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O. Fargesa,b,∗, J.J. Béziana, H. Brub, M. El Hafia, R. Fournierc, C. Spiessera
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(LAPLACE), Bt. 3R1, 118 route de Narbonne, F-31062 Toulouse cedex 9, France

Abstract

Rapidity and accuracy of algorithms evaluating yearly collected energy are an
important issue in the context of optimizing concentrated solar power plants
(CSP). These last ten years, several research groups have concentrated their
efforts on the development of such sophisticated tools: approximations are re-
quired to decrease the CPU time, closely checking that the corresponding loss
in accuracy remains acceptable. Here we present an alternative approach using
the Monte Carlo Methods (MCM). The approximation effort is replaced by an
integral formulation work leading to an algorithm providing the exact yearly-
integrated solution, with computation requirements similar to that of a single
date simulation. The corresponding theoretical framework is fully presented
and is then applied to the simulation of PS10.

Keywords: Concentrated solar power, Monte Carlo methods, yearly energy,
integral formulation

1. Introduction

Concentrated solar plants are commonly designed to have the best energy-
collection efficiency in nominal conditions on March 21st. However, several codes
such as HFLCAL (Schwarzbözl et al., 2009), System Advisor Model (Gilman
et al., 2008), UHC or DELSOL already assess the annual performances of large-
size heliostat fields. These codes are fast but retain approximations in their
resolution methods. In order to decrease the CPU costs, some authors make
use of simplified heliostat-flux convolutions (Garcia et al., 2008), reduce the
number of heliostats (choosing a representative number of heliostats)(Sanchez
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Nomenclature

B Blocking performance (%)
b Blinn parameter for reflec-

tion imperfections
DX Domain of definition of the

random variable X
DNI Direct normal irradiance

(Wm−2)
E Yearly average energy

(kWh)
H Heliostats surface (the expo-

nent + indicate the active
side)

H() The Heaviside step function
n1 Ideal normal at r1
nh Effective normal at r1

around the ideal normal n1

Nr Number of rays sampled for
a date

P Power (kW)
ri Location

%RSD Relative standard deviation
(%)

Sh Shadowing performance (%)
Sp Spillage performance (%)
SH+ Area of mirror (m2)
T Target (the exponent + indi-

cates the active side)
t Time (h)
ŵ Monte Carlo weight
x̄ Average of Monte Carlo

weights
ΩS Solar cone (sr)
ω1 Direction after reflexion

(rad)
ωS Direction inside the solar

cone (rad)
ρ Mirror reflectivity
σ Standard deviation of Monte

Carlo weights

and Romero, 2006) or account for blocking and shadowing in simplified manners
(Collado, 2008). In all cases, the first question is the accurate prediction of fluxes
and temperatures within the receiver, at each date (collected thermal power, hot
spots on the receiver-wall), which requires an accurate enough sun-spot model.
The second issue is then the integration of these predictions over CSP-lifetime.
In the present paper, we describe a Monte Carlo approach allowing to perform
this integration with short CPU times, therefore allowing to avoid the step of
simplifying the sun-spot model. The reason why CPU times are short is that we
handle the multiple combination of integrals by statistical means. Adding a new
integral over time (to the already quite complex integral over optical-paths and
geometry) does not change the overall complexity level and similar numbers of
statistical samples are required: adressing lifetime integrated quantities require
CPU times similar to those required to predict the same quantity at a single
date. In other terms, the CPU time required to handle multiple integrals is
imposed by the integral that is the highest source of variance, and here the
leading integral is not the time-integral. The well-known code MIRVAL includes
a mode called “Energy Run”, based on a similar approach (Falcone, 1986). The
corresponding integral formulation is first presented for a single date (Sec. 2.2),
and is only extended to lifetime in Sec. 2.1. The last paragraph (Sec. 3) is
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dedicated to the implementation on the PS10 testcase. Even if a straightforward
implementation of the method already leads to attractive CPU times, CSP-
design optimization implies iterative processes in which all further CPU-time
reductions are significant. We therefore show in appendix how such further
reductions can be achieved using advanced computer-graphics techniques.

2. The algorithm and its associated integral formulation

2.1. The starting point

To take advantage of fast intersection calculations and parallel computing,
we implement our MCM algorithm within the EDStar framework (De La Torre
et al., 2014). We start with an algorithm refered as Monte Carlo Fixed Date, or
MCFD. It is meant for the design of heliostat fields of Central Receiver Systems
(CRS) considering a single date. It predicts the solar power P incident on the
receiver. It is very similar to the first example presented at section 4.1 in (
De La Torre et al. (2014)): rays are sampled from the heliostat field and are
followed until they reach or miss the central receiver. A Monte Carlo weight
is associated to each sampled ray and P is evaluated as the average value of a
large number of such weights. The details of the ray-sampling procedure are
given hereafter.

r1

r0

ωS

ΩS

nh

n1

ω1

r2

T

H

Sh

B

Sp

Figure 1: Schematic representation of the Monte Carlo Fixed Date (MCFD) algorithm

(1) A location r1 is uniformly sampled on the reflective surface of the whole
heliostat field H+ of surface SH+
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(2) A direction ωS is uniformly sampled within the solar cone ΩS of angular
radius θS .

