior of the PSO. A dynamic inertia is also implemented : the value of inertia varies
with the iteration k, decreasing linearly with k as presented in Eq. (4). The coefficients c1 and c2 control
how far a particle will move in the search space in a single iteration. c1 leads the individual behavior of
the particle whereas c2 leads its social behavior. In addition, a velocity clamping is set with a maximum
velocity gain |vmax| = 4.

vk+1
i = w × vki + c1 × r1 × (pi − xki ) + c2 × r2 × (g − xki ) (2)
xk+1
i = xki + vk+1

i (3)

w = −wmin − wmax
kmax

× k + wmax (4)

Each particle generated by the PSO (i.e. each generated CRS geometry described with a set of param-
eters) is evaluated with the direct model. Simulation results are used to establish particles performance as
they are the inputs of the target function f .

3.1 A modified PSO
Furthermore, we implement the Guaranteed Convergence Particle Swarm Optimization algorithm (GCPSO)

[15] in order to avoid early swarm convergence on the best position discovered so far. The global best po-
sition is then updated with another process to avoid stagnation phenomena. We assume that τ is the index
of this global best particle leading to :

gk = pkτ (5)

To insure that the τ particle keeps moving, a new velocity update equation is suggested in Eq. (6). The
factor ρ permits to perform a random search around the best global position. ρ is a scaling factor defined
after each time step as presented in Eq. (7).

vk+1
τ = −xkτ + gk + w × vkτ + ρk × (1− r2) (6)

ρk+1 =

 2× ρk if #successes > sc
0.5× ρk if #failures > fc

ρk otherwise
(7)

The terms #failures and #successes are the number of consecutive failures or successes whereas
fc and sc are threshold parameters set with default value sc = 5 and fc = 5. The test is a failure if
f(gk) = f(gk−1) and a success otherwise. The new position update for the τ particle is presented in Eq.
(8).
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xk+1
τ = gk + w × vkτ + ρk × (1− r2) (8)

4. NUMERICAL EXPERIMENTS
We use a C++ PSO library previously implemented. All computations are run on a Linux computer with

AMD processors AMD Phenom II X6 1055T 2.8GHz and 12Mo RAM. Optimization tests are realized
with 50 iterations for a swarm of 20 particles. The target function of each particle is evaluated with 5 000
realizations of the Monte Carlo algorithm. With this amount of realizations, we insure a result with an
uncertainty lower than 2%.

4.1 Identification of the best parameters
To evaluate PSO performance, we introduce a test case. This case consists in a CRS where heliostats are

composed of flat square mirrors as presented in the previous section. We take into account 3 parameters :
the height of the tower, the size of mirrors and the number of mirrors by heliostat. The restriction on
reflective area is set to 15 000m2. Table 1 presents parameters bounds and Table 2 presents PSO parameters
and results for each test case. Under this circumstances, a complete optimization process is achieved in
approximately 1h30min.

Table 1. Parameters symbols, lower bound and upper bound
Parameter Lower bound Upper Bound

Ht 90m 110m
Nm 1 81
Sm 1m 3m

4.2 Criteria of comparison
To make a comparison, we introduce some measurements of optimization methods performance. For

each run, we calculate the normalized cost reduction defined in Eq.(9) and the distance to the maximum
obtained reduction defined in Eq. (10). x∗ is the particle with the highest target function for each test case,
xb is the reference case a with standard PSO parameters as presented by [14] and x̂ is the iterate with the
highest target function value obtained by any of the tested optimization algorithm. We also want to check
how particles converge towards the optimum. To do so, we introduce the mean and the relative standard
deviation of the particles target functions.

r(x∗) =
f(x∗)− f(xb)

f(xb)
(9)

d(r(x∗)) = r(x̂)− r(x∗) =
f(x̂)− f(x∗)

f(xb)
(10)

