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a b s t r a c t

A better integration of preliminary product design and project management processes at early steps of

system design is nowadays a key industrial issue. Therefore, the aim is to make firms evolve from

classical sequential approach (first product design the project design and management) to new

integrated approaches. In this paper, a model for integrated product/project optimization is first

proposed which allows taking into account simultaneously decisions coming from the product and

project managers. However, the resulting model has an important underlying complexity, and a multi-

objective optimization technique is required to provide managers with appropriate scenarios in a

reasonable amount of time. The proposed approach is based on an original evolutionary algorithm

called evolutionary algorithm oriented by knowledge (EAOK). This algorithm is based on the interaction

between an adapted evolutionary algorithm and a model of knowledge (MoK) used for giving relevant

orientations during the search process. The evolutionary operators of the EA are modified in order to

take into account these orientations. The MoK is based on the Bayesian Network formalism and is built

both from expert knowledge and from individuals generated by the EA. A learning process permits to

update probabilities of the BN from a set of selected individuals. At each cycle of the EA, probabilities

contained into the MoK are used to give some bias to the new evolutionary operators. This method

ensures both a faster and effective optimization, but it also provides the decision maker with a graphic

and interactive model of knowledge linked to the studied project. An experimental platform has been

developed to experiment the algorithm and a large campaign of tests permits to compare different

strategies as well as the benefits of this novel approach in comparison with a classical EA.

1. Introduction

Many companies, in order to meet the requirements of their

clients and to provide them with adequate products, implement

two key processes:

– the ‘‘product design’’ process, which aims at defining precisely

the components and the structure of the product,

– the ‘‘project design’’ process which aims at specifying

how the product will be realized (sequence of tasks, used

resourcesy).

These two processes are often implemented sequentially: first

the product is designed then the realization project is elaborated.

For example, when a client wants to build a house, the architect

designs at first a plan of the house, then the corresponding

realization project is developed and launched. Since the project

constraints (for example resources availability) are not explicitly

taken into account in the product design, this can lead to

additional iterations between ‘‘product design’’ and ‘‘project

design’’ processes. A better integration (or coupling) of both

processes is therefore a way to improve the global performance of

companies.

An in-depth study of several mechanisms that can facilitate

this integration has been launched in a project called ATLAS,

funded by the French National Research Agency and involving

academic laboratories, industrialists and the competitiveness

cluster Aerospace Valley. The work presented in this paper takes

place in the context of the ATLAS project.

In this section, a simplified product/project integration model

is proposed. Indeed, in both environments (product and project),

design processes are generally achieved according to a
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hierarchical decomposition (see Fig. 1) in order to encompass

complexity:

– products are recursively decomposed into smaller sub-products

(‘‘AND’’ connectors), e.g. product P1 is made of P11 and P12,

– accordingly, projects are recursively decomposed into sub-

projects: in order to realize P1 one has to realize P11, to realize

P12 and to assemble P11 and P12,

– alternatives (‘‘XOR’’ connectors) can be defined in products

(e.g. choice between components P11 is composed of P011 XOR

P
00

12) and in projects (e.g. choice between sub-contractors R0
7

XOR R
00

7 to achieve task T7).

Definition 1. an integrated model, called project graph, is used

in order to represent simultaneously the links between the product

and project hierarchies. This model consists in an oriented graph

without cycles in which nodes are: tasks of the project, ‘‘AND’’

connectors and ‘‘XOR’’ connectors. The oriented arcs represent the

precedence constraints between tasks. Fig. 2 represents such a

model for the example of decomposition given in Fig. 1. Such a

graph permits to capitalize that is called ‘‘structural knowledge’’ in

the rest of the article. It concerns XOR nodes that correspond to the

possible choices of products’ structure. Making a product choice

corresponding to a XOR node imply to inhibit a set of downstream

connected nodes. Those product XOR are represented by a circular

node whereas project XOR, which do not involve inhibition of other

XOR node, are represented by dotted circle.

Definition 2. a scenario corresponds to a graph in which all the

choices are made (i.e. with no more XOR nodes). An example of

scenario, corresponding to the model in Fig. 2, is illustrated in

Fig. 3.

1.1. Mathematical description of the addressed problem:

The problem addressed in this paper consists in searching an

optimal scenario among all the possible ones within the simple

directed graph project. The project graph G=(a, b) is defined by:

a={ak}, the set of all nodes,

b={bij}, the set of directed edges between the node ai and the

node aj with 9b9 the total number of edges.

The following subsets permit to formalize the problem defining

the three different node types (XOR, AND, Task):

T={ap/ap is a task node, apAa} is the subset of task nodes with

9T9 the total number of task nodes,

XOR={aq/aq is a XOR node, aqAa} is the subset of XOR nodes

with 9XOR9 the total number of XOR nodes,

AND={ar/ar is an AND node, arAa} is the subset of AND nodes

with 9AND9 the total number of AND nodes.

Let X, the vector of discrete variables (decision variables)

corresponding to XOR nodes

X ¼ fxi=aiAXORg ð1Þ

Let Dxi, the domain of the variable xi defined by the vector of

identifiers of the direct successor nodes of the XOR node i.

Dxi ¼ fj=ajAa;bijAb; aiAXORg ð2Þ

A decision associated to a XOR node ak that participates to a

scenario s corresponds to the instantiation of the variable xk and is

defined by

xsk ¼ j with jADxk ð3Þ

P1

P11 P12

P'11

P''11

Make P11 and P12

R'7 R''7

Product decomposition Projectde composition

AND

T8T7

XOR
T4

T5T4T1

T3T2

XOR

Fig. 1. Example of product/project decomposition.

T2

T1

T3

T4 T6T5

T8T'7

T''7

AND

XOR

XOR

Fig. 2. Example of integrated model: the project graph.
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Let Xs, the vector of instantiations of all the variables

corresponding to the scenario s

Xs ¼ fxsk=akAXORg ð4Þ

Let Gs(Xs) the directed graph obtained by instantiation of

all the variables and corresponding to the scenario s (e.g. see

Fig. 2). Gs(Xs)=(as, bs). as is the set of nodes belonging to the

scenario s and bs, the set of edges. Gs depends on the variables

instantiation Xs.

Let fm(xs), the value of the criteria m for the scenario s that

depends on the variables instantiation Xs. This value is computed

from the graph Gs(Xs) and depends on the considered criteria m.

For instance, if the criteria m is the cost, fm(Xs) is equal to the sum

of all the elementary task costs. If the criteria m is the delay, it is

necessary to find the longest path in the graph Gs and then, fm(Xs)

represents the final delay of the scenario. Therefore, considering a

scenario s, each criteria m is evaluated in a specific manner using

an appropriate algorithm to apply to the graph Gs.