(3) An effective normal vector nh is sampled around the ideal normal vector
n1 at r1 representing reflection and pointing imperfections. ω1 corresponds
to the specular reflection of −ωS by a surface normal to nh

(4) r0 is defined as the first intersection with a solid surface of the ray starting
at r1 in the direction ωS

(a) If r0 belongs to an heliostat surface H or to the receiver T , a shadowing
effect appears and the Monte Carlo weight is ŵ = 0 ;

(b) If r0 doesn’t exist (or is at the sun), the location r2 is defined as the
first intersection with a solid surface of the ray starting at r1 in the
direction ω1

(i) If r2 belongs to something else than the receiver T , there is a
blocking effect and the Monte Carlo weight is ŵ = 0 ;

(ii) If r2 doesn’t exist there is a spillage effect and the Monte Carlo
weight is ŵ = 0 ;

(iii) If r2 belongs to the receiver T , the Monte Carlo weight is ŵ =
DNI × ρ× (ωS · nh)× SH+

This algorithm is equivalent to the integral formulation of Eq. (1) (see Fig. 1).

(1)P =

∫
DH+

pR1(r1) dr

∫
DΩS

pΩS
(ωS) dω

∫
DNh

pNh
(nh|ωS ; b) dn ŵ

with the Monte Carlo weight :

ŵ =

H(r0 ∈ H ∪ T )× 0

+H(r0 /∈ H ∪ T )×
{
H(r2 /∈ T )× 0
+H(r2 ∈ T )×DNI × ρ× (ωS · nh)× SH+

}
(2)

and probability density functions :

(3)pR1 =
1

SH+

(4)pΩS
=

1∫
ΩS

dωS
=

1

2π(1− cos θS)

(5)pNh
(nh|ωS ; b) =

(
1 +

1

b

)
× (nh · n1)

1+ 1
b

2π ×
(
1− cos2+

1
b

(
π

4
− 1

2
× arccos (ωS · n1)

))

4



As presented by De La Torre et al. (2014) in section 4.1, reflection and point-
ing imperfections are modelled with the Blinn’s model (Pharr and Humphreys,
2010), of parameter b. This microfacet model consists in an overall angular
spreading obtained by a distribution of effective normal vectors nh around the
ideal normal n1. This model introduces an exponential falloff to approximate
the distribution of microfacet normals1 and appears in the probability density
function pNh

(nh|ωS ; b).

2.2. Formulation of the lifetime-collected energy

Strong benefits are expected from the establishment of a rigorous equiva-
lence between the algorithm and the integral formulation: a modification of one
leads to a modification of the other and vise versa. This allows the choice of
either working on the very intuitive nature of the photon-tracking algorithm,
or on the mathematical features of the formulation (De La Torre et al., 2014).
When modifying the algorithm directly, the formulation helps to check that the
modification is rigorous. When working on the formulation, there is no question
about rigor and the Monte Carlo algorithm is obtained by translating the suc-
cessive integrals into successive sampling events. This is the case here: instead
of discretizing lifetime and performing a computation at each date, which would
require a considerable amount of time, we simply modify Eq. (1), integrating it
over time and introducing a probability density pτ , which leads to an algorithm
in which each ray-sampling is preceeded by the sampling of a date along lifetime.
Eq. (1) becomes

(6)

E =

∫
Lifetime

P (t)dt

=

∫
Lifetime

pτ (t) dt

∫
DH+

pR1(r1) dr

∫
DΩS

(t)

pΩS(t)(ωS(t)) dω∫
DNh

pNh
(nh|ωS(t); b) dn ŵ(t)

with time-dependent probability density functions

(7)pΩS(t) =
1∫

ΩS(t)
dωS(t)

=
1

2π(1− cos θS(t))

(8)pNh
(nh|ωS(t); b) =

(
1 +

1

b

)
× (nh · n1)

1+ 1
b

2π ×
(
1− cos2+

1
b

(
π

4
− 1

2
× arccos (ωS(t) · n1)

))

1The distribution of nh is truncated to avoid the occurence of reflected directions towards
the surface for quasi-tangent incidences. Thus, the angular spreading is dependent on the
incident direction ωS .
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and the Monte Carlo weight that now is