4.3 Optimization performance
As presented in Tab. 2, it appears that results are very close regardless to parameters. In the meanwhile,

the use of dynamic inertia leads to the appearance of a better target function optimum. The highest target
function, achieved with the Ref. h (GCPSO, c1 = c2 = 1.5, wmin = 0, wmax = 1.2), is evaluated to
25.25GWh. The standard PSO (Ref. a) reaches the value of 25.22GWh and the Ref. b (PSO, c1 = c2 =
0.5, wmin = 0, wmax = 1.2) represents the more efficient PSO with a target function value of 25.24GWh.
As observed with criteria of comparison, results are very close.
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Table 2. Parameters of PSO algorithms, normalized cost reduction and distance to the maximum obtained
cost reduction

Reference Type of PSO c1 value c2 value wmin value wmax value r(x∗) d(r(x∗))
a PSO 2 2 1 1 0.00% 0.32%
b PSO 0.5 0.5 0 1.2 0.31% 0.01%
c PSO 1 1 0 1.2 −0.23% 0.55%
d PSO 1.5 1.5 0 1.2 0.23% 0.09%
e PSO 2 2 0 1.2 0.23% 0.09%
f GCPSO 0.5 0.5 0 1.2 0.06% 0.26%
g GCPSO 1 1 0 1.2 0.00% 0.32%
h GCPSO 1.5 1.5 0 1.2 0.32% 0.00%
i GCPSO 2 2 0 1.2 0.06% 0.09%

4.4 Rate of convergence
To investigate swarm’s convergence, we compare the standard PSO a with test cases b and h which

obtain the highest target function value for respectively PSO and GCPSO algorithms. Fig. 2 represents
swarm’s mean for test cases a, b and h and Fig. 3 represents swarm’s relative standard deviation for these
3 cases. We observe an erratic behavior for each case due to the non-smooth characteristic of the target
function on both charts. However, the introduction of a dynamic inertia weight results in less irregular
curve as observed for test cases b and h. Although best target functions values obtained with different
PSO parameters are very close, as presented at section 4.3, the target function is highly unsmooth, making
swarm convegence difficult to achieve.
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Fig. 2. Mean of swarm’s target functions for test cases a, b and h

4.5 PS10 redesign
As a validation case, we present a comparison between a model built using PS10 specifications (624

heliostats of 120m2 and a 115m tower) and the result of an optimization run constrained by the PS10 land
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Fig. 3. Relative standard deviation of swarm’s target functions for test cases a, b and h

surface area. The following conditions are set :

• Heliostats are made of flat mirrors with square facets;

• Heliostat field follows a radial staggered layout according to the MUEEN method ;

Design parameters for optimization are the number of mirrors composing each heliostat and the width of
each mirror. Doing so, the surface of mirrors can be significantly different. We compute this example
with our tool. At the end of the process, the overall performance of the obtained CRS is increased by
14% compared to PS10 based CRS (annual thermal energy collected increasing from 113.8GWhth to
130GWhth). This optimization routine is run during a reasonable computational time 4h.

5. CONCLUSIONS AND FUTURE WORK
This paper introduced a new approach to design solar central receiver systems by coupling particle

swarm optimizer and Monte Carlo method. The design tool developed is based on the maximization of
the annual energy at the entrance of a solar receiver. This target function is highly non-smooth, making
difficult to obtain a swarm convergence. A validation case is run using PS10 specifications to illustrate
efficiency of the method presented. The redesign of this CRS leads to a significant improvement up to 14%
of the annual thermal energy collected. In forthcoming work, the PSO algorithm will be hybridized with
a Hookes-Jeeves algorithm in order to better accommodate the non-smooth characteristic. Moreover, the
direct model will integrate the estimation of the electricity produced and the CRS plant investment cost so
as to optimize the power production cost rather than the annual thermal energy collected. The Monte Carlo
algorithm will be extended to estimate the production of a thermal cycle. We will also investigate the use
of Kriging and metamodels in order to save computational time and increase the number of iterations and
the size of swarms.
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