Let fm(X), the objective function to optimize corresponding to

the criteria m and depending on the variables X. Considering that

there is P objective functions to optimize, the multi-valuated

optimization function f is defined by

min f ðXÞ ¼minðf1ðXÞ; f2ðXÞ; :::; fPðXÞÞ ð5Þ

This problem can be considered as an extended product

configuration optimization problem. The existing literature on

the subject is mainly dedicated to finding a feasible configuration

according to constraints and knowledge on the domain. However,

as mentioned in Li et al. (2006) it is very difficult to optimize the

resulting configured product since a problem of combinatorial

explosion appears especially when the problem is loosely

constrained. In this case, using an optimization approach can

help to focus on good solutions. In Baron et al. (2004) a search

method, based on a classical multi-objective evolutionary algo-

rithm, was proposed for the problem of scenario selection with

promising results.

The method proposed in Baron et al. (2004) is improved by

taking into account the knowledge that can be capitalized from

previous optimizations (learning from experience). Another

important issue is to make the capitalized knowledge explicitly

available to the decision maker and, therefore, to help him

understand the proposed solutions. This enables to avoid the

black-box effect of a combined simulation-optimization approach

without knowledge acquisition. The main idea developed in this

paper is to guide the search process with the available knowledge

and, reciprocally, to improve the knowledge by learning from the

most interesting solutions obtained during search.

The background of this work, with respect to existing

approaches that mix learning and search, is given in Section 2.

Then, the proposed approach, based on a hybridization between

bayesian networks (for knowledge acquisition) and evolutionary

algorithms (for search) is described in Section 3. Finally, the

results obtained on the target problem are discussed in Section 4.

2. Background

The method proposed in this paper relates to a recent family of

algorithms called ‘‘intelligent evolutionary optimization’’ (IEO)

(Huyet and Paris, 2004, Michalski et al., 2006). As stated above,

these algorithms are based on the interaction between a search

process and a knowledge acquisition process achieved through

learning. The goal is to benefit of the advantages of both

approaches. The search process aims at improving a set of

solutions by pseudo-random selection and combination opera-

tions. The goal of the learning process is to extract, to capitalize

some knowledge contained into the solutions in order to guide

the search process. Indeed, Michalski et al. (2006) shows that

fixing some interesting solutions properties is generally enough

for the search method to focus very quickly on some solutions

close to the optimal. So the learning process has only to give some

orientations to the search process with respect to a given context.

This section presents works which relate to the scenario selection

problem for each process (search or learning optimization

methods) then an overview of existing hybrid approaches.

2.1. Search process

The model defined in the previous section represents a highly

combinatorial (multiple XOR disjunctions in the graph) multi-

objective problem. The multi-objective aspect invites to provide

the decision maker with a panel of good solutions which

represents various compromises between identified objectives

(Pareto front). This kind of problem is often addressed using

metaheuristic optimization methods (see Rochet and Baron, 2006

and Chelouah et al., 2009) for studies of different metaheuristic

applied to the scenarios selection problem). Among those, this

study relies on evolutionary algorithms (EA) (Holland, 1975), as

illustrated on the left part of Fig. 4. EA is indeed well suited for

multi-criteria optimization and can provide the learning

algorithm with a set of individuals that ‘‘represent’’ the global

search space.

This kind of method indirectly reuses knowledge related to the

problem via the evaluation of the generated solutions. Here,

knowledge on the problem corresponds to a connection between

a given instantiation of genes (a scheme) and an interesting area

of the objective space. Holland (1975) showed that the improve-

ment of individuals in the evolutionary algorithms is ensured by

the indirect selection of the schemes with good performance

(according to the schemata theorem). Nevertheless in classical EA,

unguided evolutionary operators handle genes in a random way.

Some techniques try to identify and preserve combinations with

good performances thanks to specific search operators and

solution encoding, such as messy genetic algorithm (mGA)

(Goldberg et al., 1989) and linkage evolving genetic operator

(LEGO) (Smith and Fogarty, 1996). The evolutionary search

process concerns thus both individual improvement and links

between genes. The coupling of classical EA with a learning

process makes it possible:

ÿ to explicitly formalize links between genes and links between

genes and objectives in a ‘‘model of knowledge’’ (MoK) distinct

from the search method;

ÿ to take into account the knowledge of experts expressed

directly within the MoK.

As detailed in Section 3, the acquired knowledge can be used

simply in order to give orientations to the EA by introducing some

T2 T3

T6T5

T8T'7

ANDT1

Fig. 3. Example of scenario s.
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bias into the classical evolutionary operators (initialisation,

mutation and crossover operators).

2.2. Learning process

Among the different optimization methods based on a learning

process, this section focuses on approaches using a probabilistic

model such as population-based incremental learning (PBIL) (Baluja,

1994) and extended compact genetic algorithm (ECGA) (Harik et al.,

2006). Indeed, such model can provide guidance with approximate

information directly usable in order to give orientations to search

operators. Bayesian optimization algorithms (BOA) (Pelikan et al.,

1998) uses Bayesian networks (BN) as a model of knowledge

(Fig. 4). In this method, the MoK is learned from a sample set

containing selected individuals from the previous generation

(according to their fitness or performance). Then, a sampling

procedure is used to generate, directly from the MoK, the new

population of individuals without using modification or combina-

tion operators. One of the main characteristic of the learning

process lies in the construction of the sample data set. A substantial

set of individuals, distributed in the promising areas is essential to

obtain a relevant model. When the individuals used as a learning set

are selected, the induction of the probability model, especially

parameters interaction (i.e. definition of the Bayesian network

structure), constitutes the hardest task to perform automatically

(Baluja, 2002). Therefore, classical BOA learning process focuses on

the study of most influent parameters interaction.

Another way to address this difficult problem is to use a prior

knowledge in order to improve the learning procedure. The use of

prior knowledge allows either to speed up algorithm convergence

by introducing some high-quality or partial available solutions

(Schwarz and Ocenasek, 2000), or to improve the learning

procedure using an available structural knowledge (prior prob-

abilities of networks structure) (Schwarz and Ocenasek, 2000;

Baluja, 2002; Hauschild et al., 2008). The learning model proposed

in this paper (Section 3) relies on the acquisition, from experts, of

‘‘a priori’’ knowledge about the structure of the network. There-

fore, during the optimization process, the learning is achieved

only through probability updates. This method makes it possible

to concentrate the learning effort to the probabilities estimation.

In the proposed approach, the different objectives are considered

separately in the MoK (non-aggregative approach). That makes it

possible to dissociate the knowledge related to the different parts of

the surface of compromise between objectives and then to propose

a specific guidance towards each zone of the search space.

2.3. Integration of search and learning

In the two previous types of methods, the computing time is

used either for evolutionary search process or for learning

process. The choice between both approaches depends on the

evaluation cost of individuals (time), the number of genes and

the complexity of interactions between genes. On one hand, if the

evaluation cost of an individual is very important, the traditional

EA is less powerful. On the other hand, for a model containing a

great number of variables or complex interactions, the knowledge

learning cost may be prohibitive for the learning algorithms. The

coupling of both approaches allows restricting the search process

to the areas with good performances and allows the manipulation

of complex configurations of genes by means of biased evolu-

tionary operators.