ŵ(t)

=


H(r0 ∈ H ∪ T )× 0

+H(r0 /∈ H ∪ T )×

H(r2 /∈ T )× 0

+H(r2 ∈ T )× DNI(t)× (ωS(t) · nh)× SH+

pτ (t)



(9)

In this formulation, time is continous but the climatic data that we used took
the form of a succession of DNI values every hour. We therefore needed an
interpolation assumption: as a first order approach we assumed that DNI was a
one hour piecewise constant function of time. As far as the sampling probability
pτ (t) is concerned, we used an importance sampling approach: pτ (t) is simply
a normalised form of DNI,

(10)pτ (t) =
DNI(t)∫

Lifetime
DNI(t) dt

This means that the dates with the larger DNI values are sampled more fre-
quently than the low DNI ones. This introduces no biais because pτ (t) appears
both in the integral and in the weight. Practically speaking, this simply means
that DNI data are pre-treated: only the non zero DNI values are kept, they are
classified in ascending order, cumulated and normalised. Then, when we need
to sample time according to pτ (t), a value of this cumulative function is sam-
pled uniformly in the unit interval and the corresponding one-hour time-interval
is retained. Hereafter, the corresponding algorithm is refered as Monte Carlo
Solar Tracker, or MCST. The ray-sampling procedure becomes:

(1) A DNI is uniformly sampled over the lifetime period according to pτ (t)and
the corresponding one-hour time-integral is retained

(2) A location r1 is uniformly sampled on the reflective surface of the whole
heliostat field H+ of surface SH+

(3) A direction ωS is uniformly sampled within the solar cone ΩS of angular
radius θS .

(4) An effective normal vector nh is sampled around the ideal normal vector
n1 at r1 representing reflection and pointing imperfections. ω1 corresponds
to the specular reflection of −ωS by a surface normal to nh

(5) r0 is defined as the first intersection with a solid surface of the ray starting
at r1 in the direction ωS

(a) If r0 belongs to an heliostat surface H or to the receiver T , a shadowing
effect appears and the Monte Carlo weight is ŵ = 0 ;
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(a) Flux density map at PS10 receiver on
March 21st with DNI = 1000Wm−2 in
kWm−2
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(b) Energy density map at PS10 receiver
during a year in MWhm−2

Figure 2: Flux density and energy density maps

(b) If r0 doesn’t exist (or is at the sun), the location r2 is defined as the
first intersection with a solid surface of the ray starting at r1 in the
direction ω1

(i) If r2 belongs to something else than the receiver T , there is a
blocking effect and the Monte Carlo weight is ŵ = 0 ;

(ii) If r2 doesn’t exist there is a spillage effect and the Monte Carlo
weight is ŵ = 0 ;

(iii) If r2 belongs to the receiver T , the Monte Carlo weight is ŵ =
DNI(t)× ρ× (ωS(t) · nh)× SH+

pτ (t)

3. Implementation

In order to test the performance of the MCST algorithm, as well as for
validation purposes, it is run with the characteristics of a reference Central Re-
ceiver System. PS10, a 11MWe power plant, has been the subject of several
studies from which data are available. It is located near Seville, in Spain, and is
the world’s first commercial concentrating solar power plant. Its heliostat field
consists in 624 heliostats following a radial staggered layout (Siala and Elayeb,
2001). Each heliostat has a surface of 121m2 and concentrates sun rays to a
receiver, located at the top of a 115m high tower, that feeds a steam turbine.
Each sun position is translated into a DNI value coming from Typical Meteo-
rological Year (TMY) data that correspond to a typical year on the considered
site. As we have no better information, when adressing a lifetime prediction,
we make the assumption that the climate will be identical every year and the
lifetime simulation becomes strictly identical to a yearly simulation. Therefore
only yearly simulations will be presented. According to the design, this power
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plant should annualy produce 23GWhe (electrical energy) and about 95GWhth
(thermal energy) (Osuna et al., 2006). With MCST algorithm we have estimated
97GWhth. This result indicates a very good agreement with the litterature data
and we retain it as a first MCST-validation exercise. For internal validation,
we also performed time discretization using a deterministic approach for shorter
time-intervals. This required that a seperate Monte Carlo run was performed
for each date with MCFD algorithm and that each Monte Carlo reached a high
enough accuracy level so that we only tested the time-integration part of the
algorithm. Adequation was perfect, which fully validated our statistical inte-
gration procedure.

Table 1 presents a comparison of MCST (yearly integration) and MCFD
algorithms in terms of computational times and number of required realizations
for a relative standard deviation (%RSD) of 0.1%, where %RSD is defined as

(11)%RSD =
σ

x̄
× 100

where σ is the standard deviation of Monte Carlo weights and x̄ is the average
of Monte Carlo weights.

