Cluster globally, Reduce locally: Scalable efficient dictionary compression for magnetic resonance fingerprinting - STATIFY
Pré-Publication, Document De Travail Année : 2024

Cluster globally, Reduce locally: Scalable efficient dictionary compression for magnetic resonance fingerprinting

Résumé

With the rapid advancements in medical data acquisition and production, increasingly richer representations exist to characterize medical information. However, such large-scale data do not usually meet computing resource constraints or algorithmic complexity, and can only be processed after compression or reduction, at the potential loss of information. In this work, we consider specific Gaussian mixture models (HD-GMM), tailored to deal with high dimensional data and to limit information loss by providing component-specific lower dimensional representations. We also design an incremental algorithm to compute such representations for large data sets, overcoming hardware limitations of standard methods. Our procedure is illustrated in a magnetic resonance fingerprinting study, where it achieves a $97\%$ dictionary compression for faster and more accurate map reconstructions.
Fichier principal
Vignette du fichier
ISBI25_HDGMM-2.pdf (732.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04766234 , version 1 (04-11-2024)

Licence

Identifiants

  • HAL Id : hal-04766234 , version 1

Citer

Geoffroy Oudoumanessah, Thomas Coudert, Luc Meyer, Aurelien Delphin, Thomas Christen, et al.. Cluster globally, Reduce locally: Scalable efficient dictionary compression for magnetic resonance fingerprinting. 2024. ⟨hal-04766234⟩
52 Consultations
33 Téléchargements

Partager

More