In the approaches found in the literature, the two processes

(search and learning) have few interactions during execution,

especially for the crossover operator. Most of them, such as the

learnable evolution model (LEM) (Michalski, 1998) or intelligent

optimization method (Huyet and Paris, 2004), alternate between:

ÿ a learning and sampling phase that produces ‘‘genetically

engineered’’ individuals by instantiation of the learned knowl-

edge model,

ÿ a classical evolutionary phase that randomly combines and

modifies the set of individuals.

Sebag and Ravise (1996) propose an original approach where

the learning process also provides rules to characterize effective

crossover or mutation (crossover or mutation rate, type of

operators: uniform crossover, N-point crossover, etc.).

For the majority of IEO methods, the use of knowledge is

achieved indirectly. This generates a black-box effect incompa-

tible with an expert utilisation of the knowledge model. Knowl-

edge can be represented by means of operator classes (Sebag and

Schoenauer, 1994), intervals (Michalski et al., 2006), assumptions

on the parameters values or by the attributes about good

solutions (Chung, 1997). Huyet and Paris (2004) propose to

model directly the knowledge using classes of parameters. They

provide a hierarchy of parameters according to their impact on

the fitness improvement. Furthermore, no model enables to

dissociate objectives in order to have a representation of the

influence of decisions on each of them. Objectives are aggregated

(Jourdan et al., 2005) and then, partial knowledge is impossible to

reuse. The proposed approach aims at delivering to the decision

maker, in addition to the best solutions obtained, a MoK

characterizing efficient individuals. The model proposed in the

next section gives some answers to the issues listed above.

3. Proposed framework and algorithm

3.1. General architecture

The proposed framework uses a hybrid method that mixes an

evolutionary algorithm for the multi-objective search process and

Selection

Population i

Population i+1

Selection

Population i
learning

sampling

Probability Model

Search Process : Evolutionary Algorithm

Population i+1

Learning Process : B.O.A.

Evolutionary

Operators

Fig. 4. Two kind of classical optimization approach.
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a model of knowledge (MoK) able to provide orientations adapted

to the treated case (Fig. 5). The Bayesian network (BN) formalism

is used to represent the MoK. Two sources of knowledge are used

to elaborate the MoK: on one hand, a selection of individuals

(solutions) provided by the EA and, on the other hand, expert

knowledge mainly used in order to define the structure of the BN.

The resulting BN can be used by the EA as orientations for its

search process. These orientations are taken into account directly

by means of the evolutionary operators. Using a selection of

individuals obtained during search, a learning step enables the BN

to be updated by means of an inference learning algorithm.

3.2. The model of knowledge

The aim of the model of knowledge (MoK) is to formalize links

between three spaces: the decision space, the evaluation space

and the context space. The decision space relates to all the

decisions that can be taken by decision makers, whether design or

project choices (see Section 1). The evaluation space concerns the

objectives to reach by the search method and, more precisely, the

performance of the solutions with respect to these objectives. To

be able to reuse knowledge from previous experiences (here

previous project/product), the context of each experience (e.g.

project/product) has to be described using supplementary para-

meters. All the external parameters that can influence the search

process are gathered into the context space. For example, an

external parameter can be the supplier capacities which influ-

ences decision related to the choice between various suppliers for

a task. The modification of these external parameters is

considered as an input of the model and their influence on the

two other spaces has to be taken into account.

The formalism used for building the MoK is Bayesian networks

(BN) (Pearl, 1988) because of their learning capacities and

practical decision aiding abilities. A BN is a probabilistic model

that represents a set of variables (nodes) and their conditional

dependencies (edges between nodes) in a directed acyclic graph.

It allows the inference of the conditional probability of each state

of a node according to the state of others nodes. Conditional

probabilities are gathered into a conditional probabilities table

(CPT) linked to each node. An interesting characteristic of a BN is

the graphical representation (e.g. see the BN of Fig. 6) very

suitable for an aided decision perspective. As illustrated in Fig. 6,

the MoK contains four kinds of nodes: objective, decision, concept

and environment nodes. The decision nodes correspond to the

XOR connectors of the project graph. The objective nodes

represent the different objectives used for multi-objective

optimization. The concepts nodes are used by experts to express

which characteristics of the domain are important and can

influence one or several objectives. Environment nodes enable

to contextualize the knowledge contained into concept nodes.

Each node of the MoK is discrete, i.e. it contains only a finite set

of possible states for the modelled entity. A decision node can take

into account all the possible choices (or states) for this decision.

An objective node takes into account one of the objectives to

optimize (in our experiments, two objectives are considered:

minimisation of cost and delay) and is represented by discrete

states (e.g. low, medium, important). This characteristic is used in

order to define different objective classes (see Section 3.2.2).

States of an environment node represent the different discrete

possibilities of the context that can influence the objectives.

Concept nodes have two distinct roles in the MoK: (1) to reduce

complexity and (2) to model expert knowledge. Under the

hypothesis that the concept nodes are not necessary, it is possible

to draw some arcs directly between decision nodes and objective

nodes, with respect to the different influences known by the

experts. The obtained model may be sufficient to capitalize expert

knowledge and to guide the evolutionary algorithm. However, the

complexity of such a model will be very important because it is

directly proportional to the dimension of the table of conditional

probabilities of the objective nodes which depends on the number

of parent nodes and the number of states of those parent nodes. In

order to limit the complexity, concept nodes enable to build

progressively the links between decisions and objectives. In such

way, the number of parents of each node is reduced, as well as the

global complexity of the model. So, introducing concept nodes

enables to take into account the particular influences of a limited

number of decisions on sub-criteria. For instance, during a project,

a great number of decisions about sub-contracting or not can be

linked to one sub-criterion called ‘‘sub-contracting’’, represented

by a concept node. This concept node can be linked to objective

nodes according to expert knowledge (e.g. sub-contracting can

influence the cost and the delay but not the weight of the

product).

Without learning process, the probabilities of states for each

decision node of the BN are uniform (i.e. the search space is

considered as uniformly interesting). These probabilities can be

updated by a learning procedure performed on a selection of

solutions provided by the EA or by knowledge provided by the

experts.

3.2.1. Structural knowledge within the MoK

The structure of the MoK is given by the nodes and the arcs

between nodes. The majority of the arcs starts from decision

nodes and go to objective nodes, via concept nodes. Considering

the project graph (Fig. 2), some choices about design can inhibit

other choices. That is taken into account in the MoK by means of

arcs between decision nodes and a particular state called

‘‘inhibited’’ that indicates the inhibition of a decision by an

upstream decision.

For instance, the simple BN represented in Fig. 7 represent

three possible linked decisions (three nodes linked by two arcs).

The first decision to take during this project, represented by the

Model of 
knowledge

Selection

Population i

Population i+1

Evolutionary Operators 

(mutation, crossover,etc.)

Evolutionary algorithm Model of Knowledge

Orientations

Expert 
Knowledge

Examples

Fig. 5. Proposed global architecture.