MCFD algorithm performances are presented for March 21st at noon and
March 21st at 6PM. Figures [2a; 2b] display sun spots : one for March 21st

at noon and one on a yearly integrated basis. The main point is that time
integration with MCST requires 26 times more realizations than MCFD for
March 21st at 12PM but 11 times less realizations than MCFD for March 21st

at 6PM. This simply reflects the fact that these two particular dates are close
to the extreme cases. For March 21st at noon, there is nearly no optical losses
(blocking, shading and spillage phenomena) and the optical integration is quite
simple. On the contrary, at 6PM, optical losses require an accurate optical
integration which translates into more Monte Carlo realizations. In any case,
this confirms that time integration is not the main source of statistical difficulty
in the CSP-design context. We claimed in introduction that annual integration
could be performed with computational time comparable to that of a single date
simulation. This is not true when comparing with favorable dates but is even an
understatement when we consider disavantageous dates. In appendix, the yearly
simulation time of 28 s is reduced to 2.8 s thanks to further computer-graphics
optimization.

Table 1: Comparison of the computation time for Monte Carlo Fixed Date and Monte Carlo
Sun Tracker algorithm for a relative standard deviation %RSD = 0.1%

Algorithms Computation time Number of required Energy
in second realizations 3 in GWh

MCFD
March 21 12PM 1.3 2407 · · ·
March 21 6PM 33 700 000 · · ·

MCST 28 62 100 97
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4. Conclusion

Our main message is that statistical approaches make it possible to address
lifetime integrated quantities with the same ease as temporal quantities. There
is therefore no need to simplify the physical representation of the concentration
process itself. We have illustrated this potential with the PS10 example, but up
to now we have not entered into the details of what is now possible using this
integration technique. The next step will be to consider phenomena such as :

• optical ageing of CSP components along lifetime extended up to fifty years
or longer

• accurate representation of climatic fluctuations (annual DNI change)

• and even representation of predicted climate changes (long-term DNI change)
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AppendixA. Optimization of the computation time

For optimization purposes, two ways are explored in order to reduce the
MCST CPU time. To differentiate each code version, the following notation is
introduced :

MCSTa the original algorithm (see 2.2)

MCSTb using the first optimization

MCSTc using the second optimization

AppendixA.1. First optimization

Considering that re-orientation (therefore at each date) of heliostats at each
realization is time consuming, the aim is is here to reduce the number of sample
dates. As it is necessary to preserve estimation accuracy, the idea is here to
sample several rays per date. This is the concept of systematic sampling (Dunn
and Shultis, 2011): Nr rays are sampled and followed onto the field for each
sampled date. The corresponding integral formulation is modified and Eq. (6)
becomes Eq. (A.1) and MCSTa becomes MCSTb algorithm.

(A.1)
E =

∫
Lifetime

pτ (t) dt

Nr∑
n=1

1

Nr

∫
DH+

pR1(r1) dr

∫
DΩS

(t)

pΩS(t)(ωS(t)) dω∫
DNh

pNh
(nh|ωS(t); p) dn ŵth

3A Monte Carlo realization means a single ray
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AppendixA.2. Second optimization

The second optimization has nothing to do with the Monte Carlo algorithm
(the integral formulation) itself. The integral formulation remains the same
as equation Eq(A.1). Here we optimize the photon tracking algorithm using
computer graphics techniques. The sun tracking performed during MCST real-
izations implies that the geometry of the solar installation is updated at each
solar position. The re-positioning of the heliostat field and of the bounding
boxes associated to each heliostat, for a sun position consists in performing ma-
trix multiplications, each heliostat position being described with a 4× 4 matrix
(Pharr and Humphreys (2010)). The computation time devoted to this step be-
comes huge when simulating a large scale central receiver system with hundreds
of heliostats. We developed heliostat-reorientation algorithm that reduces this
computation time. Each heliostat is enclosed into an enlarged cubic bounding
box. This bounding box includes all the positions that an heliostat can take
when tracking the sun.

AppendixA.3. Results

Table 2 displays the computation time associated to these two optimizations.
The first optimization reduces the variance (the number of required realizations)
but increases the computation time. It is therefore rejected. For the second opti-
mization the number of realizations is strictly identical, the integral formulation
is indeed inchanged but the computation time is reduced by approximately a
factor ten 2 for MCST algorithm.

Table 2: Comparison of the computation time of the several versions of Monte Carlo Sun
Tracker algorithms for a relative standard deviation %RSD = 0.1%

Algorithms Computation time Number of required
in second realizations 3

MCSTa 28 62 100
MCSTb 33 48 200
MCSTc 2.8 62 100
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