Objective

Concepts

Environment

Decisions

Fig. 6. Decision analysis and capitalization in the global MoK.
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node ‘‘Decision 1’’, can be ‘‘State 1’’ or ‘‘State 2’’. If the decision

‘‘State 2’’ is taken, then the decision represented by the node

‘‘Decision 2’’ is inhibited and its state ‘‘Inhibited’’ has a probability

of 1. On the other hand, if the decision ‘‘State 1’’ is taken, then the

node ‘‘Decision 3’’ is inhibited (states ‘‘State 5’’ and ‘‘State 6’’ have

a probability of 0 and the state Inhibited has a probability of 1).

The tables of conditional probabilities of nodes called ‘‘Decision 2’’

and ‘‘Decision 3’’ enable to represent the different probabilities to

have a particular state for a decision with respect to the states of

its parent.

3.2.2. Objective classes within the MoK

In order to be able to guide the evolutionary search process,

the MoK has to be representative of different objective classes.

The number of classes is obtained from the number of discrete

states of the objectives. In fact, only particular zones of the

objective space are interesting in order to guide the evolutionary

algorithm. Fig. 8 represents a MoK and the associated objective

space with two objectives and three discrete states by objective

(there are two environment nodes (suppliers and workshop

capacities) and no concept nodes). Nine areas are defined but

only five of them are interesting (C0 to C4). In a multi-objective

optimization process, the method has to provide decision makers

with a set of solutions belonging to the Pareto front. A good

quality of this set is obtained when all the objective classes

corresponding to the Pareto front have at least one solution. So,

the proposed method enables to guide the EA to reach, at each

generation, an ideal Pareto front or, more exactly, interesting

zones of search space represented by the different classes of

objectives (Fig. 8).

In order to use the knowledge capitalized into the MoK, it is

necessary to compute probabilities linked to the different objective

classes. Therefore, in the BN, fixing probabilities of some objective

states to 1 enables to obtain probability of each state s of a decision d

with respect to the objective class c (noted Pc, d, s). This operation

consists in setting some evidences in the objective nodes (setting

probabilities to 1) in order to obtain the probability of each state in

each decision to reach the zone of the objective space defined by its

class. For instance, let consider class C2: probabilities to have a ‘‘low’’

cost and a ‘‘low’’ delay are considered as certain and probabilities are

set to 1 (see Fig. 8).

Let {s1d, s2d,y,skd} be the different possible states for s (skd is the

inhibited state of the decision d, if it exists in the node). If Pc,d,Skd=1

then Pc,d,s is set to ÿ1 for each sA{s1d, s2d,y,skd}. Of course, the value

of Pc, d, s is not interpreted as a probability in this case, but this value

indicates that the decision d is inhibited for the class c.

3.3. The evolutionary algorithm oriented by knowledge (EAOK)

The search algorithm (right side of Fig. 9) is adapted from a SPEA

method (strength Pareto evolutionary algorithm, illustrated on left

side of Fig. 9) proposed by Zitzler and Thiele (1999). The modified

SPEA proposed in this paper is based on this traditional EA with

classical steps: initialisation, evaluation/archiving, selection and

Decision 1

State 3

State 4

State 5

State 6

State 1

State 2

Decision 1
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genetics crossover and mutation operators. The evaluation, archiving

and selection operations have not been modified.

SPEA ensures the multi-objective evaluation of individuals

according to two steps: (i) the cost of solution is computed for

each criterion (e.g. global cost and delay); (ii) then, the multi-

criteria evaluation is achieved by means of a Pareto front to

compare and classify the solutions. The probability of selection of

an individual is proportional to its performance (called ‘‘fitness’’).

An individual’s fitness depends on its position in the search space

compared to the Pareto front. The fitness of an individual i is given

by formula (6) (Zitzler and Thiele 1999) according to the strength

(Sj) of individuals j that dominate i (an individual j that dominates

i is noted j4 i, and correspond to the fact that for each criterion,

the performance of the individual j is equivalent or better than the

performance of the individual i). The strength of an individual Si is

given by formula (7) where n is the number of dominated

solutions and 9Pop9 is the population size.

fi ¼
1

1þ
P

j;jgiSj:
ð6Þ

si ¼
n

9Pop9þ1
: ð7Þ

3.3.1. Solution encoding

In order to define the new EA, an encoding of a solution

(a scenario) is needed. The model proposed by Baron et al. (2004)

is well suited for the representation of a project scenario.

Therefore, it is used in the proposed EA. A project graph and an

individual corresponding to one scenario are represented in

Fig. 10.

The chromosome of an individual gathers on the left side the

genes corresponding to decisions derived from product decom-

position (choices between components represented by XOR nodes

in the project graph). Instantiations of the genes of this first part

(selection of a particular state) can lead to the inhibition of some

other genes in the chromosome. On the right side of the

chromosome, genes represent decisions derived from project

decomposition (choices to achieve tasks on the graph, represented

by dotted circles on Fig. 10). A gene g represents a decision d. A

value of a gene g represents a choice (state) s for a decision d. All

the possible choices are always represented even if several of

them are inactive since they are inhibited by choices made on

genes of the left side of the chromosome. This encoding ensures a

constant viability of the solutions. This aspect of inhibited

variables has been previously studied by Paris et al. (2001). But

in this study, the authors traduce it by a specific coding

(individuals represented by trees) and specific evolutionary

operators that allow handling this tree representation.

During the execution of the EAOK, two strategies can be used:

‘‘structural knowledge utilisation’’ and ‘‘diploid knowledge pre-

servation’’. These two strategies are presented below.

3.3.2. Structural knowledge utilisation

During the execution of the EAOK, if a gene is inhibited by a

previous gene instantiation, the values of the corresponding

probabilities associated to the objective class (Pc, d, s) are set to -1

indicating its inhibition. In Fig. 11, the fact that P2,1,1=1 leads to

the inhibition of third gene, then the inhibition of this gene

also leads to the inhibition of others depending genes (here,

genes 6–9). This inhibition mechanism corresponds to the mode

called ‘‘structural knowledge utilisation’’. It can be applied all

along the algorithm or not applied, according to the strategy

chosen for the algorithm (see Sections 3.3.5 and 3.3.6).

3.3.3. Diploid knowledge preservation

During the execution of the EAOK, different operators can

modify the genes of the chromosomes. A mode called ‘‘diploid

knowledge preservation’’ permits to preserve inactive genes

which can represent interesting characteristics in other areas

of the search space and that can be re-activated during other

cycles of the EAOK. This biological concept was already used

successfully for optimization in dynamic environment by Holland

(1975). During optimization process, if ‘‘diploid knowledge

preservation’’ mode is activated, inactive genes are not modified

(see Sections 3.3.5 and 3.3.6).

3.3.4. Initialisation oriented by knowledge

The first step of the EAOK is the initialisation of individuals of

the population according to the probabilities Pc, d, s of decisions

with respect to each objective class. The initial population is built
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according to the objective classes in order to start the search

procedure with a priori good orientations. The initial population

(the constant size N of the population is a parameter of the EAOK)

is created with individuals uniformly distributed to the different

objective classes (individuals are randomly assigned to objective

classes). After assignation to objective classes, the values of the

individual genes are fixed using the probabilities of individual

classes in order to give a priori good orientations. As illustrated in

Fig. 12, the probability to select a value g0 (model of state s) of a

gene g (model of decision d) belonging to an individual i

associated to a class c is given by: Pc, d, s. Therefore, values of

genes are selected by a roulette wheel selection (RWS)

mechanism. If Pc, d, s is equal to ÿ1, then the choice of the gene

value is not important and a random selection is done.

3.3.5. Mutation oriented by knowledge

First, the mutation operator selects an individual randomly

among the population according to the probability of mutation

Pmut (input parameter of the EAOK). Then, as illustrated by Fig. 13,

the probabilities of the individuals’ objective class are used to fix

the value of genes. For a gene g, two cases are taken into account:

ÿ g is inactive: g is not muted if ‘‘diploid knowledge preserva-

tion’’ mode is chosen. If this mode is not chosen, g is selected

for mutation (or not) according to Pmut and, if selected, g is

muted and its value is chosen according to a random selection

between possible states;

ÿ the gene is active: g is selected for mutation (or not) according

to Pmut and, if selected, g is muted and its value is selected

using RWS according to the probabilities of its objective class.

The last step concerns structural knowledge utilisation. If some

genes are inhibited by mutation of previous genes, the associated

values of the objective class are set to ÿ1.

3.3.6. Crossover oriented by knowledge

The operator selects a first individual (first parent noted i1)

randomly among the population according to the probability of

crossover Pcross (parameter of the EAOK). The second individual

(i2) is chosen according to the crossover strategy: exploratory or

intensification strategy. The exploratory strategy consists in

choosing the second parent associated to another objective class

(firstly in the classes closest to the class of individual i1). The

intensification strategy consists in choosing a second parent

associated to the same objective class. Once parent selection is

done, probabilities of their classes are used to determine the

points of crossover (an example of crossover operation is

illustrated on Fig. 14). The crossover is performed in a specific

manner for each individual (unilateral crossover).

Considering a value g0 (state s) of a gene g (decision d)

belonging to the selected parent i1 associated to the class c, the

crossover is performed according to the probability (1ÿPc,d,s) (also

called pertinence of the active state) if Pc,d,saÿ1. The crossover

consists in copying the corresponding value of the gene of parent

i2 into the current gene of the parent i1.

This method makes it possible to preserve and, if possible to

exchange, favourable genes of each individual. When the value

linked to a gene in the corresponding objective class is ÿ1

(inhibited gene), a unilateral crossover is done with a probability

of 0.5 if the ‘‘diploid knowledge preservation’’ mode is inactive

(uniform crossover of inhibited genes). If the ‘‘diploid knowledge

preservation’’ mode is active, inhibited genes are preserved from

the evolutionary process.

3.3.7. Test of evolution

During EAOK execution, the MoK is not updated as long as the

best solutions of the Pareto front are improved at each cycle. If

the search process does not evolve, two reasons are possible: (1)

the global optimum is reached or (2) a local minimum has been

found. For the second possibility, the main cause can be erroneous,

unsuitable or incomplete probabilities in the MoK. Therefore, if

there is no evolution after a predefined number of cycles of the

Fig. 10. Scenario encoding.
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EAOK, then the MoK is updated by means of: (1) a probability

smoothing procedure, (2) a learning procedure from a selection of

individuals. Both permit to make evolving the MoK for a better

orientation of the EAOK and are described in the next sections.

3.3.8. Probability smoothing

In order to modify the MoK, the probability smoothing process

is used at first. It consists to change the probabilities of the BN

according to the formula (8) below

P0 ¼ P � ð1ÿsmooth_degreeÞ ð8Þ

where P is a probability before smoothing and smooth_

degree is a parameter that permits to control the smoothing

process. P0 is the probability after smoothing. The smoothing

degree is included into the interval [0, 1]. If smooth_degree is equal

to 1 the operators are not oriented by knowledge (EAOK

degenerates as a classical EA). If smooth_degree is equal to 0,

there is no probability smoothing.

3.3.9. Learning procedure

Probabilities of the BN are learned from representative cases

using EM algorithm (expectation–maximization) (Dempster et al.,

1977 Tanner, 1996). The EM algorithm can be used in BN for

finding maximum likelihood estimates of parameters. The model

can depend on unobserved latent variables. So, it is interesting for

the learning process because cases can be incomplete (notably for

a partial knowledge reuse). A case represents an individual with

the values of concepts, criteria, decisions and associated objec-

tives. EM algorithm stops the learning process following two

criteria: the number of iterations E–M or the improvement of the

BN likelihood compared to the previous learning cycle (network

quality indicator with respect to the set of learning examples).

3.3.10. Affectation of the individual to objective classes

Individuals created by means of crossover and mutation

operators have to be affected to objective classes in order to start

a new cycle. An individual is affected to its closest objective class.

In the objective space, for each objective class, a central individual

is defined (Fig. 15). Its role is to represent the objective class

tending to attract new individuals. Central individuals belong to

the current Pareto front.

3.4. Computational complexity of EAOK

The proposed algorithm is a modified SPEA complemented by

a BN guidance (that involve learning and inference algorithm).

The computational complexity of the traditional SPEA method

is O(KN3) (Zitzler and Thiele, 1999), where K is the number of

objectives and N the size of population. The modified genetics

operators added to the classical SPEA method (evaluation and

KO-operators) have a bounded complexity proportional to the

number of decision variables of the problem. The BN guidance,

beforehand computed (‘‘a priori’’ orientations) then updated after

every learning phase or probabilities smoothing phase, is obtained

by a learning algorithm (EM algorithm) on the set of selected

individuals. The learning phase has a polynomial time complexity

which depends on the number of learning cases (individuals), the

selected stopping criterion and the BN shape (especially the

number of un-instantiated nodes—decision and concept nodes),

the number of states of those nodes and their relationships

(number and size of clique in the BN) (Dempster et al., 1977).

Finally, the inference algorithm used to exploit the learned model

(classes acquisition) is the junction tree algorithm. It is done for

each objective class on the learned model. Its time complexity

also depends on network shape (see Cowell et al., 1999) for more

details on inference and learning algorithm). So the complexity of

the whole algorithm is thus polynomial.

4. Experimentation and results

The main contribution of this study consists in the hybridation of

an evolutionary algorithmwith a dedicated model of knowledge. This

knowledge takes three distinct forms: (1) a conceptual dependency

structure between parameters expressed by a Bayesian network, (2)

probabilities extracted from analysis of previous optimizations and,

(3) explicit structural knowledge (inhibitions between genes). To

evaluate the use of each type of knowledge, the behaviour of three

algorithms is studied in this section:

ÿ classical EA (without knowledge): EA is ran with equiprobable

objective classes, in such way that each state has an equi-

valent probability to be mutated or crossed. The main

specific features in this case are the use of the inhibition
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mechanism and of the crossover strategies (intensification and

exploration),

ÿ knowledge oriented algorithm using )on line* learning

(noted EAOKX): the project graph structure is defined at the

beginning of the optimization while probabilities tables,

initially uniforms, are progressively updated by learning every

X generations,

ÿ knowledge oriented algorithm guided by a pre-learned model

(noted EAOKinit): the BN structure given by experts is used while

probabilities are learned using a sample of best solutions found

previously with an exhaustive approach (for small instances) or

with previous executions of EAOKX (for larger instances).

The EAOKinit algorithm enables to check the impact of using all

the available knowledge (structure and probabilities) while the

EAOKX only uses the minimal necessary knowledge (BN structure

given by an expert). The analysis of the three algorithms should

allow choosing a control strategy according to the available

knowledge and its relevance.

The algorithms have been studied by means of an ad hoc

platform developed in C++. Experimentation has been planned in

two steps. In the first step, the algorithms are evaluated on

limited size problems (different graph shapes with 35 to 90 task

nodes and 10 to 40 XOR nodes using a test graph random

generator, see next section). This first step allows checking the

general behaviour of the algorithm as well as tuning of several

parameters (evolutionary parameters, crossover strategies, learn-

ing parameters,y). In a second phase, the behaviour of the

algorithms is studied on a larger project (approximately hundred

XOR nodes and three hundred task nodes in the project graph).

4.1. Test graph random generator

The main principles of the graph generator used in order to

build the test graphs are described in this section.

The graph shape is randomly generated by a recursive

algorithm which treats graph by subsets in which the objects to

assign (tasks, XOR, AND nodes) are distributed. It allows obtaining

a nearly balanced graph with a similar number of nodes in every

subset. We also use, for the first test phase, some particular graph

shapes (linear or tree shape).

The graph generator has been achieved with the intention of

introducing underlying knowledge into data. This allows to simulate a

coherent knowledge representation that can be spotted by the

learning algorithm. Therefore, some ‘‘concepts’’ are attached to each

XOR node, whichmodulate the performance of associated tasks (tasks

located on the branches of the XOR node) for each criterion.

4.2. Global evaluation of the strategies

Fig. 16 and Tables 1–5 introduce first tests results on different

small projects (35 task nodes randomly generated, 12 XOR nodes

for Fig. 16 and Table 1 for example). The curves at the top of

Fig. 16 show the average performance of the population of

individuals obtained with the strategies EA, EAOKinit, EAOK1 and

EAOK5. The curves at the bottom of Fig. 16 show the average

performance of the individuals of the Pareto front. Each curve

represents average values obtained after one hundred executions.

The performance of a scenario is equivalent to the global

fitness F (noted fitness below). F corresponds to the sum of

normalised objective values. For each criterion, the minimum and

the maximum experimental values permit to obtain a normalised

objective value in order to be added to the other ones.

EAOKinit shows good performances. After initialisation, indivi-

duals of the population are 25% better than those obtained with

EA. These results come from different combination of others

parameters detailed in Sections 4.2–4.5 (crossover strategies,

knowledge use, etc.). This explains the important standard

deviation but, for a given setting, the performance ratio between

EA and EAOKinit is stable. The initial gap between EA and EAOKinit

corresponds to the direct impact of knowledge injection at the

initialisation step. This gap varies according to the MoK quality.

The population generated by the guided EAOK is always improved

in comparison with classical EA, because the used MoK leads to a

concentration of the population within good performance areas.

The final Pareto-optimal individuals mean fitness is improved of

4.82% at the twentieth generation. EA performance meets EAOKinit

ones very progressively, according to the problem complexity

(number of parameters and complexity of injected knowledge)

and according to evolutionary parameters setting.

Fig. 16 presents the first tests for on line learning algorithms.

They are equivalent to EA at the beginning of optimization

process (uniform probabilities distribution). They deviate from EA

after every learning phase. He learning effect is particularly visible

in mode EAOK5 with three zones where the difference with EA is

Fig. 15. Individual affectation to objective classes.
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increased (generations 5, 10 and 15). At the beginning of the

process, EAOK1 has better performance than EAOK5 but, the

difference is progressively reduced and finally EAOK5 gives better

results. This can be explained as follows: EAOK5 leaves degrees of

freedom to the search process in order to improve individuals

between each learning phase, whereas, for EAOK1, individuals

selected for learning are not enough diversified and the guided

search remains in a restricted area of the search space. EAOK5

better takes advantage of search and guiding combined effects.

4.3. Crossover strategies evaluation

The average values for one hundred executions of EA and

EAOKinit with two crossover strategies (exploration and intensi-

fication strategies respectively noted Cexplo and Cint) on the same

project are represented in Table 2.

During optimization, the performances of EA, whatever the

selected crossover strategy, are similar. With the exploration

strategy, individuals have a good distribution on the Pareto front.

However, they give individually worse performances. On the

contrary, when using the intensification strategy the individuals

are gathered and their performances are better. Let us point out that

at the end of the optimization process the strategy of intensification

is globally more powerful than exploration (average values of every

mode). However, the EA with an intensification strategy alone gives

worse performance than the EA with an exploration strategy only.

This can be explained by the lack of diversity of the population

using a strategy of intensification during all the process. With

respect to the relative standard deviation (RSD), the intensification

strategy always achieves better results with, for example for the

best individual of EAOKinit, a RSD value of 0.6%.

The most visible effect of the choice of crossover strategy affects

the average improvement given by the oriented crossover operator.

EAOKinit with a strategy of intensification presents a significant

initial peak, corresponding to the fast improvement in all the

known good performances areas. The average performance of the

crossing for the first generation is 233 for EAOKinit, while EA

improvement reaches only 29.5 in exploration mode. The indivi-

duals are thus correctly crossed, by respecting the integrity of

relevant knowledge of each class, and then produce individuals

mixing good features of both parents. For the whole process, the

crossover improves of 41 the global fitness of the solutions for the

strategy of exploration whereas the improvement in intensification

strategy is ÿ18.2. During the following tests, an exploratory

strategy has been used during the optimization process, notably in

order to provide a set of diversified solutions to the learning

process in mode EAOKX. The intensification strategy is used only at

the end of the search process in order to refine obtained solutions.

4.4. Learning parameters setting

For the tuning of the learning algorithm parameters, two

important characteristics must be taken into account: the quality

of the examples used for learning and the stopping criterion of the

Pareto front average fitness
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Table 1

Values corresponding to the curves showed on Fig. 16. The table shows results

obtained for each strategy (value and relative standard deviation (RSD) in

percentage for one hundred executions).

Mode Mean fitness for entire

population

Mean fitness for Pareto

individuals

Generation 0 Generation 19 Generation 0 Generation 19

Value RSD Value RSD Value RSD Value RSD

EA 11289 4.4 6961 16.5 7521 13.9 5781 7.5

EAOKinit 8408 3.9 5815 11.8 6305 10.3 5502 4.9

EAOK1 11352 4.4 6130 27 7624 13.7 5900 10.9

EAOK5 11144 4.4 6010 30 7502 14.5 5728 10.6
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learning algorithm. Both parameters are studied in the following

sections.

4.4.1. Influence of the set of examples used for learning

Table 3 presents results obtained for the five following

strategies on a small size project (50 task nodes):

ÿ sel1: this strategy selects all the individuals generated since the

beginning of optimization, with removal of the duplicate

individuals,

ÿ sel2: this strategy uses sets of individuals selected according to

their performance (one set for each objective, containing the

individuals which performance for the selected objective

ranges between the best performance obtained so far for this

objective (bst) and up to twenty five percent in addition to this

value: bst+25%.bst),

ÿ sel3: this strategy uses sets of individuals of fixed size (the best

individuals for each objective since the beginning of optimization),

ÿ sel4: this strategy uses the entire population of last generation,

ÿ self: this strategy is obtained from the strategy sel3 and

complemented with the best individuals found for the

compromise between objectives.

The quality of the available learning cases set seems to be themost

important characteristic in order to obtain a relevant model. The first

observation is that strategies sel1 and sel4 lead to poor performances.

Indeed, they select individuals from the entire search space including

individuals of poor performance. The others strategies focus on good

individuals which permits to avoid a saturation of the learning

capabilities of the MoK with poor individuals.

Comparing strategies sel2 and sel3, the strategy sel3 leads to

better results: (i) it better selects individuals whatever the shape

of the Pareto front (concave or convex front); (ii) it allows having

a constant number of learning examples, which makes it possible

to control precisely the processing time of the EM algorithm by

defining the size of the sets of selected individual. This strategy

(sel3) was finally complemented by additional set (self) in order to

Table 3

Learning parameters tuning: the table presents average results for different example selection strategies: average fitness and RSD (in percentage for one hundred runs) of

individuals of the population, Pareto front at the end of the optimization, average fitness of the best obtained individual and finally average execution time.

Mode Mean fitness for entire population Mean fitness for Pareto front Mean fitness for best individual time

Val. RSD Val. RSD Val. RSD

EA 6453 8.4 5177 3.6 4272 2.2 14

EAOK10 Sel1 6142 8.6 5213 3.5 4282 2.7 37

Sel2 5633 7.5 5178 2.3 4268 1.7 17

Sel3 5556 6.9 5157 2.2 4255 0.5 14.5

Sel4 5972 9.5 5222 4.3 4288 3.1 24

Self 5517 6.6 5149 2.2 4254 0.2 17

Table 4

Learning parameters tuning: the table present average results for different stopping criterion and progressive smoothing of MoK: average fitness and RSD (in percentage for

one hundred runs) of individuals of the population, Pareto front at the end of the optimization, average fitness of best obtained individual and average execution time.

Mode Mean fitness for entire population Mean fitness for Pareto front Mean fitness for best individual time

Val. RSD Val. RSD Val. RSD

EAOK10 10 iterations 6115 8.8 5211 5 4268 1.8 15.8

0.1% log-L 6025 8.6 5174 3.3 4267 1.4 15.2

0.01% log-L 6126 8.3 5221 3.3 4295 3.5 15.6

0.001% log-L 6194 9.2 5218 3.4 4287 2.9 15.2

No Smoothing 6104 8.6 5229 4 4283 2.8 15.2

Smoothing 6127 7.1 5217 2.9 4276 1.6 15.7

Table 2

Crossover strategies evaluation (values and RSD in percentage) for EA and EAOKinit modes, and for the first and last generation on the same small project.

Mode Mean fitness for entire population Mean fitness for Pareto front individuals

Generation 0 Generation 19 Generation 0 Generation19

Value RSD Value RSD Value RSD Value RSD

EA Cint 11289.2 4.4 6960.8 16.4 7520.7 14.0 5781.4 7.5

Cexplo 11369.38 4.2 7108.7 13.0 7562.1 12.6 5682.6 7.5

EAOKinit Cint 8407.609 3.9 5814.5 11.8 6303.9 10.3 5502.6 4.9

Cexplo 8401.002 3.4 5845.0 8.5 6307.5 10.4 5545.8 5.3

Mode Mean fitness for current best individual Average improvement with crossover operator

Generation 0 Generation 19 Generation 1 entire process

Value RSD Value RSD Value RSD Value RSD

EA Cint 6193.2 15.3 4064.2 3.4 10.2 1791 ÿ40 110

Cexplo 6255.3 14.8 4087.8 3.7 29.5 662 ÿ32 149

EAOKinit Cint 4237.2 5.1 3985.7 0.6 4.5 2521 ÿ18.2 138

Cexplo 4240.8 5.5 3996.4 0.9 233 95 41 162
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better learn the zones of compromise between objectives. This

last strategy leads to the best results and has been selected for the

remaining experimentations.

4.4.2. Influence of stopping criterion

Table 4 presents tests realized on the same graph than in section

4.3.1 (50 task nodes) for the other parameter of learning algorithm:

the stopping criterion. As previously presented, two kinds of criteria

are experimented: a fixed number of EM iterations (ten iterations has

been tested) or the minimal improvement of log-likelihood of BN

compared to the previous EM step (three different values investi-

gated: a minimal improvement of 0.1%, 0.01%, and 0.001% to continue

the learning process). The first one allows to control the computing

time needed for the learning algorithm but the quality of probabilities

estimation is not guaranteed. The values presented in Table 4 have

been obtained with the final individual selection (self) and exploration

crossover strategy (except the two last lines of the table, see details

below). As shown in this table, the best strategy seems to be the less

restrictive one (0.1% of minimal log-likelihood improvement). Indeed,

a fast learning is sufficient to make emerging the main properties of

the search space and thus to obtain a global guidance, whereas a

longer learning brings to an over-guidance of the search towards the

existing individuals. The same conclusion can be drawn when the

number of examples per class of objectives is too restricted (presented

results obtained with various individual selection strategies). The

phenomenon of ‘‘over-learning’’ induces stagnation of search around

the already found individuals, with a risk of stagnation in local

minima. This interpretation has been confirmed by the use of a

progressive smoothing (see Section 3.3.8) of the MoK, presented by

the two last lines of Table 4. The progressive smoothing can be used

and provides two functions: (i) it makes it possible to limit ‘‘over-

learning’’ when cases provided to the learning are too similar; (ii) it

constitutes a mean for gradually giving degrees of freedom to the

search process, i.e., to limit the guidance by the MoK (phenomenon of

‘‘over-guidance’’). If smoothing gives good results on reduced size

projects, it nevertheless requires more computing time, in particular

for bigger ones. Thus, it should not be systematically used but only as

a last resort when the optimization stagnates.

4.5. Structural knowledge and diploid preservation mode setting

Every combination1 of structural knowledge (SK) and diploid

knowledge preservation (DKP) modes has been evaluated. The

results are presented in Table 5 and concern one hundred

executions of each strategy: EAOKinit, EA and EAOK10 on a project

of 50 task nodes. Structural knowledge can be used to indirectly

manage the knowledge contained in the individuals. If it allows an

initial improvement of the AE, it also involves a reduction of the

genetic diversity by reducing exchanges between the individuals.

On the other hand, the use of structural knowledge with a MoK

learned online allows using only individual specific information

among knowledge contained in class. The diploid knowledge

preservation mode gives good results only when the individuals

have already a good level of performance, by preserving the

inactive combinations which can be re-used when the corre-

sponding genes are re-activated. On the contrary, the best

strategy with reliable information (EAOKinit) is to use neither

structural knowledge, nor diploid knowledge preservation. Gui-

dance by the model is then complete, but this strategy must not to

be maintained because of stagnation risks (strict guiding towards

existing individuals).

4.6. Large size problem experimentation

Finally, the proposed method has been tested on a problem

of larger size (350 tasks nodes and more than 100 XOR nodes).

An exact algorithm is not suitable for such large project.

Individuals used for the construction of the ‘‘a priori’’

model (EAOKinit) are collected during one execution of the

EAOK10 (390 individuals). Table 6 presents the average of 20

execution of our algorithm (30 generations of 50 individuals,

Pmut=Pcross=0.5).

The EAOK10 algorithm shows an interesting behaviour. The

population is overall improved by guiding as well as individuals of

the Pareto front. At the last generation, the variation between EA

and EAOK10, respectively, reaches 54% (population), 15% (Pareto

front) and 11% (better individual) in favour of the EAOK10.

Moreover, these performances are more regular than those of the

traditional EA. The learning improves the results, especially the

precision and reliability of optimization. It also seems that the

performances obtained strongly depend on the quality of search

before the first learning. An interesting prospect is to use an

adjustment of the EA supporting the diversity of individuals, in

order to improve the quality of individuals provided to the learning

algorithm. However, in its version of the platform, the time of

inference needed to update the probabilities classes remains

important. The EAOK10 requires indeed approximately 300 seconds

to reach the thirtieth generation with two learning phase, so

approximately 27% of additional time required compared to the EA.

Table 5

Average fitness of individuals of the Pareto front at the beginning (generation 0 to 2), in progress (generation 10 to 12) and at the end of the optimization, with various

indicators allowing to evaluate more precisely the Pareto front quality: relative standard deviation (RSD) of the average fitness of individuals of the Pareto front (PD), RSD of

distance between two consecutive individuals (DI), overall length of the Pareto front (Lg) and number of individuals of the Pareto front (Nb). The last column presents the

average fitness of the best final individual.

Mode DKP/KS Average fitness of Pareto front individual PD DI Lg Nb Best

0 1 2 10 11 12 18 19

EAOKinit 1/0 1667 1465 1445 1359 1348 1344 1360 1369 0.08 0.20 34 8.6 656

1/1 1706 1545 1465 1384 1390 1400 1399 1396 0.07 0.29 32 8 659

0/1 1665 1527 1492 1356 1357 1355 1379 1383 0.08 0.24 33 8.3 657

0/0 1716 1484 1409 1326 1321 1336 1353 1355 0.08 0.20 34 8.6 658

EA ÿ/0 2322 2215 2032 1541 1522 1518 1451 1439 0.1 0.26 31 6.9 665

1/1 2309 2148 1925 1537 1528 1510 1464 1464 0.11 0.24 30 6.9 674

0/1 2377 2083 1984 1667 1627 1584 1461 1459 0.1 0.25 31 6.7 674

EAOK10 1/0 2505 2255 2032 1570 1498 1483 1369 1363 0.07 0.26 32 7.4 669

1/1 2324 2104 2008 1468 1421 1419 1364 1357 0.08 0.26 31 7.1 661

0/1 2270 2091 1889 1562 1539 1475 1406 1399 0.1 0.25 31 7.5 669

0/0 2380 2183 2095 1606 1545 1500 1398 1391 0.07 0.26 32 7.4 664

1 Note that in EA mode, DKP is completely linked to structural knowledge

activation, while in other modes, genes can be inactivated by learned knowledge.
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5. Conclusion

This paper is focused on the description and evaluation of a

new evolutionary algorithm for the selection of project scenarios

in the early phases of a system design. The underlying problem is

highly combinatorial especially when decisions on the product

and on the project are integrated in a single model, called project

graph. In order to benefit from expert knowledge and from past

optimizations, a hybridation between a learning algorithm and a

search algorithm is proposed. A model of knowledge, used to

capitalize the knowledge that links decisions, environment,

objectives and concepts, is defined using the Bayesian network

formalism. This model is obtained from experts and from a

learning process using some solutions generated by the EA. This

model is used in order to give orientations to the EA to reach a

priori interesting zones of the multi-objective space. In a decision

aided perspective, the guided search process has to give some

solutions well distributed on the Pareto front. The proposed

method is based on the hybridation of a classical strength Pareto

evolutionary algorithm in order to guide the search process by

means of the model of knowledge. New operators of initialisation,

crossover and mutation are defined. Their behaviour is oriented

by probabilities contained into the MoK. Since the MoK can be

incomplete or erroneous, a MoK updating process based on in-line

learning permits to make it evolve during optimization.

Obtained results show the interest of the different levels of

knowledge reuse for orientation of an evolutionary algorithm.

When the knowledge contained in the model of knowledge is

reliable, the proposed method allows a significant improvement

of performance. When the MoK is erroneous or incomplete, the

tests realised on learning algorithm enabled us to study the

learning process abilities with the suggested method. To validate

our approach completely, it still remains to confront it with

standard problems (‘‘benchmarks’’).

However, tests carried out show the high performances of the

evolutionary algorithm oriented by knowledge compared to a

traditional EA. Moreover, the advantages of the proposed model

relate not only to a well guided and more efficient optimization

than with classical EA, but also to the possibility to capitalize

knowledge about previously planned projects according to their

context, and to provide decision makers with the MoK used

during optimization in addition to the optimized solutions. It is

indeed useful for decision makers to use the Bayesian network,

thanks to the tools offered by this formalism, and to directly

evaluate the influence of his decision on the objectives.
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Table 6

The table below presents average values and associated RSD (for the twenty executions) for the performance of population individuals (Pop.), Pareto front individuals

(Pareto) and best individual (best) at the end of optimization process, as well as qualitative indicators for Pareto front (PD, DI, Lg and Nb) and the execution time in second.

Mode Pop. Pareto PD DI Lg Nb Best Time

Val. RSD Val. RSD Val. RSD

EA 11357 0.199 6557 0.24 0.09 0.18 11.2 3.95 5453 0.21 217

EAOK10 7348 0.20 5688 0.14 0.07 0.16 9.4 4.1 4876 0.12 298

EAOKinit 5420 0.18 3601 0.17 0.11 0.21 9.5 3.6 2953 0.11 201




